Refine
Document Type
- Doctoral Thesis (12)
- Master's Thesis (1)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Auditory cortex (1)
- Invariant object recognition (1)
- Network model (1)
- Population activity (1)
- Representational drift (1)
- SORN (1)
- STDP (1)
- Synaptic plasticity (1)
- Theoretical neuroscience (1)
- Transfer learning (1)
Institute
Measuring information processing in neural data: The application of transfer entropy in neuroscience
(2017)
It is a common notion in neuroscience research that the brain and neural systems in general "perform computations" to generate their complex, everyday behavior (Schnitzer, 2002). Understanding these computations is thus an important step in understanding neural systems as a whole (Carandini, 2012;Clark, 2013; Schnitzer, 2002; de-Wit, 2016). It has been proposed that one way to analyze these computations is by quantifying basic information processing operations necessary for computation, namely the transfer, storage, and modification of information (Langton, 1990; Mitchell, 2011; Mitchell, 1993;Wibral, 2015). A framework for the analysis of these operations has been emerging (Lizier2010thesis), using measures from information theory (Shannon, 1948) to analyze computation in arbitrary information processing systems (e.g., Lizier, 2012b). Of these measures transfer entropy (TE) (Schreiber2000), a measure of information transfer, is the most widely used in neuroscience today (e.g., Vicente, 2011; Wibral, 2011; Gourevitch, 2007; Vakorin, 2010; Besserve, 2010; Lizier, 2011; Richter, 2016; Huang, 2015; Rivolta, 2015; Roux, 2013). Yet, despite this popularity, open theoretical and practical problems in the application of TE remain (e.g., Vicente, 2011; Wibral, 2014a). The present work addresses some of the most prominent of these methodological problems in three studies.
The first study presents an efficient implementation for the estimation of TE from non-stationary data. The statistical properties of non-stationary data are not invariant over time such that TE can not be easily estimated from these observations. Instead, necessary observations can be collected over an ensemble of data, i.e., observations of physical or temporal replications of the same process (Gomez-Herrero, 2010). The latter approach is computationally more demanding than the estimation from observations over time. The present study demonstrates how to handles this increased computational demand by presenting a highly-parallel implementation of the estimator using graphics processing units.
The second study addresses the problem of estimating bivariate TE from multivariate data. Neuroscience research often investigates interactions between more than two (sub-)systems. It is common to analyze these interactions by iteratively estimating TE between pairs of variables, because a fully multivariate approach to TE-estimation is computationally intractable (Lizier, 2012a; Das, 2008; Welch, 1982). Yet, the estimation of bivariate TE from multivariate data may yield spurious, false-positive results (Lizier, 2012a;Kaminski, 2001; Blinowska, 2004). The present study proposes that such spurious links can be identified by characteristic coupling-motifs and the timings of their information transfer delays in networks of bivariate TE-estimates. The study presents a graph-algorithm that detects these coupling motifs and marks potentially spurious links. The algorithm thus partially corrects for spurious results due to multivariate effects and yields a more conservative approximation of the true network of multivariate information transfer.
The third study investigates the TE between pre-frontal and primary visual cortical areas of two ferrets under different levels of anesthesia. Additionally, the study investigates local information processing in source and target of the TE by estimating information storage (Lizier, 2012) and signal entropy. Results of this study indicate an alternative explanation for the commonly observed reduction in TE under anesthesia (Imas, 2005; Ku, 2011; Lee, 2013; Jordan, 2013; Untergehrer, 2014), which is often explained by changes in the underlying coupling between areas. Instead, the present study proposes that reduced TE may be due to a reduction in information generation measured by signal entropy in the source of TE. The study thus demonstrates how interpreting changes in TE as evidence for changes in causal coupling may lead to erroneous conclusions. The study further discusses current bast-practice in the estimation of TE, namely the use of state-of-the-art estimators over approximative methods and the use of optimization procedures for estimation parameters over the use of ad-hoc choices. It is demonstrated how not following this best-practice may lead to over- or under-estimation of TE or failure to detect TE altogether.
In summary, the present work proposes an implementation for the efficient estimation of TE from non-stationary data, it presents a correction for spurious effects in bivariate TE-estimation from multivariate data, and it presents current best-practice in the estimation and interpretation of TE. Taken together, the work presents solutions to some of the most pressing problems of the estimation of TE in neuroscience, improving the robust estimation of TE as a measure of information transfer in neural systems.
The brain is a highly dynamic and variable system: when the same stimulus is presented to the same animal on the same day multiple times, the neural responses show high trial-to-trial variability. In addition, even in the absence of sensory stimulation neural recordings spontaneously show seemingly random activity patterns. Evoked and spontaneous neural variability is not restricted to activity but is also found in structure: most synapses do not survive for longer than two weeks and even those that do show high fluctuations in their efficacy.
Both forms of variability are further affected by stochastic components of neural processing such as frequent transmission failure. At present it is unclear how these observations relate to each other and how they arise in cortical circuits.
Here, we will investigate how the self-organizational processes of neural circuits affect the high variability in two different directions: First, we will show that recurrent dynamics of self-organizing neural networks can account for key features of neural variability. This is achieved in the absence of any intrinsic noise sources by the neural network models learning a predictive model of their environment with sampling-like dynamics. Second, we will show that the same self-organizational processes can compensate for intrinsic noise sources. For this, an analytical model and more biologically plausible models are established to explain the alignment of parallel synapses in the presence of synaptic failure.
Both modeling studies predict properties of neural variability, of which two are subsequently tested on a synapse database from a dense electron microscopy reconstruction from mouse somatosensory cortex and on multi-unit recordings from the visual cortex of macaque monkeys during a passive viewing task. While both analyses yield interesting results, the predicted properties were not confirmed, guiding the next iteration of experiments and modeling studies.
In dieser Arbeit werden Verfahren vorgestellt, mit dem sich hochaufgelöste wissenschaftliche Illustrationen in einem interaktiven Vorgang erstellen lassen. Die Basis dafür bildet die neu eingeführte GPU-basierte Illustrations-Pipeline, in der auf Grundlage eines 3D-Modells Bildebenen frei angelegt und miteinander kombiniert werden können. In einer Ebene wird ein bestimmter Aspekt der Illustration mit einer auswählbaren Technik gezeigt. Die Parameter der Technik sind interaktiv editierbar. Um Effizienz zu gewährleisten ist das gesamte Verfahren so konzipiert, dass es soweit wie möglich die Berechnungen auf der GPU durchführt. So ist es möglich, dass die Illustrationen mit interaktiven Frameraten gerendert werden.
Cells within a tissue form highly complex, cellular interactions. This architecture is lost in twodimensional cell cultures. To close the gap between two-dimensional cell cultures and in vivo tissues, three-dimensional cell cultures were developed. Three-dimensional cellular aggregates such as spheroids, organoids, or embryoid bodies have been established as an essential tool in many different aspects of life science, including tumour biology, drug screening and embryonic development. To fully take advantage of the third dimension, imaging techniques are essential. The emerging field of “imagebased systems biology” exploits the information in images and builds a connection between experimental and theoretical investigation of biological processes at a spatio-temporal level. Such interdisciplinary approaches strongly depend on the development of protocols to establish threedimensional cell cultures, innovations in sample preparation, well-suited imaging techniques and quantitative segmentation methods.
Although three-dimensional cell cultures and image-based systems biology provide a great potential, two-dimensional methods are still not completely replaced by three-dimensional methods. The knowledge about many biological processes relies on two-dimensional experiments. This is mainly due to methodical and technical hurdles. Therefore, this thesis provides a significant contribution to overcome these hurdles and to further develop three-dimensional cell cultures. I established computational as well as experimental methods related to three-dimensional cellular aggregates and investigated fundamental, cellular processes such as adhesion, growth and differentiation.
Cortical circuits exhibit highly dynamic and complex neural activity. Intriguingly, cortical activity exhibits consistently two key features across observed species and brain areas. First, individual neurons tend to be co-active in spatially localized domains forming orderly arranged, modular layouts with a typical spatial scale. Second, cortical elements are correlated in their activity over large distances reflecting long-range network interactions distributed over several millimeters. Currently, it is unclear how these two fundamental properties emerge in the early developing cortical activity.
Here, I aim to fill this gap by combining analyses of chronic imaging data and network models of developing cortical activity. Neural recordings of spontaneous and visually evoked activity in primary visual cortex of ferrets during their early cortical development were obtained using in vivo 2-photon and widefield epi-fluorescence calcium imaging. Spontaneous activity was used to probe the early state of cortical networks as its spatiotemporal organization is independent of a stimulus-imposed structure, and it is already present early in cortical development prior to reliably evoked responses. To assess the mature functional organization of distributed networks in cortex, the tuning of neural responses to stimulus features, in particular to the orientation of an edge-like stimulus, was assessed. Cortical responses to moving gratings of varying orientations form an orderly arranged layout of orientation domains extending over several millimeters.
To begin with, I showed that spontaneous activity correlations extend over several millimeters, supporting the assumption of using spontaneous activity to assess distributed networks in cortex.
Next, I asked how distributed networks in the mature visual cortex - assessed by spontaneous activity correlations - are related to its fine-scale functional organization. I found that the spatially extended and modular spontaneous correlation patterns accurately predict the fine spatial structure of visually evoked orientation domains several millimeters away. These results suggest a close relation between spontaneous correlations and visually evoked responses on a fine spatial scale and across large spatial distances.
As the principles governing the functional organization and development of distributed network interactions in the neocortex remain poorly understood, I next asked how long range correlated activity arises early in development. I found that key features of mature spontaneous activity introduced in this work, including long-range spontaneous correlations, were present already early in cortical development prior to the maturation of long-range, horizontal connections, and the predicted mature orientation preference layout. Even after silencing feed-forward input drive by inactivating retina or thalamus, long-range correlated and modular activity robustly emerged in early cortex. These results suggest that local recurrent connections in early cortical circuits can generate structured long-range network correlations that guide the formation of visually-evoked distributed functional networks.
To investigate how these large-scale cortical networks emerge prior to the maturation and elaboration of long-range horizontal connectivity, I examined a statistical network model describing an ensemble of spatially extended spontaneous activity patterns. I found a direct relationship between the dimensionality of this ensemble of activity patterns and the decay of its correlation structure. Specifically, reducing the dimensionality of the ensemble leads to an increase in the spatial range of the correlation structure.
To test whether this mechanism could generate a long-range correlation structure in cortical circuits, I studied a dynamical network model implementing a dimensionality reduction mechanism. Based on previous work demonstrating that network heterogeneity reduces the dimensionality of activity patterns, I showed that by increasing the degree of heterogeneity in the network, the dimensionality of the ensemble of activity patterns decreases and in turn their correlations extend over a greater range. A comparison to experimental data revealed a quantitative match between the network model and the observations in vivo in several of the key features of the early cortex including the spatial scale of correlations. Low dimensionality of spontaneous activity thus might provide an organizational principle explaining the observed long-range correlation structure in the early cortex.
Finally, I asked whether a network with a biologically plausible architecture can generate modular activity. Several classical models showed that modular activity patterns can emerge via an intracortical mechanism involving lateral inhibition. However, this assumption appears to be in conflict with current experimental evidence. Moreover, these network models were not experimentally tested, so far. Here, I showed by using linear stability analysis that spatially localized self-inhibition relaxes the constraints on the connectivity structure in a network model, such that biologically more plausible network motifs with shorter ranging inhibition than excitation can robustly generate modular activity.
Importantly, I also provided several model predictions to make the class of network models experimentally testable in view of recent technological advancements in imaging and manipulation of cortical circuits. A critical prediction of the model is the decrease in spacing of active domains when the total amount of inhibition increases. These results provide a novel mechanism of how cortical circuits with short-range inhibition can form modular activity.
Taken together, this thesis provides evidence that the two described fundamental features of neural activity are already present in the early cortex and shows that activity with those features can be generated in network models with an architecture consistent with the early cortex using basic principles.
Das Gehirn ist die wohl komplexeste Struktur auf Erden, die der Mensch erforscht. Es besteht aus einem riesigen Netzwerk von Nervenzellen, welches in der Lage ist eingehende sensorische Informationen zu verarbeiten um daraus eine sinnvolle Repräsentation der Umgebung zu erstellen. Außerdem koordiniert es die Aktionen des Organismus um mit der Umgebung zu interagieren. Das Gehirn hat die bemerkenswerte Fähigkeit sowohl Informationen zu speichern als auch sich ständig an ändernde Bedingungen anzupassen, und zwar über die gesamte Lebensdauer. Dies ist essentiell für Mensch oder Tier um sich zu entwickeln und zu lernen. Die Grundlage für diesen lebenslangen Lernprozess ist die Plastizität des Gehirns, welche das riesige Netzwerk von Neuronen ständig anpasst und neu verbindet. Die Veränderungen an den synaptischen Verbindungen und der intrinsischen Erregbarkeit jedes Neurons finden durch selbstorganisierte Mechanismen statt und optimieren das Verhalten des Organismus als Ganzes. Das Phänomen der neuronalen Plastizität beschäftigt die Neurowissenschaften und anderen Disziplinen bereits über mehrere Jahrzehnte. Dabei beschreibt die intrinsische Plastizität die ständige Anpassung der Erregbarkeit eines Neurons um einen ausbalancierten, homöostatischen Arbeitsbereich zu gewährleisten. Aber besonders die synaptische Plastizität, welche die Änderungen in der Stärke bestehender Verbindungen bezeichnet, wurde unter vielen verschiedenen Bedingungen erforscht und erwies sich mit jeder neuen Studie als immer komplexer. Sie wird durch ein komplexes Zusammenspiel von biophysikalischen Mechanismen induziert und hängt von verschiedenen Faktoren wie der Frequenz der Aktionspotentiale, deren Timing und dem Membranpotential ab und zeigt außerdem eine metaplastische Abhängigkeit von vergangenen Ereignissen. Letztlich beeinflusst die synaptische Plastizität die Signalverarbeitung und Berechnung einzelner Neuronen und der neuronalen Netzwerke.
Der Schwerpunkt dieser Arbeit ist es das Verständnis der biologischen Mechanismen und deren Folgen, die zu den beobachteten Plastizitätsphänomene führen, durch eine stärker vereinheitlichte Theorie voranzutreiben.Dazu stelle ich zwei funktionale Ziele für neuronale Plastizität auf, leite Lernregeln aus diesen ab und analysiere deren Konsequenzen und Vorhersagen.
Kapitel 3 untersucht die Unterscheidbarkeit der Populationsaktivität in Netzwerken als funktionales Ziel für neuronale Plastizität. Die Hypothese ist dabei, dass gerade in rekurrenten aber auch in vorwärtsgekoppelten Netzwerken die Populationsaktivität als Repräsentation der Eingangssignale optimiert werden kann, wenn ähnliche Eingangssignale eine möglichst unterschiedliche Repräsentation haben und dadurch für die nachfolgende Verarbeitung besser unterscheidbar sind. Das funktionale Ziel ist daher diese Unterscheidbarkeit durch Veränderungen an den Verbindungsstärke und der Erregbarkeit der Neuronen mithilfe von lokalen selbst-organisierten Lernregeln zu maximieren. Aus diesem funktionale Ziel lassen sich eine Reihe von Standard-Lernenregeln für künstliche neuronale Netze gemeinsam abzuleiten.
Kapitel 4 wendet einen ähnlichen funktionalen Ansatz auf ein komplexeres, biophysikalisches Neuronenmodell an. Das Ziel ist eine spärliche, stark asymmetrische Verteilung der synaptischen Stärke, wie sie auch bereits mehrfach experimentell gefunden wurde, durch lokale, synaptische Lernregeln zu maximieren. Aus diesem funktionalen Ansatz können alle wichtigen Phänomene der synaptischen Plastizität erklärt werden. Simulationen der Lernregel in einem realistischen Neuronmodell mit voller Morphologie erklären die Daten von timing-, raten- und spannungsabhängigen Plastizitätsprotokollen. Die Lernregel hat auch eine intrinsische Abhängigkeit von der Position der Synapse, welche mit den experimentellen Ergebnissen übereinstimmt. Darüber hinaus kann die Lernregel ohne zusätzliche Annahmen metaplastische Phänomene erklären. Dabei sagt der Ansatz eine neue Form der Metaplastizität voraus, welche die timing-abhängige Plastizität beeinflusst. Die formulierte Lernregel führt zu zwei neuartigen Vereinheitlichungen für synaptische Plastizität: Erstens zeigt sie, dass die verschiedenen Phänomene der synaptischen Plastizität als Folge eines einzigen funktionalen Ziels verstanden werden können. Und zweitens überbrückt der Ansatz die Lücke zwischen der funktionalen und mechanistische Beschreibungsweise. Das vorgeschlagene funktionale Ziel führt zu einer Lernregel mit biophysikalischer Formulierung, welche mit etablierten Theorien der biologischen Mechanismen in Verbindung gebracht werden kann. Außerdem kann das Ziel einer spärlichen Verteilung der synaptischen Stärke als Beitrag zu einer energieeffizienten synaptischen Signalübertragung und optimierten Codierung interpretiert werden.
One of the main things that we as humans do in our lifetime is the recognition and/or classification of all kind of visual objects. It is known that about fifty percentage of the neocortex is responsible for visual processing. This fact tells us that object recognition (OR) is a complex task in our and in the animal brain, but we do it in a fraction of a second.
The main question is: How does the brain exactly do it? Does the brain use some feature extraction algorithm for OR tasks? The hierarchical structure of the visual cortex and studies on a part of the visual cortex called V1 tell us that our brain uses feature extraction for OR tasks by Gabor filters. We also use our previous knowledge in object recognition to detect and recognize the objects which we never saw before. Also, as we grow up we learn new objects faster than before.
These facts imply that the visual cortex of human and other animals uses some common (universal) features at least in the first stages to distinguish between different objects. In this context, we might ask: Do universal features in images exist, such that by using them we are able to efficiently recognize any unknown object? Is it necessary to extract new special features for any new object? How about using existing features from other tasks for this? Is it possible to efficiently use extracted feature of a specific task for other tasks? Are there some general features in natural and non-natural images which can also be used for specific object recognition? For example, can we use extracted features of natural images also for handwritten digit classification?
In this context, our work proposes a new information-based approach and tries to give some answers to the questions above. As a result, in our case we found that we could indeed extract unique features which are valid in all three different kinds of tasks. They give classification results that are about as good as the results reported by the corresponding literature for the specialized systems, or even better ones.
Another problem of the OR task is the recognition of objects, independently of any perception changes. We as humans or also animals can recognize objects in spite of many deformations (e.g. changes in illumination, rotation in any direction or angles, distortion and scaling up or down) in a fraction of a second. When observing an object which we never saw, we can imagine the rotated or scaled up objectin our mind. Here, also the question arises: How does the brain solve this problem? To do this, does the brain learn some mapping algorithm (transformation), independent of the objects or their features?
There are many approaches to model the mapping task. One of the most versatile ones is the idea of dynamically changing mappings, the dynamic link mapping (DLM). Although the dynamic link mapping systems show interesting results, the DLM system has the problem of a high computational complexity. In addition, because it uses the least mean squared error as risk function, the performance for classification is also not optimal. For random values where outliers are present, this system may not work well because outliers influence the mean squared error classification much more than probability-based systems. Therefore, we would like to complete the DLM system by a modified approach.
In our contribution, we will introduce a new system which employs the information criteria (i.e. probabilities) to overcome the outlier problem of the DLM systems and has a smaller computational complexity. The new information based selforganised system can solve the problem of invariant object recognition, especially in the task of rotation in depth, and does not have the disadvantage of current DLM systems and has a smaller computational complexity.
Multi-view microscopy techniques are used to increase the resolution along the optical axis for 3D imaging. Without this, the resolution is insufficient to resolve subcellular events. In addition, parts of the images of opaque specimens are often highly degraded or masked. Both problems motivate scientists to record the same specimen from multiple directions. The images, then have to be digitally fused into a single high-quality image. Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multi view imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast.
Here we show that for c-elegans embryos multi view registration can be achieved based on segmented nuclei. However, segmentation of nuclei in high density distribution like c-elegans embryo is challenging. We propose a method which uses 3D Mexican hat filter for preprocessing and 3D Gaussian curvature for the post-processing step to separate nuclei. We used this method successfully on 3 data sets of c-elegans embryos in 3 different views. The result of segmentation outperforms previous methods. Moreover, we provide a simple GUI for manual correction and adjusting the parameters for different data.
We then proposed a method that combines point and voxel registration for an accurate multi view reg- istration of c-elegans embryo, which does not need any special experimental preparation. We demonstrate the performance of our approach on data acquired from fixed embryos of c-elegans worms. This multi step approach is successfully evaluated by comparison to different methods and also by using synthetic data. The proposed method could overcome the typically low resolution along the optical axis and enable stitching to- gether the different parts of the embryo available through the different views. A tool for running the code and analyzing the results is developed.
The technology of advanced driver assistance systems (ADAS) has rapidly developed in the last few decades. The current level of assistance provided by the ADAS technology significantly makes driving much safer by using the developed driver protection systems such as automatic obstacle avoidance and automatic emergency braking. With the use of ADAS, driving not only becomes safer but also easier as ADAS can take over some routine tasks from the driver, e.g. by using ADAS features of automatic lane keeping and automatic parking. With the continuous advancement of the ADAS technology, fully autonomous cars are predicted to be a reality in the near future.
One of the most important tasks in autonomous driving is to accurately localize the egocar and continuously track its position. The module which performs this task, namely odometry, can be built using different kinds of sensors: camera, LIDAR, GPS, etc. This dissertation covers the topic of visual odometry using a camera. While stereo visual odometry frameworks are widely used and dominating the KITTI odometry benchmark (Geiger, Lenz and Urtasun 2012), the accuracy and performance of monocular visual odometry is much less explored.
In this dissertation, a new monocular visual odometry framework is proposed, namely Predictive Monocular Odometry (PMO). PMO employs the prediction-and-correction mechanism in different steps of its implementation. PMO falls into the category of sparse methods. It detects and chooses keypoints from images and tracks them on the subsequence frames. The relative pose between two consecutive frames is first pre-estimated using the pitch-yaw-roll estimation based on the far-field view (Barnada, Conrad, Bradler, Ochs and Mester 2015) and the statistical motion prediction based on the vehicle motion model (Bradler, Wiegand and Mester 2015). The correction and optimization of the relative pose estimates are carried out by minimizing the photometric error of the keypoints matches using the joint epipolar tracking method (Bradler, Ochs, Fanani and Mester 2017).
The monocular absolute scale is estimated by employing a new approach to ground plane estimation. The camera height over ground is assumed to be known. The scale is first estimated using the propagation-based scale estimation. Both of the sparse matching and the dense matching of the ground features between two consecutive frames are then employed to refine the scale estimates. Additionally, street masks from a convolutional neural network (CNN) are also utilized to reject non-ground objects in the region of interest.
PMO also has a method to detect independently moving objects (IMO). This is important for visual odometry frameworks because the localization of the ego-car should be estimated only based on static objects. The IMO candidate masks are provided by a CNN. The case of crossing IMOs is handled by checking the epipolar consistency. The parallel-moving IMOs, which are epipolar conformant, are identified by checking the depth consistency against the depth maps from CNN.
In order to evaluate the accuracy of PMO, a full simulation on the KITTI odometry dataset was performed. PMO achieved the best accuracy level among the published monocular frameworks when it was submitted to the KITTI odometry benchmark in July 2017. As of January 2018, it is still one of the leading monocular methods in the KITTI odometry benchmark.
It is important to note that PMO was developed without employing random sampling consensus (RANSAC) which arguably has been long considered as one of the irreplaceable components in a visual odometry framework. In this sense, PMO introduces a new style of visual odometry framework. PMO was also developed without a multi-frame bundle adjustment step. This reflects the high potential of PMO when such multi-frame optimization scheme is also taken into account.
Navigating a complex environment is assumed to require stable cortical representations of environmental stimuli. Previous experimental studies, however, show substantial ongoing remodeling at the level of synaptic connections, even under behaviorally and environmentally stable conditions. It remains unclear, how these changes affect sensory representations on the level of neuronal populations during basal conditions and how learning influences these dynamics.
Our approach is a joint effort between the analysis of experimental data and theory. We analyze chronic neuronal population activity data – acquired by out collaborators in Mainz – to describe population activity dynamics during basal dynamics and during learning (fear conditioning). The data analysis is complemented by the analysis of a circuit model investigating the link between a neural network’s activity and changes in its underlying structure.
Using chronic two-photon imaging data recorded in awake mouse auditory cortex, we reproduce previous findings that responses of neuronal populations to short complex sounds typically cluster into a near discrete set of possible responses. This means that different stimuli evoke basically the same response and are thus grouped together into one of a small set of possible response modes. The near discrete set of response modes can be utilized as a sensitive and robust means to detect and track changes in population activity over time. Doing so we find that sound representations are subject to a significant ongoing remodeling across the time span of days under basal conditions. Auditory cued fear conditioning introduces a bias into these ongoing dynamics, resulting in a differential generalization both on the level of neuronal populations and on the behavioral level. This means that sounds that are perceived similar to the conditioned stimulus (CS+) show an increased co-mapping to the same response mode the CS+ is mapped to. This differential generalization is also observed in animal behavior, where sounds similar to the CS+ result in the same freezing behavior as the CS+, whereas dissimilar sounds do not. These observations could provide a potential mechanism of stimulus generalization, which is one of the most common phenomena associated with post-traumatic stress disorder, on the level of neuronal populations.
To investigate how the aforementioned changes in neuronal population activity are linked to changes in the underlying synaptic connectivity, we devised a circuit model of excitatory and inhibitory neurons. We studied this firing rate model to investigate the effect of gradual changes in the network’s connectivity on its activity. Apart from an input dominated uni-stable regime (one response per stimulus independent of the network) and a network dominated uni-stable regime (one response per network independent of the stimulus), we also find a multi-stable regime for strong recurrent connectivity and a high ratio of inhibition to excitation. In this regime the model reproduces properties of neural population activity in mouse auditory cortex, including sparse activity, a broad distribution of firing rates, and clustering of stimuli into a near discrete set of response modes. This clustering in the multi-stable regime means that, not only can identical stimuli evoke different responses, depending on the network’s initial condition, but different stimuli can also evoke the same response.
Applying gradual drift to the network connectivity we find periods of stable responses, interrupted by abrupt transitions altering the stimulus response mapping. We study the mechanism underlying these transitions by analyzing changes in the fixed points of this network model, employing a method to numerically find all the fixed points of the system. We find that such abrupt transitions typically cannot be explained by the mere displacement of existing fixed points, but involve qualitative changes in the fixed point structure in the vicinity of the response trajectory. We conclude that gradual synaptic drift can lead to abrupt transitions in stimulus responses and that qualitative changes in the network’s fixed point topology underlie such transitions.
In summary we find that cortical networks display ongoing representational drift under basal conditions that is biased towards a differential generalization during fear conditioning. A circuit model is able to reproduce key characteristics of auditory cortex, including a clustering of stimulus responses into a near discrete set of response modes. Implementing synaptic drift into this model leads to periods of stable responses interrupted by abrupt transitions towards new responses.