Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Approximation Algorithms (1)
- Autonomous Learning (1)
- Bayesian Persuasion (1)
- Delegated Search (1)
- Developmental Robotics (1)
- Intrinsic Motivations (1)
- Online Algorithms (1)
- Reinforcement Learning (1)
- Robotics (1)
Institute
A lot of software systems today need to make real-time decisions to optimize an objective of interest. This could be maximizing the click-through rate of an ad displayed on a web page or profit for an online trading software. The performance of these systems is crucial for the parties involved. Although great progress has been made over the years in understanding such online systems and devising efficient algorithms, a fine-grained analysis and problem specific solutions are often missing. This dissertation focuses on two such specific problems: bandit learning and pricing in gross-substitutes markets.
Bandit learning problems are a prominent class of sequential learning problems with several real-world applications. The classical algorithms proposed for these problems, although optimal in a theoretical sense often tend to overlook model-specific proper- ties. With this as our motivation, we explore several sequential learning models and give efficient algorithms for them. Our approaches, inspired by several classical works, incorporate the model-specific properties to derive better performance bounds.
The second part of the thesis investigates an important class of price update strategies in static markets. Specifically, we investigate the effectiveness of these strategies in terms of the total revenue generated by the sellers and the convergence of the resulting dynamics to market equilibrium. We further extend this study to a class of dynamic markets. Interestingly, in contrast to most prior works on this topic, we demonstrate that these price update dynamics may be interpreted as resulting from revenue optimizing actions of the sellers. No such interpretation was known previously. As a part of this investigation, we also study some specialized forms of no-regret dynamics and prediction techniques for supply estimation. These approaches based on learning algorithms are shown to be particularly effective in dynamic markets.
Wir betrachten Algorithmen für strategische Kommunikation mit Commitment Power zwischen zwei rationalen Parteien mit eigenen Interessen. Wenn eine Partei Commitment Power hat, so legt sie sich auf eine Handlungsstrategie fest und veröffentlicht diese und kann nicht mehr davon abweichen.
Beide Parteien haben Grundinformation über den Zustand der Welt. Die erste Partei (S) hat die Möglichkeit, diesen direkt zu beobachten. Die zweite Partei (R) trifft jedoch eine Entscheidung durch die Wahl einer von n Aktionen mit für sie unbekanntem Typ. Dieser Typ bestimmt die möglicherweise verschiedenen, nicht-negativen Nutzwerte für S und R. Durch das Senden von Signalen versucht S, die Wahl von R zu beeinflussen. Wir betrachten zwei Grundszenarien: Bayesian Persuasion und Delegated Search.
In Bayesian Persuasion besitzt S Commitment Power. Hier legt sich S sich auf ein Signalschema φ fest und teilt dieses R mit. Es beschreibt, welches Signal S in welcher Situation sendet. Erst danach erfährt S den wahren Zustand der Welt. Nach Erhalt der durch φ bestimmten Signale wählt R eine der Aktionen. Das Wissen um φ erlaubt R die Annahmen über den Zustand der Welt in Abhängigkeit von den empfangenen Signalen zu aktualisieren. Dies muss S für das Design von φ berücksichtigen, denn R wird Empfehlungen nicht folgen, die S auf Kosten von R übervorteilen. Wir betrachten das Problem aus der Sicht von S und beschreiben Signalschemata, die S einen möglichst großen Nutzen garantieren.
Zuerst betrachten wir den Offline-Fall. Hier erfährt S den kompletten Zustand der Welt und schickt daraufhin ein Signal an R. Wir betrachten ein Szenario mit einer beschränkten Anzahl k ≤ n Signale. Mit nur k Signalen kann S höchstens k verschiedene Aktionen empfehlen. Für verschiedene symmetrische Instanzen beschreiben wir einen Polynomialzeitalgorithmus für die Berechnung eines optimalen Signalschemas mit k Signalen.
Weiterhin betrachten wir eine Teilmenge von Instanzen, in denen die Typen aus bekannten, unabhängigen Verteilungen gezogen werden. Wir beschreiben Polynomialzeitalgorithmen, die ein Signalschema mit k Signalen berechnen, das einen konstanten Approximationsfaktor im Verhältnis zum optimalen Signalschema mit k Signalen garantiert.
Im Online-Fall werden die Aktionstypen einzeln in Runden aufgedeckt. Nach Betrachtung der aktuellen Aktion sendet S ein Signal und R muss sofort durch Wahl oder Ablehnung der Aktion darauf reagieren. Der Prozess endet mit der Wahl einer Aktion. Andernfalls wird der nächste Aktionstyp aufgedeckt und vorherige Aktionen können nicht mehr gewählt werden. Als Richtwert für unsere Online-Signalschemata verwenden wir das beste Offline-Signalschema.
Zuerst betrachten wir ein Szenario mit unabhängigen Verteilungen. Wir zeigen, wie ein optimales Signalschema in Polynomialzeit bestimmt werden kann. Jedoch gibt es Beispiele, bei denen S – anders als im Offline-Fall – im Online-Fall keinen positiven Wert erzielen kann. Wir betrachten daraufhin eine Teilmenge der Instanzen, für die ein einfaches Signalschema einen konstanten Approximationsfaktor garantiert und zeigen dessen Optimalität.
Zusätzlich betrachten wir 16 verschiedene Szenarien mit unterschiedlichem Level an Information für S und R und unterschiedlichen Zielfunktionen für S und R unter der Annahme, dass die Aktionstypen a priori unbekannt sind, aber in uniform zufälliger Reihenfolge aufgedeckt werden. Für 14 Fälle beschreiben wir Signalschemata mit konstantem Approximationsfaktor. Solche Schemata existieren für die verbleibenden beiden Fälle nicht. Zusätzlich zeigen wir für die meistern Fälle, dass die beschriebenen Approximationsgarantien optimal sind.
Im zweiten Teil betrachten wir eine Online-Variante von Delegated Search. Hier besitzt nun R Commitment Power. Die Aktionstypen werden aus bekannten, unabhängigen Verteilungen gezogen. Bevor S die realisierten Typen beobachtet, legt R sich auf ein Akzeptanzschema φ fest. Für jeden Typen gibt φ an, mit welcher Wahrscheinlichkeit R diesen akzeptiert. Folglich versucht S, eine Aktion mit einem guten Typen für sich selbst zu finden, der von R akzeptiert wird. Da der Prozess online abläuft, muss S für jede Aktion einzeln entscheiden, diese vorzuschlagen oder zu verwerfen. Nur empfohlene Aktionen können von R ausgewählt werden.
Für den Offline-Fall sind für identisch verteilte Aktionstypen konstante Approximationsfaktoren im Vergleich zu einer Aktion mit optimalem Wert für R bekannt. Wir zeigen, dass R im Online-Fall im Allgemeinen nur eine Θ(1/n)-Approximation erzielen kann. Der Richtwert ist der erwartete Wert für eine eindimensionale Online-Suche von R.
Da für die Schranke eine exponentielle Diskrepanz in den Werten der Typen für S benötigt wird, betrachten wir parametrisierte Instanzen. Die Parameter beschränken die Werte für S bzw. das Verhältnis der Werte für R und S. Wir zeigen (beinahe) optimale logarithmische Approximationsfaktoren im Bezug auf diese Parameter, die von effizient berechenbaren Schemata garantiert werden.
Die Emergenz digitaler Netzwerke ist auf die ständige Entwicklung und Transformation neuer Informationstechnologien zurückzuführen.
Dieser Strukturwandel führt zu äußerst komplexen Systemen in vielen verschiedenen Lebensbereichen.
Es besteht daher verstärkt die Notwendigkeit, die zugrunde liegenden wesentlichen Eigenschaften von realen Netzwerken zu untersuchen und zu verstehen.
In diesem Zusammenhang wird die Netzwerkanalyse als Mittel für die Untersuchung von Netzwerken herangezogen und stellt beobachtete Strukturen mithilfe mathematischer Modelle dar.
Hierbei, werden in der Regel parametrisierbare Zufallsgraphen verwendet, um eine systematische experimentelle Evaluation von Algorithmen und Datenstrukturen zu ermöglichen.
Angesichts der zunehmenden Menge an Informationen, sind viele Aspekte der Netzwerkanalyse datengesteuert und zur Interpretation auf effiziente Algorithmen angewiesen.
Algorithmische Lösungen müssen daher sowohl die strukturellen Eigenschaften der Eingabe als auch die Besonderheiten der zugrunde liegenden Maschinen, die sie ausführen, sorgfältig berücksichtigen.
Die Generierung und Analyse massiver Netzwerke ist dementsprechend eine anspruchsvolle Aufgabe für sich.
Die vorliegende Arbeit bietet daher algorithmische Lösungen für die Generierung und Analyse massiver Graphen.
Zu diesem Zweck entwickeln wir Algorithmen für das Generieren von Graphen mit vorgegebenen Knotengraden, die Berechnung von Zusammenhangskomponenten massiver Graphen und zertifizierende Grapherkennung für Instanzen, die die Größe des Hauptspeichers überschreiten.
Unsere Algorithmen und Implementierungen sind praktisch effizient für verschiedene Maschinenmodelle und bieten sequentielle, Shared-Memory parallele und/oder I/O-effiziente Lösungen.
Recent advances in artificial neural networks enabled the quick development of new learning algorithms, which, among other things, pave the way to novel robotic applications. Traditionally, robots are programmed by human experts so as to accomplish pre-defined tasks. Such robots must operate in a controlled environment to guarantee repeatability, are designed to solve one unique task and require costly hours of development. In developmental robotics, researchers try to artificially imitate the way living beings acquire their behavior by learning. Learning algorithms are key to conceive versatile and robust robots that can adapt to their environment and solve multiple tasks efficiently. In particular, Reinforcement Learning (RL) studies the acquisition of skills through teaching via rewards. In this thesis, we will introduce RL and present recent advances in RL applied to robotics. We will review Intrinsically Motivated (IM) learning, a special form of RL, and we will apply in particular the Active Efficient Coding (AEC) principle to the learning of active vision. We also propose an overview of Hierarchical Reinforcement Learning (HRL), an other special form of RL, and apply its principle to a robotic manipulation task.