Refine
Document Type
- Doctoral Thesis (5)
Language
- German (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Agelas (1)
- Alkaloide (1)
- Ascidien (1)
- Bioassay-guided fractionation (1)
- Chemische Ökologie (1)
- Gemeinschwämme (1)
- Isolierung <Chemie> (1)
- Makromolekulare Chemie (1)
- Makromolekül (1)
- Manteltiere (1)
Institute
In der vorliegenden Arbeit wurden marine Schwämme der Gattungen Agelas und Stylissa von den Florida Keys und Bahamas untersucht. Dabei lag das Hauptinteresse neben der Isolierung und Strukturaufklärung der Schwamminhaltsstoffe vor allem auf der ökologischen Funktion der Sekundärstoffe. Die Chemie dieser Schwämme ist sehr charakteristisch und wird von bromierten Derivaten der Pyrrol-2-carbonsäure bestimmt. Insgesamt wurden 17 bromierte Pyrrol-Alkaloide isoliert, von denen die Verbindungen N-alpha-(4-Brompyrrolyl-2-carbonyl)-L-homoarginin (isoliert aus Agelas wiedenmayeri), Bromsceptrin (Agelas conifera), N-Methyl-dibromisophakellin (Stylissa caribica), Monobromisophakellin (Agelas sp.) und Sventrin (Agelas sventres) erstmals beschrieben wurden. Die Strukturaufklärung erfolgte mit spektroskopischen Methoden (2D NMR, MS, IR, UV, CD) und durch Vergleich mit literaturbekannten Daten. Im Fall von N-alpha-(4-Brompyrrolyl-2-carbonyl)- L-homoarginin gelang die Bestimmung der absoluten Konfiguration erst nach Synthese der Verbindung und anschließendem Vergleich der CD-Spektren von Naturstoff und synthetischer Verbindung. Insgesamt wurden die Dichlormethan/Methanol-Rohextrakte von 125 Schwämmen der Gattung Agelas, die an verschiedenen Standorten der Bahamas gesammelt wurden, mittels HPLC qualitativ untersucht und die Hauptsekundärmetaboliten quantitativ bestimmt. In sämtlichen Schwämmen konnten Brompyrrol-Alkaloide nachgewiesen werden, wobei sich drei charakteristische Inhaltsstoffmuster zeigten. Während die Rohextrakte von 71 Proben der Schwämme Agelas cervicornis, Agelas clathrodes, Agelas dispar und Agelas wiedenmayeri durch die beiden Alkaloide Oroidin und 4,5-Dibrompyrrol-2-carbonsäure gekennzeichnet sind, bestimmen dimere Pyrrol-Imidazol-Alkaloide vom Sceptrin- und Ageliferin-Typ, wobei Sceptrin stets dominiert, das Inhaltsstoffmuster von 50 untersuchten Proben der Schwämme Agelas cerebrum, Agelas conifera, Agelas dilatata und Agelas sceptrum. Ein drittes Inhaltsstoffmuster wurde für vier Proben des Schwamms Agelas sp. gefunden, welches durch bromierte Pyrrol-Alkaloide vom Phakellin- und Isophakellin-Typ charakterisiert ist. Zur Untersuchung der ökologischen Bedeutung von Brompyrrol-Alkaloiden wurde die fraßabschreckende Wirkung gegenüber Fischen getestet. In Aquarium- und Freilandversuchen konnte gezeigt werden, daß die fraßhemmende Wirkung der Rohextrakte gegenüber Fischen im Fall von Agelas conifera auf bromierte Pyrrol-Alkaloide vom Sceptrin- und Ageliferin-Typ bzw. Isophakellin-Typ für Stylissa caribica zurückzuführen ist. Erstmals wurden Reinsubstanzen vom Sceptrin-, Ageliferin- und Isophakellin-Typ getestet. Sceptrin und N-Methyl-dibromisophakellin sind bei natürlichen Konzentrationen fraßabschreckend. In weiteren ökologischen Untersuchungen konnte gezeigt werden, daß die bromierten Pyrrol-Alkaloide Oroidin, 4,5-Dibrompyrrol-2-carbonsäure und Sceptrin neben einem fraßabschreckenden Potential gegenüber Fischen auch besiedlungshemmend auf Fäulnisbakterien wirken. Bromierte Pyrrol-Alkaloide erfüllen somit mindestens zwei ökologische Funktionen, die das Überleben von Agelas-Schwämmen sichern und sie zu einer der erfolgreichsten Arten in Lebensgemeinschaften karibischer Riffe machen.
Die chemische Analyse von 17 abundanten Nordseeschwammarten zeigte, dass die Metabolitenzusammensetzung und -konzentration standortbedingt nur geringfügig schwanken. Den Großteil der Schwammmetaboliten bilden mittelpolare bis polare Substanzen ohne UV-Absorption. Allgemein scheinen in Nordseeschwämmen aromatische und olefinische Verbindungen seltener vorzukommen als in tropischen Arten. Die Chemie der einzelnen Nordseeschwämme ist oft ähnlich und wird von kleinen, stickstoffhaltigen Molekülen dominiert. Ubiquitär verbreitete, vermutlich phylogenetisch alte Substanzen wie Inosin, Allantoin, Homarin und Trigonellin wurden in zahlreichen untersuchten Arten nachgewiesen. Trigonellin und Homarin üben, wie für andere marine Organismen bereits dokumentiert, auch in den Nordseeschwämmen Schutzfunktion gegen Konkurrenten und Fouling-Organismen aus. Die identifizierten Verbindungen weisen darauf hin, dass den mit dem Aminosäure- und Purinstoffwechsel verbundenen Biosynthesewegen eine große Bedeutung in der Naturstoffsynthese der untersuchten Schwammarten zukommt. Diese Vermutung wird dadurch untermauert, dass auch die Bildung von Imidazolen (aus Phakellia ventilabrum isoliert) aus Histidin eng mit dem Purinstoffwechsel verbunden ist. Durch den Abbau von Histidin können wiederum Substanzen entstehen, die als Methyldonatoren in Frage kommen (methylierte Verbindungen, vgl. Pachymatisma johnstonia). Biologische Aktivität wurde anhand von Biotests zur antilarvalen, cytotoxischen, antibakteriellen, enzyminhibitorischen und bewuchshemmenden Wirkung in Extrakten der untersuchten Nordseeschwämme nachgewiesen. Dabei zeigten alle Schwammarten Effekte in mehr als einem Biotest. Diese Untersuchungen bestätigen das Vorkommen biologisch aktiver Substanzen in Schwämmen kaltgemäßigter Habitate und widerlegen damit die Latitudinalhypothese. Unabhängig von der geographischen Breite sind Schwämme weltweit einem selektiven Druck ausgesetzt, der die Entwicklung biologisch aktiver Metaboliten begünstigt. Die Art der Selektionsfaktoren scheint jedoch habitatbedingt unterschiedlich zu sein. Während in wärmeren Gewässern vor allem Prädatoren (Fische) das Überleben der Schwämme beeinflussen, sind in kälteren Gebieten Aufwuchsorganismen und Bakterien von entscheidender Bedeutung. Diese Annahme wird durch die Beobachtung der assoziierten Organismen ebenso unterstützt, wie durch die Tatsache, dass in allen untersuchten Nordseeschwammarten (Esperiopsis fucorum, Phakellia ventilabrum, Leucosolenia complicata, Cliona celata, Pachymatisma johnstonia) Bakterien nachgewiesen werden konnten. Neben den ökologischen Beobachtungen bekräftigt auch die starke antibakterielle Wirkung der Schwammmetaboliten diese Hypothese. Während Toxizität seltener beobachtet wurde, zeigten viele Schwämme auch enzyminhibitorische Wirkung. Zusammenhänge zwischen biologischer Aktivität und morphologischen bzw. taxonomischen Kriterien, Lebensweise, Habitatcharakteristika oder assoziierten Organismen waren nicht durch Clusteranalysen aufzudecken. Es konnten jedoch Unterschiede im Metabolitengehalt und der Art der assoziierten Organismen zwischen langlebigen, großen Kieselschwammarten und kleineren, saisonal wachsenden Kalkschwämmen hervorgehoben werden. Leucosolenia compl icata (Calcarea) ist sowohl qualitativ als auch quantitativ relativ metabolitenarm, biologisch sehr aktiv und mit einer großen Zahl an Bakterien assoziiert. Die Mikroorganismen scheinen für diese Art von größerer Bedeutung zu sein als bei den untersuchten Demospongiae. Einige Kieselschwämme (z.B. Cliona celata, Phakellia ventilabrum) sind besonders metabolitenreich, enthalten weniger Bakterien und verfügen ebenfalls über biologisch aktive Substanzen. Um diese Beobachtungen in einem ökologischen Zusammenhang zu sehen, sind eingehendere Studien, wie sie mit Pachymatisma johnstonia durchgeführt wurden, notwendig. Die Isolierung der Hauptmetaboliten von Pachymatisma johnstonia führte zur Identifizierung der methylierten Substanzen Betain, N,N,N-Trimethyl-ß-alanin, L-6-Bromohypaphorin und dem Pyridinalkaloid Trigonellin. Anhand verschiedener biologischer Tests konnte ein Einblick in die Wirkungsweise und Funktion der aktiven Metaboliten gewonnen werden. Die Aminosäure L-6-Bromohypaphorin und eine noch nicht identifizierte Substanz zeigten starke Enzyminhibition gegenüber einer Protein-Tyrosin-Kinase. L-6-Bromohypaphorin wurde im Pinacoderm unbewachsener Individuen in einer höheren Konzentration nachgewiesen als in Schwämmen mit Bryozoenbewuchs, und spielt demnach vermutlich bei der Abwehr von Fouling-Organismen eine Rolle. Bakterien wurden als Produzenten der aktiven Substanzen ausgeschlossen. Eine Abgabe der Metaboliten nach außen ist eher unwahrscheinlich. Die Extrakte von P. johnstonia zeigten starke antibakterielle Wirkung mit einer Breitbandaktivität, vor allem gegen marine Bakterien. Welche Substanzen für diese Effekte verantwortlich sind, ist nicht bekannt. Eine Hälterung von P. johnstonia war möglich. Ebenso wie Cliona celata passte sich der Schwamm an veränderte abiotische und biotische Faktoren an. Verletztes Gewebe wurde regeneriert und Hauptmetaboliten weiter produziert. Die Synthesetätigkeit von P. johnstonia schwankte, die biologische Aktivität blieb über neun Monate hinweg erhalten. Durch eine Optimierung der Hälterungsbedingungen könnte die Naturstoffproduktion vermutlich konstant gehalten werden. Mit P. johnstonia wurde somit ein gutes Beispiel für die Interaktion zwischen Naturstoffchemie, Ökologie und pharmakologischem Potential bzw. biotechnologischer Nutzbarkeit geliefert. Bedingt durch das Ziel der Arbeit, einen Überblick über die Chemie und biologische Aktivität der Nordseeschwämme zu gewinnen, wurde weniger Augenmerk auf die Isolierung neuer Strukturen gelegt. Im Zuge von intensiveren Studien wäre eine Optimierung der chemischen Methodik anzustreben. Die Aufklärung der in geringerer Konzentration vorkommenden Substanzen könnte hilfreich sein, um den ersten Eindruck der Metabolitenzusammensetzung zu überprüfen. Außerdem wird aufgrund der Biotestergebnisse die Existenz zahlreicher biologisch aktiver Substanzen, vor allem antibiotischer Wirkstoffe, vermutet, deren Isolierung eine Herausforderung darstellt. Besonders interessant ist in diesem Zusammenhang auch die Tatsache, dass bisher sämtliche medizinisch genutzten Antibiotika aus Mikroorganismen stammen, Schwämme aber weltweit über ein hohes antibiotisches Potential verfügen. Dadurch stellt sich erneut die Frage, ob Schwämme tatsächlich selbst in der Lage sind, wirksame Substanzen zu produzieren. Diese Ungewissheit zusammen mit der Tatsache, dass alle aus den Nordseeschwämmen isolierten und identifizierten Verbindungen aus Stoffwechselwegen stammen, die bisher als für Mikroorganismen typisch beschrieben wurden, bietet interessante Ansatzmöglichkeiten für weitere Untersuchungen. Auch wenn Schwämme zu den am besten untersuchten Organismen in der marinen Naturstoffchemie zählen, ist das Wissen im Bereich der chemischen Ökologie noch begrenzt. Um mehr über die Beziehung zwischen Schwämmen und ihrer belebten Umwelt zu erfahren und die Rolle der Naturstoffe dabei aufzudecken, müssen geeignete Untersuchungsmethoden bzw. Biotests etabliert werden. Abbildung 4.1 soll die Bedeutung der Schwämme für ihren Lebensraum und den Menschen hervorheben und die komplexen Zusammenhänge, welche durch die Wirkung der Naturstoffe vermittelt werden, verdeutlichen. Häufig werden Schwämme als primitive Organismen beschrieben, da sie sich durch das Fehlen eines Nervensystems und anderer Organe von höheren Tieren unterscheiden. Tatsächlich sind diese Lebewesen aber hochentwickelte Spezialisten. Optimal an eine sessile Lebensweise angepasst, bewohnen sie seit Millionen von Jahren erfolgreich vor allem marine Habitate in großer Artendiversität und Abundanz. Aufgrund der Produktion von aktiven Metaboliten zur Abwehr schädlicher Organismen stellen die Schwämme aus menschlicher Perspektive eine wertvolle Ressource dar. Nicht nur aus diesem Grund sollten wir Ihnen mit Respekt begegnen und versuchen, die (Naturstoff-)forschung nachhaltig zu betreiben, die Beeinträchtigung der Tiere auf ein vertretbares Maß zu reduzieren und ihren Lebensraum zu schützen.
In der vorliegenden Arbeit wurden Sekundärmetabolite aus marinen Wirbellosen der Nordsee, arktischen und antarktischen Gewässern untersucht. Ausgehend von Untersuchungen zur marinen chemischen Ökologie von Haliclona viscosa und physiologischen Effekten auf die Kieme der Krabbe Carcinus maenas wurden verschiedene Alkaloide und Cholesterole isoliert (siehe Abbildung 25). Vier unbekannte Alkaloide konnten erstmalig aus Haliclona viscosa isoliert werden. Sie leiten sich von 3-Alkylpyridin-Alkaloiden ab, die für Schwämme der Gattung Haliclona charakteristisch sind. Die Strukturaufklärung erfolgte durch den Einsatz von NMRSpektroskopie und Massenspektrometrie. Die symmetrischen bzw. pseudo-symmetrischen Eigenschaften erschwerten im besonderen Maße die Strukturaufklärung. Die Isolation von Haliclamin C und D sowie Viscosalin ermöglichte es, daß für sie ökologische Funktionen nachgewiesen werden konnten [33, 34], die dem Schwamm Haliclona viscosa in seinem Habitat Vorteile im Kampf um das Überleben bringen. Viscosamin ist das erste natürlich vorkommende zyklische Trimer eines 3-Alkylpyridin-Alkaloids, daß aus einer marinen Umgebung stammt. Es schließt eine Lücke zwischen monomeren, dimeren und polymeren 3-Alkylpyridin-Alkaloiden. Aus dem bisher noch nicht chemisch untersuchten Borstenwurm Laetmonice producta, konnte Homarin isoliert werden [81-84]. Homarin zeigte einen bisher unbekannten physiologischen Effekt auf die Kieme eines potentiellen Räubers [35]. Ob Homarin aufgrund seiner physiologischen Wirkung den Borstenwurm vor z.B. räuberischen Krebstieren schützen kann, muß noch mit weiteren Versuchen geklärt werden. Enthält 3 Art. aus versch. Zeitschr.: 1 Christian A. Volk and Matthias Köck: Viscosamine: The First Naturally Occuring Trimeric 3-Alkyl Pyridinium Alkaloid ; 2 Christian A. Volk, Heike Lippert, Ellen Lichte, and Matthias Köck: Two New Haliclamines from the Arctic Sponge Haliclona viscosa, European Journal of Organic Chemistry 2004, im Druck ; 3 Christian A. Volk and Matthias Köck: Viscosaline: New 3-Alkyl Pyridinium Alkaloid from the Artic Sponge Haliclona viscosa, Organic & Biomolecular Chemistry 2004, im Druck
Tunikaten produzieren eine Vielzahl an cytotoxischen und antimikrobiellen Verbindungen, die ihnen in ihrem Ökosystem zu überlebenswichtigen Vorteilen verhelfen. Wegen ihrer strukturellen Diversität und ihrer spezifischen Eigenschaften haben bislang einige dieser Sekundärstoffe Eingang in die pharmazeutische Industrie gefunden. Ziel der vorliegenden Arbeit war eine umfassende Untersuchung des chemischen Potentials benthischer Ascidien der Nordsee. Die Eigenschaften der organischen Ascidienextrakte wurden anhand von vier Bioassays beschrieben. Die Assays fungierten gleichzeitig als Wegweiser zur Isolierung der aktiven Sekundärmetaboliten, der sich eine Strukturaufklärung mit spektroskopischen Methoden (NMR, MS, IR) anschloss. Es wurden Tests auf bewuchshemmende, antimikrobielle, cytotoxische und enzymhemmende Eigenschaften durchgeführt. Eingesetzt wurden organische Extrakte von 13 solitären und koloniebildenden Ascidienarten der nördlichen und südlichen Nordsee. In allen vier Assays zeigten mehrere oder alle Ascidienarten Aktivität. Es ließen sich keine Hinweise auf eine mit der Wuchsform der Arten korrelierte biologische Aktivität sammeln. In einem Freilandversuch zur Untersuchung der besiedlungshemmenden Wirkung der Extrakte konnte gezeigt werden, dass einige Ascidien eine chemische Abwehr von Algensporen oder Epibionten aufweisen, die artspezifisch unterschiedlich stark ausgeprägt ist. Alle Ascidienarten bewiesen antimikrobielle Aktivität, es ergaben sich aber sowohl in der Hemmhofbreite als auch in der Anzahl der gehemmten Bakterienstämme große artspezifische Unterschiede. Auffallend war, dass deutlich mehr Gram-positive sowie marine Bakterienstämme als Gram-negative bzw. nicht-marine Bakterienstämme inhibiert wurden. Im Gegensatz zur antimikrobiellen Aktivität wurden in den Assays zur Cytotoxizität und zur spezifischen Enzymhemmung lediglich bei jeweils vier Ascidienarten positive Effekte festgestellt. Durch die spezifische Anfärbung von Zellorganellen konnten morphologische Veränderungen, die durch die Ascidienmetaboliten in den Mausfibroblasten induziert wurden, sichtbar gemacht und der Einfluß der Extrakte auf das Cytoskelett und spezifische Zellfunktionen dokumentiert werden. Im Protein-Tyrosin-Kinase-Assay führte eine Bioassay-guided Fractionation von Extrakten der Ascidie Dendrodoa grossularia zur Isolierung der aktiven Substanz. Über spektroskopische Methoden sowie den Vergleich mit Literaturdaten konnte der enzymhemmende Metabolit als das Guanidinostyren Tubastrin identifiziert werden. Tubastrin wurde im Rahmen dieser Arbeit erstmals in Tunikaten nachgewiesen. Der Metabolit zeigte als Reinsubstanz nur geringe cytotoxische Effekte und keine antimikrobiellen Eigenschaften. Als weitere Metaboliten der Ascidien Dendrodoa grossularia und Ascidiella aspersa wurden Homarin, Betain, Adenosin und Inosin identifiziert. Keiner dieser Substanzen konnte in der vorliegenden Arbeit eine biologische Aktivität zugeordnet werden. Während Betain, Adenosin und Inosin Funktionen innerhalb des Primärmetabolismus besitzen oder als Zwischenprodukte in Synthesewege eingebunden sein können, stellt Homarin einen Sekundärmetaboliten dar, der in einer Vielzahl von marinen Organismen unterschiedliche Funktionen erfüllt. Seine Aufgabe in Tunikaten muss durch weitere Untersuchungen geklärt werden. Dass antimikrobielle Aktivität bei allen Ascidienarten gefunden wird, lässt auf eine grundlegende Bedeutung prokaryontischer Abwehr schließen. Die Unterschiede in der Stärke der Effekte aller Bioassays legen nahe, dass jede Ascidienart eine eigene Gesamtstrategie zur Verteidigung gegen Bewuchs und Fraßfeinde ausgebildet hat. Die aus den Laborversuchen erhaltenen Daten verdeutlichen eine weitreichende biologisch-chemische Aktivität von Aplidium punctum, Dendrodoa grossularia und Didemnum candidum, die neben der antimikrobiellen auch starke cytotoxische und/oder enzymhemmende Wirkung gezeigt haben. Die Lokalisation der aktiven Substanzen im Tier sowie eingehendere Versuche zur molekularen Wirkungsweise sind notwendig, die beobachteten Aktivitäten umfassend zu deuten und ihre Nutzbarkeit unter pharmakologischen Gesichtspunkten zu evaluieren.
Lineare sowie zyklische 3-Alkylpyridinalkaloide sind vor allem in Schwämmen der Ordnung Haplosclerida, zu der auch Haliclona viscosa zählt, weit verbreitet. Die Synthese der zuvor von C. Volk isolierten Haliclamine C und D, des Viscosamins und des Viscosalin C bildete den Ausgangspunkt dieser Arbeit.[1-4] Sie erfolgte ausgehend von den bekannten Synthesen der Cyclostellettamine und Haliclamine[5-7] und gliedert sich in drei Abschnitte: erstens Synthese eines ω-Hydroxyalkylpyridins aus einem Bromalkohol, zweitens Funktionalisierung der Monomere in Abhängigkeit der gewählten Methode zur Di- bzw. Trimerisierung und drittens Verknüpfung und gegebenenfalls Zyklisierung. Durch Anwendung und Weiterentwicklung der bekannten Synthesewege wurden so insgesamt 14 lineare Monomere, zwei zyklische Monomere, 16 Cyclostellettamine, zwei Isocyclostellettamine, sieben Haliclamine, fünf Viscosaline sowie Viscosamin[8] und ein Analogon mit Heptylkette hergestellt. Dieser synthetische Zugang ermöglichte es, sowohl den finalen Strukturbeweis für die zuvor isolierten Verbindungen zu erbringen, als auch durch die Analyse der Fragmentierungs-muster von synthetischen und natürlichen Verbindungen mehr über das Verhalten dieser Verbindungen unter MS-Bedingungen zu erfahren. Die so gewonnenen Erkenntnisse führten dazu, dass drei unbekannte Verbindungen ohne Isolierung der Reinsubstanz mit einer Kombination von MS- und HPLC-Daten identifiziert werden konnten. So konnten das erste monozyklische 3-Alkylpyridinalkaloid marinen Ursprungs und zwei neue Haliclamine identifiziert und synthetisiert werden Des Weiteren gelang es, für die von C. Volk isolierten, jedoch nicht identifizierten Verbindungen Strukturen zu ermitteln bzw. auf Grund der MS-Daten Strukturvorschläge zu machen. Die durch den synthetischen Zugang große Anzahl verfügbarer 3-Alkylpyridinalkaloide ermöglichte außerdem eine systematische Untersuchung über den Zusammenhang von biologischer Aktivität und Struktur. Die Ergebnisse der am Helmholtz Institut für Infektionsforschung durchgeführten Experimente zu den antibakteriellen sowie cytotoxischen Eigenschaften von natürlichen wie auch rein synthetischen 3-Alkylpyridinalkaloiden zeigten, dass die Aktivität sich schon beim Addieren bzw. Subtrahieren einer Methylengruppe in einer Alkylkette signifikant ändert. [1] C. A. Volk, M. Köck, Org. Lett. 2003, 5, 3567-3569. [2] C. A. Volk, M. Köck, Org. Biomol. Chem. 2004, 2, 1827-1830. [3] C. A. Volk, H. Lippert, E. Lichte, M. Köck, Eur. J. Org. Chem. 2004, 3154-3158. [4] C. A. Volk, Dissertation, Johann Wolfgang Goethe Universität (Frankfurt am Main), 2004. [5] A. Grube, C. Timm, M. Köck, Eur. J. Org. Chem. 2006, 1285-1295 und Referenzen darin. [6] J. E. Baldwin, D. R. Spring, C. E. Atkinson, V. Lee, Tetrahedron 1998, 54, 13655-13680. [7] A. Kaiser, X. Billot, A. Gateau-Olesker, C. Marazano, B. C. Das, J. Am. Chem. Soc. 1998, 120, 8026-8034. [8] C. Timm, M. Köck, Synthesis 2006, 2580-2584.