Refine
Year of publication
Document Type
- Doctoral Thesis (32)
- Master's Thesis (1)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- RNS (3)
- Ligand (2)
- Ligand <Biochemie> (2)
- Makromolekül (2)
- Molekülstruktur (2)
- Organokatalyse (2)
- RNA (2)
- 1,3-Diamine (1)
- Acylimin Sulfonylimin (1)
- Alkaloide (1)
Institute
- Biochemie und Chemie (24)
- Biochemie, Chemie und Pharmazie (7)
- Pharmazie (2)
Adaptormoleküle zur Rekrutierung von Transkriptionsfaktoren oder miRNAs an nicht native Bindestellen
(2020)
Die Kontrolle der Genexpression ist eines der großen Ziele der chemischen Biologie. Gemäß dem klassischen Dogma der Molekularbiologe verläuft der Fluss der genetischen Information über die Transkription von DNA zur messenger RNA (mRNA) und durch die Translation von mRNA zu Proteinen. Auch wenn der ursprünglichen Formulierung dieses Dogmas verschiedene Aspekte hinzugefügt wurden, bleibt die Kernaussage unverändert. Eine Störung der Genexpression ist in vielen Fällen die Ursache für schwerwiegende Erkrankungen. Klassische Therapeutika, die im Allgemeinen aus kleinen Molekülen bestehen, können pathogene Proteine spezifisch binden und inhibieren. Allerdings greifen diese Wirkstoffe am Ende der Produktionskette ein und nicht alle Proteine können adressiert werden. Im Gegensatz dazu könnte ein Eingriff auf der Ebene der Transkription oder Translation die Expression der pathogenen Proteine auf ein normales Maß senken oder ganz verhindern. Als entscheidende Regulatoren der Genexpression stellen Transkriptionsfaktoren (TFs) einen interessanten Angriffspunkt zur Kontrolle der Transkription dar. TFs können über den Kontakt zu weiteren Proteinen die RNA Polymerase II rekrutieren und so die Transkription starten. Für die Translation ist die Halbwertszeit der mRNA ein entscheidender Faktor. Die Lebensdauer wird durch eine Vielzahl an Proteinen und micro RNAs (miRNAs) reguliert. MiRNAs sind kurze Oligonukleotide, die in Argonautproteine eingebaut werden können. Die daraus resultierenden RNA-induced silencing complexes (RISCs) sind in der Lage, den Abbau der mRNA einzuleiten. Sowohl TFs als auch RISCs besitzen dabei Nukleinsäure-bindende Untereinheiten, die mit spezifische Sequenzen assoziieren. In gewisser Weise ist die molekulare Erkennung der Nukleinsäuren vergleichbar mit einer Postsendung, die aufgrund der Adresse korrekt zugestellt wird. Um in diesem Bild des täglichen Lebens zu bleiben: Bei einem Wechsel des Wohnorts ist es üblich, einen Nachsendeauftrag zu stellen. Dabei wird die alte Anschrift auf den Postsendungen mit einem neuen Adressetikett überklebt und die Zustellung erfolgt an den neuen Wohnort. Das zentrale Thema dieser Dissertation ist, dieses „Umetikettieren“ auch auf TFs und RISCs zu übertragen. Hierbei ist es notwendig, die Nukleinsäure-bindenden Untereinheiten der Komplexe, also die „alte Adresse“, vollständig zu blockieren und gleichzeitig eine hohe Affinität zu einer neuen Sequenz zu erzeugen. Hierzu könnten bifunktionale Adaptormoleküle verwendet werden.
Die Adaptoren für die Rekrutierung von TFs müssen in der Lage sein, sowohl die doppelsträngige DNA (dsDNA) als auch einen TF zu binden (Abbildung I). Dabei sollte eine Selbstbindung des Adaptors vermieden werden. In dieser Arbeit wurde der TF Sp1 als Ziel gewählt, da er an GC-reiche dsDNAs bindet. Dies ermöglicht die Wahl einer AT- oder GA reichen DNA-Sequenz als Ziel der Umleitung, wodurch eine Selbstbindung des Adaptors minimiert werden sollte. Zur Erkennung der DNA war geplant, Pyrrol-Imidazol-Polyamide (PIPs), triplexbildende Oligonukleotide (TFOs) oder pseudokomplementäre PNAs einzusetzen. Für Letztere war es möglich, eine neue Syntheseroute zu einem Fmoc geschützten Thiouracil-Monomer zu entwerfen. Dabei konnte eine selektive Alkylierung an der N1-Position des Thiouracils durchgeführt werden. Auf Basis der PIPs und der TFOs wurden jeweils verschiedene Adaptoren entworfen, deren Bindung zu ihren Zielen mit Band-Shift-Experimenten und im Fall der PIPs zusätzlich mit fluoreszenzbasierten Pulldown-Experimenten gezeigt wurde. Im Rahmen dieser Versuche zeigte sich, dass die PIP-basierten Systeme deutlich besser an die Zielsequenzen banden als die TFO-basierten Adaptoren. Das Konjugat K5a besaß hierbei die besten Eigenschaften. Weiterhin konnte mit diesem Adaptor in Pulldown-Experimenten gezeigt werden, dass Sp1 auf eine nicht kanonische AT-reiche Bindestelle umgeleitet wurde. Im Anschluss konnte das Sp1 in Western-Blots detektiert werden. Des Weiteren ließ sich zeigen, dass K5a in einem HeLa Lysat über mehrere Stunden stabil war und somit eine Anwendung in Zellkulturexperimenten möglich sein sollte.
Für die Rekrutierung der RISCs war lediglich eine Erkennung zweier einzelsträngiger RNA-Abschnitte notwendig. Hierzu wurden zwei LNAs oder LNA/DNA-Mixmere verwendet, die über einen Linker verknüpft waren (Abbildung I). Als Folge dieses Aufbaus mussten die beiden Adaptorhälften orthogonal sein, da eine Selbstbindung des Adaptors leichter als bei den TF-Adaptoren auftreten konnte. Diese Adaptoren wurden mit Band-Shift- und fluoreszenzbasierten Pulldown-Experimenten auf ihre Fähigkeit, eine Cy5-gelabelte miRNA auf eine Ziel-RNA umzuleiten, überprüft. Es konnte beobachtet werden, dass all-LNA Adaptoren sehr viele off-target-Effekt aufwiesen, welche die Umleitung von miRNAs verhinderte. Im Gegensatz dazu konnten mit DNA/LNA-Mixmeren eine vollständige Umleitung von miRNA-Modellen beobachtet werden. Es war ebenfalls möglich, spezifische RISCs aus HeLa-Lysaten mit unterschiedlichen Adaptoren in Pulldown-Experimenten zu isolieren und in nachfolgenden Western-Blots zu detektieren. Nachdem gezeigt war, dass eine Umleitung in vitro gelang, sollte die Funktion der Adaptoren in Zellkulturexperimenten geprüft werden. Allerdings konnten in diesen Versuchen keine eindeutigen Ergebnisse erhalten werden, sodass die biologische Relevanz der RISC-Umleitung bislang noch nicht bestätigt werden konnte.
Trotz der Verfügbarkeit von siRNA, dem aktuellen Goldstandard zur Generierung von RNAInterferenz-vermitteltem Gen-silencing, stellen unerwünschte Immunantworten des Organismus auf doppelsträngige RNA exogenen Ursprungs noch immer ein fundamentales Problem dar, besonders mit Hinblick auf die Entwicklung Oligonukleotid-basierter Wirkstoffe.
Durch das begrenzte Repertoire an Modifikationen, welches durch die Abhängigkeit von zelleigenen Faktoren unter anderem zur Steigerung der intrazellulären Stabilität und zur Reduktion unerwünschter Effekte zur Verfügung steht, konnte bis dato nur einer überschaubaren Anzahl entsprechender Oligonukleotide eine offizielle Zulassung für die therapeutische Anwendung in der Medizin erteilt werden.
Hier bergen künstliche Ribonukleasen, welche die Umesterungsreaktion unabhängig von der zellinternen Maschinerie ebenfalls effizient und sequenzspezifisch bewerkstelligen können, großes Potential als eine Alternative. Während Metall-basierte Systeme in der Regel auf unphysiologisch hohe Konzentrationen zweiwertiger Übergangsmetallionen, wie beispielsweise Lanthanoide oder auch Kupfer, angewiesen sind, könnten metallfreie Katalysatoren dahingehend eine wesentlich flexiblere Option darstellen. Die Optimierung Guanidin-basierter RNA-Spalter für den Einsatz in der Bioanalytik und Medizin stellt seit geraumer Zeit eines der obersten Ziele unseres Arbeitskreises dar. Unter diesen bewährte sich vor allem das Tris(2-aminobenzimidazol), welches in Form von Konjugaten mit Antisense-Oligonukleotiden kurze Modellsubstrate sequenzspezifisch spaltet.
Neben der äußerst mühseligen, vielstufigen Synthese eines konjugierbaren Tris(2-aminobenzimidazol)s waren die untersuchten Systeme mit Halbwertszeiten von teilweise über 20 Stunden jedoch viel zu langsam, um auch potentiell beobachtbare Veränderung des Phänotyps in vivo induzieren zu können. Ein weiterer begrenzender Faktor stellte die Konjugationstrategie des Spalters über Aktivester-Chemie und Aminolinker dar, welche eine Kupplungsausbeute von 0 % bis im besten Fall ca. 30 % lieferte. Um eine Methode zu erhalten, welche routinemäßig zur sequenzspezifischen Spaltung einer Vielzahl verschiedener RNA-Substrate genutzt werden kann, war folglich eine praktikablere Synthesestrategie zur Darstellung der Spalterkonjugate einerseits und zudem eine Erhöhung der Katalysatoraktivität andererseits notwendig, um auch kurzlebige Ziel-RNAs wirkungsvoll ausschalten zu können. In diesem Zusammenhang wurde eine neue Syntheseroute erarbeitet, welche den für die Konjugation funktionalisierten Spalter über wenige Stufen in Mengen von über 10 g lieferte. Daran anschließend konnte die Synthese eines Phosphoramidits realisiert werden, welches in einer manuellen Kupplungsprozedur die Darstellung von 5‘-Konjugaten des Tris(2-aminobenzimidazol)s in exzellenten Ausbeuten und, im Vergleich zur vorherigen Methode, wesentlich kürzeren Kupplungszeiten ermöglichte. Die vollständige Kompatibilität des Phosphoramidits mit der automatisierten Festphasensynthese konnte im Rahmen dieser Arbeit jedoch nicht erreicht werden. Während die manuelle Prozedur Konjugationsausbeuten von über 90 % lieferte, wurden an einem handelsüblichen Oligonukleotid-Synthesizer auch nach Modifikation der Kupplungsprotokolle und bei erhöhtem Amiditverbrauch lediglich 65 %erzielt. Durch Inkorporation von LNA-Nukleotiden in zwei gegen die PIM1-mRNA gerichtete 15mer DNA-Konjugate ließ sich eine Reduktion der Halbwertszeit von Cy5-markierten 22mer Modellsubstrate auf unter 4 h erreichen, wobei dieses Resultat auch anhand eines 412mer Modellsubstrats und in Gegenwart hoher Phosphatkonzentrationen reproduziert werden konnte. Darüber hinaus wurde die besondere Rolle des closing base pairs, sowohl bezüglich der Selektivität als auch der Kinetik der Spaltung, offensichtlich. Während stärker hybridisierende GC-Basenpaare generell eine hohe Präzision gewährleisteten, trat im Falle von AT-Basenpaaren fraying auf, d. h. es konnte auch innerhalb des vermeintlichen Duplex Spaltung beobachtet werden. Genauere Studien zur Positionierung von LNA-Nukleotiden ergaben bei unmittelbarer Lokalisation am 5‘-Terminus von AT-closing base pairs zwar einen selektivitätssteigernden Effekt, überraschenderweise konnte in diesem Fall jedoch auch eine Inhibierung der Spaltungskinetik festgestellt werden. Durch Verschiebung in die vorletzte Position konnte die Aktivität des Konjugats ohne Präzisionsverlust jedoch wiederhergestellt werden. Erste Experimente zur intrazellulären Stabilität der Spalterkonjugate ergaben quantitative, stufenweise Zersetzung, sowohl des DNA- als auch der Mixmer-Konjugate nach wenigen Stunden, was die Notwendigkeit weiterer stabilitätssteigernder Modifikationen zur Vorbereitung auf in vivo-Experimente impliziert. Auf der Suche nach neuen Spaltern stellte sich vor allem das 2-Aminoimidazol als einer der aussichtsreichsten Kandidaten für genauere Untersuchungen heraus. Das korrespondierende Tris(2-aminoimidazol) konnte über eine Marckwald-Synthese in wenigen Stufen dargestellt werden. Erste Spaltexperimente ergaben vor allem in niedrigen Konzentrationen (10 μM) eine im Vergleich zum Benzimidazol-Analogon vielfach höhere Aktivität. Obwohl die Synthese eines funktionalisierten Bisimidazol-benzimidazols gelang, steht dessen Konjugation mit Oligonukleotiden und deren Aktivitätsbestimmung noch aus.
RNA ist vor allem als Vermittler von Erbinformationen bekannt. Doch neben der Translation in Proteine ist sie auch maßgeblich an regulatorischen Prozessen in der Zelle beteiligt. So kommen in vielen Organismen Argonautenproteine vor, die zusammen mit microRNA einen Komplex bilden, der in der Lage ist, mRNA zu spalten oder auf andere Weise deren Translation zu unterdrücken. Da die Deregulierung von microRNA bei verschiedenen Krankheiten wie Krebs, Parkinson oder Alzheimer auftritt, wurden in dieser Arbeit Alkylanzien entwickelt, die zur besseren Inhibierung von microRNA beitragen sollen.
Als Alkylierungsmittel wurden ortho-Chinonmethide verwendet, die zunächst in geschützter Form synthetisiert wurden und nach Aktivierung mit einer Nukleobase reagieren können. Für die Erkennung der miRNA-Sequenz wurden diese zu einem Konjugat mit Peptid-Nukleinsäuren (PNAs) verbunden. Es wurden zwei Arten von Chinonmethid-Präkursoren hergestellt: Mit o Nitrobenzyl photolabil geschützte, die sich mit Licht der Wellenlänge 365 nm aktivieren lassen, und über ein Disulfid geschützte, die mithilfe eines Reduktionsmittels aktiviert werden. Die photolabil geschützten Derivate lassen sich damit gezielt örtlich und zeitlich aktivieren. Vom reduktiv aktivierbaren Präkursor wurden drei Derivate mit sterisch unterschiedlichen Resten am Disulfid (Benzyl-, Isopropyl- oder tert-Butyl-Rest) hergestellt, die einen Einfluss auf die Kinetik der Entschützung haben. Diese Derivate können nach Eintritt in eine Zelle durch die dort vorherrschende hohe Glutathion-Konzentration aktiviert werden, während sie extrazellulär unreaktiv sind.
Zunächst wurde die Kinetik eines photolabil geschützten Konjugats ohne RNA untersucht. Hier kommt es nach Bestrahlung zur Selbstalkylierung, bei der die Nukleobasen der PNA angegriffen werden. Bei 37 °C erfolgte dies mit einer Halbwertszeit von 0.43 h unter Annahme einer Reaktion 1. Ordnung. Die Kinetik der Alkylierung der komplementären RNA ließ sich durch zwei parallel ablaufende Reaktionen 1. Ordnung abbilden. Die Schnelle hatte eine Halbwertszeit von 0.42 h und die Langsame 11 h mit einer Ausbeute von 73 % nach 168 h. Bei Bestrahlung des Konjugats und erst anschließender Zugabe der RNA wurde ebenfalls eine Halbwertszeit von 11 h bei einer einzelnen Reaktionen 1. Ordnung erhalten. Dies lässt sich mit der Reversibilität mancher Reaktionsprodukte erklären. Die schnelle Reaktion entspricht der direkten Reaktion des Chinonmethids mit der RNA, die langsame entsteht durch Umlagerung von reversiblen Addukten.
Die Analyse der RNA-Alkylierung erfolgte mithilfe von denaturierender Polyacrylamid-Gelelektrophorese, bei der in Abhängigkeit der Gel-Temperatur scheinbar unterschiedliche Kinetiken gemessen wurden. Dies ist ebenfalls eine Folge der Reversibilität. Bei 57 °C kann ein Teil der Bindungen zwischen RNA und den Konjugaten brechen und es wird am Anfang der Reaktion eine geringere Ausbeute gemessen als bei 25 °C Geltemperatur. Die Ausbeute nach 168 h änderte sich jedoch nicht, da im Verlauf der Reaktion die reversiblen Addukte in irreversible umgewandelt werden.
Mit miRNA-20a als Ziel wurden mit einem 10mer Konjugat zunächst nur 13 % Ausbeute nach 72 h und mit einem 15mer Konjugat 41 % nach 75 h erreicht. Durch internen Einbau des Chinonmethid-Präkursors in die PNA, sodass es einem Adenosin der RNA gegenübersteht, konnte die Ausbeute auf 75 % nach 72 h gesteigert werden, da Adenosin bevorzugt alkyliert wird.
Bei den reduktiv aktivierbaren Chinonmethid-Präkursoren waren alle synthetisierten Konjugate in Puffer ohne Glutathion (GSH) stabil. Die Reihenfolge der Reaktionsgeschwindigkeit der Disulfidspaltung war bei 0.5 mM und 10 mM GSH: Benzyl > Isopropyl > tert-Butyl. Die Halbwertszeit bei 10 mM GSH betrug weniger als 5 min (Benzyl-Konjugat) bis 2 h (t Butyl Konjugat). Jedoch bildeten sich mit allen Konjugaten bei 10 mM GSH auch Addukte mit GSH.
Die Reaktivitätsreihenfolge blieb bei der Alkylierung von RNA erhalten. Allein das Benzyl-Konjugat erreichte bei einer GSH-Konzentration von 0.5 mM schon die gleiche Reaktionsgeschwindigkeit wie das photolabil geschützte Chinonmethid. Bei 10 mM GSH erreichten die Derivate zwar nach wenigen Stunden ihre maximale Ausbeute, diese betrug jedoch nur 23 % (tert-Butyl-Konjugat) bis 43 % (Benzyl-Konjugat), da die Chinonmethide auch durch GSH als Nukleophil abgefangen werden.
Mit einem Konjugat, das ein photolabiles Chinonmethid sowie Biotin trägt, wurde ein Fluoreszenzpulldown mit Cy5-markierter RNA durchgeführt. Hier zeigte die bestrahlte Probe eine deutlich höhere Fluoreszenz (6.8x), als eine unbestrahlte Vergleichsprobe. Bei einem Pulldown-Versuch mit miRNA-20a bzw. mit RISCs aus HeLa-Zelllysat konnte das Argonautenprotein jedoch nicht eindeutig mittels Westernblot nachgewiesen werden.
Anhand des reduktiv aktivierbaren Benzyl-Konjugats konnte gezeigt werden, dass sich das Konjugat in Zelllysat zersetzt und nur ein Teil zu Addukten mit Nukleobasen reagiert. Die Ursache wurde in der hydrolyselabilen Abgangsgruppe gesehen, sodass weitere photolabil geschützte Derivate mit Dimethylamino-, Trimethylammonium-, Pivaloylester- und Benzoylestergruppe synthetisiert wurden. Von diesen war nur das Benzoylester-Konjugat in der Lage, RNA mit 72 % Ausbeute nach 48 Stunden zu alkylieren. Zudem war es für mindestens 1 h in Zelllysat stabil.
Tunikaten produzieren eine Vielzahl an cytotoxischen und antimikrobiellen Verbindungen, die ihnen in ihrem Ökosystem zu überlebenswichtigen Vorteilen verhelfen. Wegen ihrer strukturellen Diversität und ihrer spezifischen Eigenschaften haben bislang einige dieser Sekundärstoffe Eingang in die pharmazeutische Industrie gefunden. Ziel der vorliegenden Arbeit war eine umfassende Untersuchung des chemischen Potentials benthischer Ascidien der Nordsee. Die Eigenschaften der organischen Ascidienextrakte wurden anhand von vier Bioassays beschrieben. Die Assays fungierten gleichzeitig als Wegweiser zur Isolierung der aktiven Sekundärmetaboliten, der sich eine Strukturaufklärung mit spektroskopischen Methoden (NMR, MS, IR) anschloss. Es wurden Tests auf bewuchshemmende, antimikrobielle, cytotoxische und enzymhemmende Eigenschaften durchgeführt. Eingesetzt wurden organische Extrakte von 13 solitären und koloniebildenden Ascidienarten der nördlichen und südlichen Nordsee. In allen vier Assays zeigten mehrere oder alle Ascidienarten Aktivität. Es ließen sich keine Hinweise auf eine mit der Wuchsform der Arten korrelierte biologische Aktivität sammeln. In einem Freilandversuch zur Untersuchung der besiedlungshemmenden Wirkung der Extrakte konnte gezeigt werden, dass einige Ascidien eine chemische Abwehr von Algensporen oder Epibionten aufweisen, die artspezifisch unterschiedlich stark ausgeprägt ist. Alle Ascidienarten bewiesen antimikrobielle Aktivität, es ergaben sich aber sowohl in der Hemmhofbreite als auch in der Anzahl der gehemmten Bakterienstämme große artspezifische Unterschiede. Auffallend war, dass deutlich mehr Gram-positive sowie marine Bakterienstämme als Gram-negative bzw. nicht-marine Bakterienstämme inhibiert wurden. Im Gegensatz zur antimikrobiellen Aktivität wurden in den Assays zur Cytotoxizität und zur spezifischen Enzymhemmung lediglich bei jeweils vier Ascidienarten positive Effekte festgestellt. Durch die spezifische Anfärbung von Zellorganellen konnten morphologische Veränderungen, die durch die Ascidienmetaboliten in den Mausfibroblasten induziert wurden, sichtbar gemacht und der Einfluß der Extrakte auf das Cytoskelett und spezifische Zellfunktionen dokumentiert werden. Im Protein-Tyrosin-Kinase-Assay führte eine Bioassay-guided Fractionation von Extrakten der Ascidie Dendrodoa grossularia zur Isolierung der aktiven Substanz. Über spektroskopische Methoden sowie den Vergleich mit Literaturdaten konnte der enzymhemmende Metabolit als das Guanidinostyren Tubastrin identifiziert werden. Tubastrin wurde im Rahmen dieser Arbeit erstmals in Tunikaten nachgewiesen. Der Metabolit zeigte als Reinsubstanz nur geringe cytotoxische Effekte und keine antimikrobiellen Eigenschaften. Als weitere Metaboliten der Ascidien Dendrodoa grossularia und Ascidiella aspersa wurden Homarin, Betain, Adenosin und Inosin identifiziert. Keiner dieser Substanzen konnte in der vorliegenden Arbeit eine biologische Aktivität zugeordnet werden. Während Betain, Adenosin und Inosin Funktionen innerhalb des Primärmetabolismus besitzen oder als Zwischenprodukte in Synthesewege eingebunden sein können, stellt Homarin einen Sekundärmetaboliten dar, der in einer Vielzahl von marinen Organismen unterschiedliche Funktionen erfüllt. Seine Aufgabe in Tunikaten muss durch weitere Untersuchungen geklärt werden. Dass antimikrobielle Aktivität bei allen Ascidienarten gefunden wird, lässt auf eine grundlegende Bedeutung prokaryontischer Abwehr schließen. Die Unterschiede in der Stärke der Effekte aller Bioassays legen nahe, dass jede Ascidienart eine eigene Gesamtstrategie zur Verteidigung gegen Bewuchs und Fraßfeinde ausgebildet hat. Die aus den Laborversuchen erhaltenen Daten verdeutlichen eine weitreichende biologisch-chemische Aktivität von Aplidium punctum, Dendrodoa grossularia und Didemnum candidum, die neben der antimikrobiellen auch starke cytotoxische und/oder enzymhemmende Wirkung gezeigt haben. Die Lokalisation der aktiven Substanzen im Tier sowie eingehendere Versuche zur molekularen Wirkungsweise sind notwendig, die beobachteten Aktivitäten umfassend zu deuten und ihre Nutzbarkeit unter pharmakologischen Gesichtspunkten zu evaluieren.
Der Fokus der vorliegenden Arbeit liegt in der erfolgreichen Entwicklung von vier neuen Methoden zur Darstellung von Sulfonen und von einer neuen Methode zur Synthese von N-Aminosulfonamiden. Dabei sollen die Strukturmotive von Sulfonen und Sulfonamiden aus stabilen Startmaterialien in einer einfachen Durchführung, vorzugsweise in einer Eintopf-Synthese oder Multikomponenten-Reaktion, aufgebaut und der Reaktionsmechanismus weitestgehend experimentell aufgeklärt werden. In diesem Rahmen konnte die Lücke einer Nickel-katalysierten Darstellung von Diarylsulfonen sowohl unter thermischen als auch unter photochemischen Bedingungen gefüllt werden. Zusätzlich konnten im Bereich der SO2-Fixierung Sulfonylradikale mittels Diaryliodoniumsalzen und sichtbaren Licht erzeugt werden, die mit dem entsprechenden Quencher zum Sulfonamid oder Sulfon weiter reagieren konnten.
PROTACs sind ein Teil der nächsten Generation von pharmazeutischen Wirkstoffen und bieten einen komplett neuen Ansatz, um mit kleinen Molekülen in biochemische Signalwege einzugreifen. PROTACs adressieren hierbei sowohl das Zielprotein als auch den E3-Ligase-Komplex und bewirken die Degradation des Zielproteins. Insbesondere in der Behandlung von bestimmten Krebsarten zeigen PROTACs einen neuen vielversprechenden Ansatz. Durch Inhibition der 5-LO mit bekannten Inhibitoren wie Zileuton® oder CJ-13,610 konnte der Weiterentwicklung von Leukämie, auch bekannt als Blutkrebs, entgegen gewirkt werden, aber nicht aufgehalten werden. Hier sollen als neue Methode PROTACs eingesetzt werden, um der Überexpression der 5-LO in Leukämiezellen durch Degradation entgegenzuwirken.
Mit HK330 und CJ-13,610 als Leitstruktur wurden 17 PROTACs erfolgreich synthetisiert und charakterisiert.
In dieser Arbeit konnte 1,8-Diborylnaphthalin (11) präparativ in einer Stufe und 65% Ausbeute aus dem literaturbekannten Boronsäureanhydrid 9 dargestellt werden. 11 ist das zweite bekannte, aromatisch verbrückte Derivat des Diborans B2H6. 11 kann als Startverbindung für eine Reihe strukturverwandter BNB-dotierter Phenalenderivate verwendet werden. Dazu werden zwei der vier Bor-gebundenen Protonen durch die Umsetzung mit einem Mesitylgrignard und Trimethylsilylchlorid substituiert. Die Umsetzung mit Wasser bzw. Aminen liefert BOB- bzw. BNB-Phenalene unter Freisetzung von elementarem Wasserstoff. Alle, auf diese Weise dargestellten Verbindungen, zeigen reversible Redoxeigenschaften und Photolumineszenz mit zum Teil besonders scharfen Emissionssignalen mit Halbhöhenbreiten von bis zu 31 nm. Zusätzlich wurden drei analoge Vertreter einer NBN-Phenalen Spezies dargestellt und charakterisiert. Die entgegengesetzte Dotierung äußert sich in einem grundlegend verschiedenem Redoxverhalten. Abschließend wurde die Reduktion des BNB-Phenalens 22 untersucht. Dabei gelang es das Radikal K[32] zu charakterisieren und seine Abbaureaktion in THF aufzuklären.
Im Rahmen der vorliegenden Arbeit sollten neue Synthesemethoden für den schnellen und effizienten Aufbau von molekularer Komplexität ausgehend von Enamiden als zentrale Synthesebausteine entwickelt werden. Dabei konnten insgesamt fünf unterschiedliche Reaktionen entwickelt werden, die die Synthesen nützlicher Bausteine, wie z.B. β-Amidosulfone 127 oder 1,3-Diamide 128, und neuartiger Heterocyclen ermöglichen. Insgesamt konnte so in einem diversität-orientierten Ansatz, die selektive Bildung von bis zu fünf stereogenen Einheiten ausgehend von einfachen, acyclischen Startmaterialen ermöglicht werden.
Metall-vermittelte Sulfonierungen von Enamiden mittels Sulfinatsalzen:
Im ersten Abschnitt sollten Enamide für die Synthese von Sulfonen eingesetzt werden. Dabei konnte, abhängig vom Katalysatorsystem, sowohl eine C-(sp2)-H Sulfonylierung (Schema 5-1-a.)) als auch eine Oxysulfonylierung (Schema 5-1-b.)) entwickelt werden. Durch die Verwendung von Mn(OAc)3.2 H2O wurden selektiv (E)-konfigurierteβ-Amidovinylsulfone 126 erhalten. Die Reaktion ist unempfindlich gegenüber Luft und Wasser, was sie besonders einfach in der Durchführung macht. Zudem besitzt sie eine große Substratbreite und bietet durch die Kombination mit klassischer Organometallchemie mit einem Isomerisierung-Sulfonierungs-Protokoll eine interessante Alternative zur C-H Sulfonylierung von Enamiden. Auf Grundlage dieser Reaktion sollte, durch zusätzliches Abfangen eines intermediär gebildeten Acylimins durch einen Alkohol, auch eine Oxysulfonierung entwickelt werden. In der Tat konnte durch die Verwendung von Fe(NO3)3∙9 H2O eine entsprechende 3-Komponentenreaktion zu β-Amidosulfonen 127 mit zwei stereogenen Zentren etabliert werden.
Diese Verbindungen versprechen vor allem durch ihr hohes Vorkommen als Schlüsselmotiv in biologisch aktiven Substanzen ein hohes Anwendungspotential. Die Reaktion verfügt über eine breite Substratbreite und ist analog zur Mangan-vermittelten Variante einfach in der Durchführung. Die erhaltenen sulfonierten N,O-Acetale 127 können zudem in die entsprechende Imine überführt und mit einem geeigneten Nukleophil abgefangen werden. So lässt sich z.B. das Methylfuran-Derivat 177a darstellen, welches durch eine oxidative Spaltung in die geschützte Aminosäure 178 überführt werden kann.
Addition von Enamiden und Enimiden an N-Acylimine:
Aufbauend auf der zweistufigen Reaktionssequenz zum Aufbau von 1,3-Diamiden 128 über die Addition von Enamiden 29 an N-Acylimine 131 und anschließender Umsetzung mit einem Nukleophil, konnte die Synthese zu einer Eintopf-Reaktion weiterentwickelt werden (siehe Schema 5-3-c.).
Als Katalysator für beide Reaktionsschritte zeigte Bi(OTf)3 als luft- und wasserstabiler Katalysator die besten Ausbeuten und Selektivitäten. Dabei werden selektiv 1,2-anti-2,3- anti-konfigurierte 1,3-Diamide 128 mit drei fortlaufenden Stereozentren erhalten. Vorteile dieser Methode sind, neben einer einfachen Durchführbarkeit, die simple Skalierbarkeit sowie die Toleranz einer Vielzahl unterschiedlicher funktioneller Gruppen in der Reaktion. So konnten durch Variation aller drei Komponenten über 30 Beispiele der gewünschten 1,2-anti-2,3-anti-konfigurierten 1,3-Diamide 128 dargestellt werden. Die hier entwickelte Eintopf-Reaktion stellt somit eine wichtige Erweiterung zu bestehenden 1,3-Diamidsynthesen dar. Weiterhin konnte gezeigt werden, dass ausgehend von Phthaloyl-basierten Enimiden 125 die nur schlecht darstellbare Substanzklasse der Dihydropyrimido[2,1-a]isoindol-6(2H)-one 129 hergestellt werden kann (siehe Schema 5-3-d.). Dieses neuartige heterocyclische Motiv wurde bisher kaum auf seine biologische Aktivität hin untersucht und verspricht daher ein interessantes Anwendungsfeld. Insgesamt weisen die erhaltenen Verbindungen drei fortlaufende Stereozentren auf, wobei sie in guten bis sehr guten Ausbeuten diastereomerenrein erhalten werden konnten. Dabei lässt sich der hohe Grad an Stereoselektivität durch eine [4+2] Cycloaddition zwischen dem in situ erzeugten N-Acylimin 131 und einem Enimid 125 zu einem Oxazin 132, gefolgt von einer Säure-vermittelten Umlagerung, erklären. Durch Variation der Enimid- und Acyliminkomponente konnten insgesamt 27 neuartige Dihydropyrimido[2,1-a]isoindol-6(2H)-one 129 synthetisiert werden.
Addition von Enamiden an Aldehyde – Stereoselektive Synthese
pentasubstituierter Tetrahydropyrane:
Im letzten Teil der Arbeit sollte, analog zur stereodivergenten Synthese von 1,3- Diaminen, durch Addition von Enamiden an Aldehyde, die jeweiligen 1,3-Aminoalkohole dargestellt werden. Interessanterweise wurde in dieser Transformation die selektive Bildung eines pentasubstituierten Tetrahydropyrans beobachtet. Dabei werden in einem Schritt drei neue σ-Bindungen und fünf fortlaufende Stereozentren aufgebaut. Bemerkenswert ist zudem der außerordentlich hohe Grad an Stereoselektivität, da von 16 möglichen Diastereomeren nur eines gebildet wird. Durch Variation der Aldehyd- und Enamidkomponente ließen sich insgesamt 23 verschiedene Tetrahydropyrane in guten bis sehr guten Ausbeuten und exzellenter Diastereoselektivitäten darstellen. Der Einsatz (Z)-konfigurierter Enamide erlaubte zudem die Synthese eines weiteren Diastereomers 262b, welches sich in der relativen Konfiguration an C5 von 262a unterscheidet.
Insgesamt zeigen die in dieser Arbeit entwickelten Reaktionen die enorme Anwendungsbreite von Enamiden in der stereoselektiven Synthese. So konnten in einfach durchführbaren Transformationen aus simplen Startmaterialien bis zu fünf benachbarte stereogene Einheiten aufgebaut werden. Dabei zeigt die Vielfalt der erhaltenen Verbindungen gleichsam die unterschiedlichen Reaktionsmodi der Enamideinheit 29 (siehe Kapitel 1.2). Daher werden, besonders bei der Entwicklung neuer Synthesemethoden für acyclische, stickstoffhaltige Verbindungen mit mehreren fortlaufenden Stereozentren, Enamide auch in Zukunft noch ein interessantes Forschungsfeld bleiben.
Multidomain enzymes, such as fatty acid synthases (FASs) or polyketide synthases (PKSs), play a crucial role in the biosynthesis of important natural products. They have a high significance in the development of new pharmaceuticals and various research approaches focus on the engineering of these proteins. For example, human type I FAS is an interesting therapeutic target. Owing to its importance in lipogenesis, upregulation of human type I FAS expression has been observed in numerous cancers. Type I FAS is also regarded as important target in antiobesity treatment. Both multidomain enzyme classes - FASs and PKSs - show high structural and functional similarities. Particularly animal type I FAS is most relevant as evolutionary precursor of the PKS family. Therefore, the well characterized FASs are suitable model proteins for the poorly characterized PKSs, to gain deeper understanding in these megasynthases.
Furthermore, fatty acids are considered to be strategically important platform chemicals accessible through sustainable microbial approaches. The recently acquired structural information on FASs provides an excellent understanding of the molecular basis of fatty acid synthesis. The specific understanding of chain-length control, the characterization of a multitude of substrate-specific thioesterases, and the emerging tools and means for metabolic engineering have fostered targeted approaches for modulating chain length. There is large interest in short-chain fatty acids, since these compounds are biotechnologically valuable platform chemicals and biofuel precursors, and attempts on the synthesis of short-chain fatty acids have been reported during the last years.
Primary focus of this thesis lies on the animal type I FASs, which exhibit large conformational variety, as seen in electron microscopy and high-speed atomic force microscopy. Conformational dynamics facilitate productive protein-protein interactions between catalytic domains within the enzyme and aid acyl carrier protein (ACP)-mediated substrate shuttling during the catalytic cycle of fatty acid biosynthesis. To gain deeper insight into the fundamental processes of ACP-mediated substrate shuttling and the underlying conformational dynamics, spectroscopic methods like Förster resonance energy transfer and electron paramagnetic resonance spectroscopy shall be employed. These spectroscopic methods demand site-specific labeling of proteins with fluorophore or spin labels, which can be accomplished with the amber codon suppression technology. Through amber codon suppression, a non-canonical amino acid (ncAA) with an orthogonal functional group is incorporated site-specifically into the protein sequence, which can be used in chemoselective reactions for protein labeling.
This thesis is at the forefront of employing the technology of amber codon suppression for addressing complex biological questions on megasynthases. The successful production of ncAA-modified FASs is challenging. With the aim of incorporating ncAAs into the multidomain 540 kDa large murine FAS, we by far exceed boundaries of documented application of amber codon suppression. Most of the proteins that are reported by Liu & Schultz in applications of amber codon suppression are in the range of 30kDa - for example the TE domain of human FAS. In the same review, the largest protein amber codon suppression was applied to is a potassium channel with roughly 80 kDa. Thus, to the best of my knowledge no protein exceeding 100 kDa has been used in amber codon suppression so far.
In this thesis a low-complex, well-plate based reporter assay is presented, based on an ACP-GFP fusion protein for fast and efficient screening of ncAA incorporation. Reliability and applicability of the reporter assay is demonstrated by successful upscaling to larger protein constructs and increased expression scale.
As outlined in this thesis, we have carefully set up methods for the modification of murine FAS and made several achievements:
(i) We have created our own toolbox with a multitude of suppressor plasmids and various orthogonal pairs. pACU and pACE plasmids are compatible for fast exchange of cassettes, and cloning procedures are optimized for modification of synthetases by site-directed mutagenesis. (ii) We have organic synthesis of several ncAAs stably running in the lab and synthesis of other ncAAs can be established when required. Therefore, extensive screening at moderate costs is possible. (iii) We have established a reporter assay for screening our own library of vectors for amber codon suppression and for optimizing incorporation of ncAAs. (iv) We successfully incorporated ncAAs into subconstructs and full-length murine FAS, and collected initial promising results for the application of these proteins in spectroscopic methods. Thus, laying the foundation for future studies to address fundamental questions of the ACP-mediated substrate shuttling and other conformational dynamics of these enzymes.
Der gezielte, effiziente Aufbau komplexer Struktureinheiten, die mehrere Stereozentren besitzen, ist bis heute eine der größten Herausforderungen in der organischen Synthese. Gerade hinsichtlich der Wirkstoffentwicklung ist es von großer Bedeutung alle möglichen Stereoisomere einer Verbindung zugänglich zu machen. Die 1,3-Diamin-Struktureinheit ist Bestandteil interessanter Naturstoffe, biologisch aktiver Substanzen oder chiraler Liganden. Zusammenfassend konnte erfolgreich eine neue hoch modulare, stereokonvergente, Enamid/Acylimin-basierte Methode zur Synthese von 1,3-Diaminen mit drei fortlaufenden Stereozentren entwickelt werden. Diese Route bietet Zugang zur kompletten Tetrade möglicher Diastereomere, ausgehend von einfach zugänglichen Startmaterialien. Die Konfiguration der beiden zuerst gebildeten Stereozentren kann durch die Enamid-Geometrie kontrolliert werden ((E) -> 1,2 anti, (Z) -> 1,2-syn-Konfiguration). Die 2,3 Konfiguration kann hingegen über die geschickte Wahl der Reagenzien und den damit assoziierten Reaktionsbedingungen gesteuert werden. Weiterhin konnte eine Bi(OTf)3-katalysierte Ein-Topf-Sequenz zur diastereoselektiven Synthese von 1,2-anti-2,3-anti-1,3-Diaminen 6 etabliert werden. Darüber hinaus konnte die Synthese der N,O-Acetale, als auch die der Enamide optimiert und bzgl. der Synthesen im Multigrammmaßstab verbessert werden. Die N,O-Acetale konnten erfolgreich aus Amiden, Aldehyden und Alkoholen dargestellt werden. Die Enamide wurden unter Zuhilfenahme luftunempfindlicher Ni-Katalystoren aus Allylamiden mittels Isomerisierung zugänglich gemacht.