Refine
Year of publication
Document Type
- Doctoral Thesis (46)
Has Fulltext
- yes (46)
Is part of the Bibliography
- no (46)
Keywords
- Proteomics (6)
- MALDI-MS (4)
- Proteomanalyse (4)
- Analyse (2)
- Elektronensprayionisations-Massenspektrometrie (2)
- Elektrospray-Ionisation (2)
- MALDI-TOF-Massenspektrometrie (2)
- Massenspektrometrie (2)
- Proteolyse (2)
- Validierung (2)
Institute
- Pharmazie (23)
- Biochemie und Chemie (19)
- Biochemie, Chemie und Pharmazie (4)
Der Nachweis nichtkovalenter Komplexe mittels ESIMS erfordert Analysebedingungen, die sich deutlich von den Bedingungen der etablierten Standard-ESIMS kovalent gebundener Biopolymere unterscheiden. Für die ESIMS-Analyse nichtkovalenter Komplexe ist insbesondere die Einschränkungen auf das Lösungsmittel Wasser mit Zusatz von Salzen oder Puffern problematisch, was den Nachweis vollständig desolvatisierter Analytionen unter Erhalt der häufig relativ schwachen nichtkovalenten Wechselwirkungen erschwert. Die Problematik für die massenspektrometrische Analyse nichtkovalenter Komplexe steht dabei in engem Zusammenhang mit dem Mechanismus der ElektrosprayIonisierung. Ziel der vorliegenden Arbeit war es daher, grundlegende Phänomene des ESIProzesses zu untersuchen und so ein besseres Verständnis der einzustellenden Randbedingungen beim ESImassenspektrometrischen Nachweis nichtkovalenter Komplexe zu erlangen. Die Untersuchungen erfolgten dabei unter Verwendung geeigneter Modellsysteme, wie Salze, Kohlenhydrate, Peptide und ausgewählte nichtkovalente Komplexe. Eine wesentliche Bedeutung kam der Charakterisierung der physikalischen Randbedingungen der im Rahmen der vorliegenden Arbeit eingesetzten ESIMS-Systeme zu. Auf experimenteller und theoretischer Basis wurden die verschiedenen Aufbautypen im Eingangsbereich des oTOFMS-Systems MICKEY verglichen, wobei ein besonderes Augenmerk auf deren desolvatisierende Wirkung gelegt wurde. Es ließ sich zeigen, daß an diesem oTOFMS-System der Aufbau mit geheizter Transferkapillare dem Aufbau mit Stickstoffgegenstrom vorzuziehen ist, um eine effiziente Desolvatisierung von Analytionen in der ESI zu erzielen. Am oTOFMS-System MARINER wurde die Bedeutung des Drucks in der ersten Druckstufe für die Desolvatisierung von Analytionen am Beispiel ausgewählter nichtkovalenter Proteinkomplexe demonstriert. Dabei konnte gezeigt werden, daß eine Erhöhung des Drucks den Nachweis vollständig desolvatisierter, aber dennoch intakter nichtkovalenter Komplexe dramatisch begünstigt. Dies kann auf die mit der Druckerhöhung einhergehenden Veränderungen der Stoßbedingungen der Analytionen mit dem Restgas beim Passieren der ersten Druckstufe sowie auf die größere Verweilzeit der Ionen in diesem Bereich zurückgeführt werden. Als weitere Randbedingung für Untersuchungen an ESIoTOFMS-Systemen wurde zudem der Einfluß der Axialgeschwindigkeit der Ionen auf das Erreichen des Detektors auf der Grundlage theoretischer und experimenteller Befunde charakterisiert. Die Bedeutung der Axialgeschwindigkeit insbesondere für den Nachweis von Analytionen mit hohen m/zVerhältnissen konnte dabei am Beispiel des nichtkovalenten Komplexes Hämoglobin gezeigt werden. Ebenfalls wurden ausgewählte Phasen des ESIProzesses bei der Überführung gelöster Analyte in massenspektrometrisch detektierbare Gasphasenionen untersucht. So wurde der Einfluß der Zerstäubungsbedingungen auf das resultierende Ionensignal am Beispiel der diskontinuierlichen Zerstäubung von Analytlösung getestet. Künstlich induzierte Zerstäubungsimpulse an der Spraykapillare wurden mit den Extraktionsimpulsen des verwendeten oTOFMSSystems synchronisiert, was die gezielte Analyse einzelner Phasen der diskontinuierlichen Emission von Flüssigkeit ermöglicht. Mit Hilfe des Modellanalyts Bariumbromid ließ sich anhand charakteristischer Indikatorsignale in den Massenspektren auf qualitativer Basis zeigen, daß zu Beginn einzelner Sprayimpulse zunächst kleine Tröpfchen an der Spraykapillare emittiert werden und die Tröpfchengröße im zeitlichen Verlauf des Emissionsimpulses zunimmt. Dieser Befund steht im Einklang mit der von Juraschek [Jur97] vorgestellten Verteilung der Tröpfchengrößen während der diskontinuierlichen Zerstäubung unter den Bedingungen der ESIMS. Ferner konnte durch synchronisierte ESIoTOFAnalyse am Modellsystem einer ZuckerPeptidMischung gezeigt werden, daß Analyte mit höherer Aufenthaltswahrscheinlichkeit an der Flüssigkeitsoberfläche bevorzugt (d.h. zu früheren Zeitpunkten der diskontinuierlichen Zerstäubung) in die geladenen Initialtröpfchen gelangen. Analyte, welche eine höhere Aufenthaltswahrscheinlichkeit im Flüssigkeitsinneren aufweisen, gelangen mit geringerer Wahrscheinlichkeit und somit zu einem späteren Zeitpunkt eines Zerstäubungsimpulses in die Tröpfchen. Die vorgestellten Resultate stehen im Einklang mit den Modellvorstellungen zur Verteilung der Analyte beim für die Desolvatisierung relevanten unsymmetrischen Tropfenzerfall, die unter anderem die geringere Nachweiseffizienz hydrophiler Analyte zu erklären vermag. Der Einfluß des Lösungsmittels auf das resultierende Ionensignal wurde im Rahmen dieser Arbeit im Hinblick auf seine Wirkung als chemische Umgebung des Analyten, auf seine Eigenschaften als Trägerkomponente des Analyten und auf seine Wirkung als Reaktionspartner der Analytionen in der Gasphase untersucht. Als Modellsystem diente der Analyt Bariumbromid in verschiedenen Alkoholen und AlkoholMischungen. Die Untersuchungen ergaben, daß insbesondere die Polarität des eingesetzten Lösungsmittels einen relevanten Aspekt für dessen Wirkung als chemische Umgebung des Modellanalyten darstellt. Eine hohe Polarität des eingesetzten Lösungsmittels begünstigt die Dissoziation des Analyten in Lösung und wirkt somit dem Nachweis von AnalytGegenionAddukten entgegen. Als maßgebliche Eigenschaft in der Rolle der Trägerkomponente ließ sich am Modellanalyt Bariumbromid die Verdampfbarkeit des Lösungsmittels identifizieren. Untersuchungen an einer Analytmischung aus Turanose und Octylglucosid ergaben ferner, daß ebenfalls ausgeprägte Wechselwirkungen zwischen Analyt und Lösungsmittelmolekülen der Verdampfung des Lösungsmittels entgegenwirken. Eine geringe Verdampfbarkeit des Lösungsmittels und eine starke Solvatisierung des Analyten erschweren somit die Desolvatisierung der Analytionen und haben geringe Analytsignalintensitäten in den Massenspektren zur Folge. Ebenfalls ist dem Einfluß der Leitfähigkeit der Analytlösung und somit der Polarität des Lösungsmittels auf die Intensität des resultierenden Ionensignals Rechnung zu tragen. Reaktionen in der Gasphase sind in den ausgewählten Modellsystemen im wesentlichen stoßinduzierte Elektronentransferreaktionen zwischen Lösungsmittel molekülen und zweiwertigen Metallkationen. Eine niedrige Ionisierungsenergie sowie ein hoher Energieeintrag während der Stoßaktivierung - und somit eine hohe Molekülmasse des Lösungsmittels - konnten dabei als begünstigende Faktoren für diese Reaktionen ermittelt werden. Die Resultate zum grundsätzlichen Einfluß des Lösungsmittels dienten als Basis zur Untersuchung des Lösungsmitteleinflusses auf die Bildung von Gramicidin DDimeren mit Hilfe der ESIMS. Am Beispiel dieser nichtkovalenten Peptidkomplexe konnte gezeigt werden, daß die resultierenden Massenspektren unter schonenden Desolvatisierungsbedingungen die Veränderungen des Dimerisierungsgleichgewichts bei Variation des Lösungsmittels widerspiegeln. Die verschiedenen Komponenten der Peptidmischung Gramicidin D bilden zudem in Lösung gemischte Dimere, deren Signale in den Massenspektren eine eindeutige Identifizierung auch geringer Mengen Dimere zulassen. Es ließ sich ferner zeigen, daß die Veränderung der Zusammensetzung von Lösungsmittelgemischen während der Desolvatisierung aus kinetischen Gründen keinen Einfluß auf den detektierbaren Anteil GramicidinDimere aufweist. Untersuchungen zur unspezifischen Adduktbildung in der ESIMS zwischen einem Analyten und weiteren Komponenten der Lösung wurden im Rahmen der vorliegenden Arbeit am Beispiel verschiedener PeptidAnionenAddukte durchgeführt. Es konnte gezeigt werden, daß insbesondere im negativen Ionenmodus eine ausgeprägte unspezifische Adduktbildung eintritt, während im positiven Ionenmodus nur in geringem Maße PeptidAnionenAddukte zu beobachten sind. MS 2 Untersuchungen der Addukte im negativen Ionenmodus ergaben, daß deren Dissoziation unter Abspaltung der zum Anion korrespondierenden Säure erfolgt, wobei in der Reihe der untersuchten Anionen die Stabilität des Addukts mit abnehmender Gasphasenbasizität des Anions zunimmt. Es konnte aber ferner gezeigt werden, daß neben der Gasphasenbasizität noch weitere Faktoren für die Adduktstabilität von Bedeutung sind; insbesondere sind in diesem Zusammenhang dem Einfluß von CoulombWechselwirkungen und räumlichen Faktoren im Addukt Rechnung zu tragen. Soll die Adduktbildung eines Analyten mit in der Lösung vorhandenen Anionen generell vermindert werden, so ist eine Analyse im positiven Ionenmodus vorzuziehen. Untersuchungen zur Stabilität spezifischer nichtkovalenter Komplexe in der ESIMS wurden im Rahmen der vorliegenden Arbeit am Beispiel der HämGlobinKomplexe von Hämoglobin und Myoglobin durchgeführt. Unter schonenden Desolvatisierungsbedingungen sind die in Lösung vorhandenen nichtkovalenten Komplexe ebenfalls in den ESIMassenspektren detektierbar. Durch vergleichende Untersuchungen im positiven und negativen Ionenmodus sowie durch Variation des Ladungszustands der HämGruppe ließ sich allerdings zeigen, daß die Stabilisierung dieser Komplexe in der ESIMS im wesentlichen auf CoulombWechselwirkungen zwischen Protein und prosthetischer Gruppe in der Gasphase beruht. Die Resultate demonstrieren deutlich, daß die in der ESIMS beobachtete Stabilität nichtkovalenter Komplexe in der Gasphase unter Umständen erheblich von der biologisch relevanten Stabilität dieser Spezies in Lösung abweicht. Zwar kann mit Hilfe der ESIMS die Stöchiometrie nichtkovalenter Komplexe zuverlässig ermittelt werden; zur Ermittlung ihrer Stabilität sind jedoch analytische Untersuchungen in kondensierter Phase prinzipiell vorzuziehen. Zum Nachweis nichtkovalenter Komplexe mittels ESIMS ist für jedes Instrument und jede neue analytische Fragestellung stets eine Optimierung der Analysebedingungen erforderlich. Die vorgestellten Resultate bestätigen anhand ausgewählter Beispiele, daß in Lösung vorhandene spezifische Komplexe intakt in Gasphasenionen überführt und massenspektrometrisch detektiert werden können, sofern die Analyseparameter sorgfältig angepaßt wurden. Dabei stellt der Energieeintrag in die Analytionen während der Desolvatisierung ebenso einen bedeutenden Parameter dar wie die Stabilität des nichtkovalenten Komplexes in der Gasphase, welche in einigen Fällen durch die Wahl des ''richtigen" Ionenmodus zur Analyse beeinflußt werden kann. Ein grundsätzliches ''Patentrezept" zum erfolgreichen massenspektrometrischen Nachweis nichtkovalenter Komplexe kann jedoch nicht gegeben werden. Die Desolvatisierung von Analyten aus einem relativ schwer verdampfbaren Lösungsmittel, wie z.B. Wasser, ist problematisch, und die Freisetzung hydrophiler Analytionen wird durch die ausgeprägte Solvatisierung dieser Spezies erschwert. Um neben diesen unabänderlichen Schwierigkeiten weitere Probleme, wie die Bildung von Addukten, zu vermeiden, sollten für die ESIMSAnalyse möglichst saubere Proben Verwendung finden. Ist zur Stabilisierung des Komplexes in Lösung allerdings der Zusatz von Salzen erforderlich, so sollten unter anderem solche Anionen gewählt werden, die nur in geringem Maße Addukte bilden. Ferner ist im Hinblick auf eine Minimierung der Adduktbildung mit Anionen eine Untersuchung im positiven Ionenmodus vorzuziehen. Für die Weiterentwicklung der ESIMS zur Analyse nichtkovalenter Komplexe ist eine weitere Optimierung der grundsätzlichen Desolvatisierungsmöglichkeiten wünschenswert, welche eine schonende Desolvatisierung des Analyten unter Erhalt der spezifischen nicht kovalenten Wechselwirkungen ermöglichen. Ferner sind Methoden zu entwickeln, um Proben effizient und schnell zu reinigen, ohne die Proteinkomplexe irreversibel zu dissoziieren. Durch Entwicklungen dieser Art sollten erhebliche Fortschritte in der ESIMSAnalytik nichtkovalenter Komplexe möglich sein, die dem Ziel eines zuverlässige en Einsatzes dieser Methode in der Routineanalytik biologisch bedeutender Proben näherkommen.
Die heutige moderne Toxikologie ist dem 3-R-Prinzip (Russel und Burch, 1959), einem Konzept zur Verminderung und Verkürzung von Tierversuchen, verpflichtet. Allerdings stellt insbesondere die für die Zulassung und Registrierung neuer Arzneistoffe oder Chemikalien behördlich geforderte Prüfung von Substanzen auf kanzerogene Eigenschaften immer noch einen langwierigen Prozess mit einem hohen Bedarf an Versuchstieren dar. Daher sollte unter dem Einsatz von Methoden der Proteomforschung eine Identifizierung und Charakterisierung neuer Protein-Biomarker erfolgen, die eine verbesserte Vorhersage von Prozessen der chemisch induzierten Leberkanzerogenese erlauben. Motivation für diese Arbeiten war die Annahme, dass durch chemische Substanzen angestoßene molekulare Prozesse mit proteinanalytischen Methoden früher detektierbar sind als dies mit konventionellen toxikologischen Methoden möglich ist, welche vor allem die Prüfung von Substanzen im Tierversuch mit anschließender histopathologischer und klinisch-biochemischer Bewertung der toxischen Effekte vorsehen. Die Untersuchungen sollten Aufschluss darüber geben, ob Proteomstudien die traditionelle Toxikologie mit einer verbesserten, insbesondere verkürzten Erkennung und Aufklärung toxischer Wirkmechanismen unterstützen können. In der Zukunft würde dies eine signifikante Verkürzung und Verbesserung von Tierversuchen bedingen, verbunden mit einer Verringerung der Anzahl an Versuchstieren und letztlich einer Einsparung von Kosten und Zeit. N-Nitrosomorpholin (NNM), ein bekanntes Leberkanzerogen, diente als Modellsubstanz zur Abbildung des Kanzerogeneseprozesses. Zur Induktion von Lebertumoren sowie frühen präneoplastischen Veränderungen wurden Ratten in zwei Tierstudien über definierte Zeiträume mit zwei unterschiedlichen Dosierungen NNM behandelt. Das nach verschiedenen Behandlungszeitpunkten gewonnene Lebergewebe diente als Ausgangsmaterial für die nachfolgenden proteomischen Analysen. Dazu kam vor allem die zweidimensionale Gelelektrophorese (2-DE) zum Einsatz, gefolgt von MALDI-Massenspektrometrie (MS) zur Identifizierung differentiell exprimierter Proteine. Ausserdem wurden aus den Leberproteinextrakten unter Einsatz der SELDI (Surface Enhanced Laser Desorption and Ionisation)-Technologie Proteinprofile erstellt und für die verschiedenen durch NNM-Behandlung aufgetretenen Leberveränderungen charakteristische Signalmuster ermittelt. Das Potential der iTRAQ-Technologie, einer MS-basierten Quantifizierungsstrategie wurde in einem weitergehenden Schritt ermittelt. Mittels 2-DE/MS-Analyse konnten einerseits Proteine identifiziert werden, deren vermehrte Expression die nach einem Tag der Behandlung mit NNM ausgelösten akut toxischen Effekte der Chemikalie in der Leber reflektierten. Andererseits lieferte die Analyse von Proben, in denen nach 25 Wochen Lebertumore diagnostiziert wurden, differentiell exprimierte Proteine, die als Tumor-spezifische Markerproteine charakterisiert werden konnten. Im Hinblick auf das vorrangige Ziel der Arbeit, neue Biomarker zu identifizieren, die schon zu einem frühen Zeitpunkt des Tierversuchs bereits einsetzende kanzerogene Prozesse aufzeigen und damit in der Zukunft einen Beitrag leisten könnten, konventionelle toxikologische Prüfmethoden zu unterstützen oder gar zu verkürzen, erfolgte eine Fokussierung der Analyse auf Proben von Tieren, die drei Wochen lang mit NNM behandelt wurden. Bereits zu diesem Zeitpunkt wurden Proteine detektiert, deren Deregulation mit frühen Prozessen der Leberkanzerogenese in Einklang gebracht werden konnte. Vor allem 18 Proteine, die sich in den Proben nach drei Wochen der NNM-Behandlung wie auch in dem Gewebe von Tieren mit Tumoren als dereguliert erwiesen, wurden als potentielle frühe Biomarker mit einem enormen Potential zur verbesserten Vorhersage von Leberkanzerogenese charakterisiert. Um die durch 2-DE/MS-Analyse ermittelten potentiellen frühen Biomarker in ihrem detektierten Regulationsmuster zu bestätigen und damit das Vertrauen in die 2-DE/MS-Ergebnisse zu erhöhen, erfolgte eine Prävalidierung der Markerproteine mit unabhängigen Methoden. Hierfür wurde der immunologische Nachweis der Proteine in Form des Western Blottings sowie eine MS-basierte Quantifizierung unter Anwendung der iTRAQ-Technik herangezogen. Des Weiteren eröffnete die Integration der Arbeit in ein Verbundprojekt die Möglichkeit zum Vergleich der Proteinexpressionsdaten mit den Ergebnissen der globalen Genexpressionsanalyse, die bei einem Projektpartner durchgeführt wurde. Während durch Western Blotting nur wenige der 18 potentiellen frühen 2-DE/MS-Biomarker in ihrer nach drei Wochen Behandlung beobachteten Regulation bestätigt werden konnten, wurden durch Einsatz der iTRAQ-Technik 11 der Biomarker verifiziert und damit der Wert dieser Quantifizierungsstrategie für den Ansatz der Prävalidierung unterstrichen. Der Abgleich mit den Genexpressionsdaten legte für 63% der Proteine eine übereinstimmende Deregulation auf Genniveau offen. Insgesamt wurden 13 der 18 potentiellen frühen 2-DE/MS-Biomarker durch mindestens eine weitere unabhängige Technologie in ihrer im 2-DE-Gel beobachteten Expressionsveränderung bestätigt. Zusammenfassend lieferte die 2-DE/MS-Analyse des durch NNM veränderten Lebergewebes zahlreiche Protein-Biomarker, die auf molekularer Ebene sowohl frühe als auch späte Stadien der Leberkanzerogenese reflektieren. Vor allem die charakterisierten potentiellen frühen Biomarkern weisen ein signifikantes Potential auf, in der Zukunft konventionelle toxikologische Prüfsysteme zu unterstützen und möglicherweise einen Beitrag zur Verkürzung von Tierstudien und damit zur Einsparung von Versuchstieren zu leisten. Durch Prävalidierung der meisten der frühen Markerproteine durch unabhängige Methoden wurde dieses Potential als auch der Wert von Methoden der Proteomforschung zur allgemeinen Unterstützung der prädiktiven Toxikologie noch einmal unterstrichen.
Die Arbeit überprüft die Zusammensetzung der F1FO-ATP-Synthase in Säugetiermitochondrien, dem Enzymkomplex, der das meiste ATP für den Energiebedarf einer Zelle liefert. Es sind zwei neue Proteine identifiziert und als ATP-Synthase assoziiert verifiziert worden, das sog. dapit protein (diabetes-associated protein in insulin-sensitive tissue; Datenbanknummer in NCBI für Rattus norvegicus, gi|19424210) bzw. 6.8 kDa mitochondrial proteolipid (Datenbanknummer in NCBI für Rattus norvegicus, gi|109478763). Bis jetzt sind beide Proteine nicht zusammen mit dem Komplex V detektiert worden, da es sich bei beiden Proteinen um sehr kleine Membranproteine (kleiner 7 kDa) handelt und sie sehr leicht in Gegenwart von Detergenzien verloren gehen. Die etablierte Strategie zur milden Aufreinigung von Komplex V, die eingesetzte gelelektrophoretische Trennung und die gewonnenen Erkenntnisse zur Identifizierung solch kleiner Proteine können sicherlich auch Lösungsansätze für andere ungelöste Problemfälle in der Proteinkomplexanalytik liefern. Da beide neuen Proteine in die Modulation des metabolischen Zellzustandes involviert sein könnten, sind die erarbeiteten Daten für weitere funktionelle und biochemische Untersuchungen der ATP-Synthase äußerst nützlich. Außerdem könnten die Ergebnisse für neurologische und klinische Studien hinsichtlich der Ursachenforschung von Funktionsstörungen in den Mitochondrien von Interesse sein, da eines der zwei neuen Proteine früher schon mit Diabetes in Zusammenhang gebracht worden ist (dapit, diabetesassociated protein in insulin-sensitive tissue). Für ein bakterielles Multihäm c-Typ Cytochrom konnte massenspektrometrisch gezeigt werden, dass es auf eine unkonventionelle Weise Häm bindet. Durch massenspektrometrische Charakterisierung des Proteins konnte erstmals nachgewiesen werden, dass es nicht nur die Häm c-Bindemotive CX2-4CH und CXXCK, sondern auch Häm c-Bindemotive der Form CXnCH in Bakterien gibt. Diese Erkenntnis führt in der Molekularbiologie zu neuen Fragen, z. B. welche speziellen Lyasen (cytochrome c haem lyases) letztendlich für das Einfügen der Häm-Gruppe an solche neuen Motive verantwortlich sind. Auch die computerbasierte Vorhersage von c-Typ Cytochromen wird dieses Wissen wohl zukünftig in Suchstrategien umsetzen, um die neuen Häm c-Bindemotive bei der Genomanalyse von Organismen nicht zu übersehen. In dem Feld der Identifizierung und Charakterisierung von Membranproteinen im Allgemeinen konnten grundlegende Erkenntnisse zum Umgang mit alternativen Enzymen und deren Potential für einen zukünftigen Einsatz erarbeitet werden. Schwerpunktmäßig wurden die Enzyme Chymotrypsin, Elastase und Pepsin untersucht. Es konnte für alle drei Kandidaten gezeigt werden, dass sie bevorzugt an einer begrenzten Anzahl von Aminosäuren spalten. Besonders für Elastase ist diese Erkenntnis neu, da sie in der Literatur bisher als unspezifisches Enzym wie Proteinase K geführt wurde. Auch wenn die Spezifität der drei Enzyme nicht zu 100% wie bei Trypsin festgelegt werden kann, sondern es sich nur um eine Bevorzugung gewisser Aminosäuren handelt, sind die enzymatischen Spaltungen reproduzierbar. Selbst eine Auswertung der MS-Spektren mittels Peptide Mass Fingerprint (PMF) ist deshalb auch bei diesen weniger spezifischen Enzymen möglich. Die Intensität der MS-Signale muss aber berücksichtigt werden, was bei bisherigen PMF-Suchen jedoch nicht in der Art und Weise geschieht, wie es für diese Enzyme nötig wäre. An einigen Membranproteinen konnte letztendlich bereits beispielhaft gezeigt werden, dass der Einsatz von weniger spezifischen Enzymen für die Identifizierung des Proteins und der nachfolgenden Charakterisierung (z. B. Identifizierung von posttranslationale Modifikationen) vorteilhaft ist. Für Elastase konnte in diesem Zusammenhang auch demonstriert werden, dass sie problemlos in Lösungsmittelsystemen mit einem hohen organischen Anteil (Acetonitril, Isopropanol, Methanol) einsetzbar ist. 100% Sequenzabdeckung lassen sich aber auch bei weniger spezifischen Enzymen trotz der größeren Anzahl an Schnittmöglichkeiten nur erahnen. Zwei Hauptursachen hierfür sind wahrscheinlich die schlechte Zugänglichkeit des Enzyms zum Membranprotein bzw. die Bevorzugung bestimmter enzymatischer Fragmente in MALDI und ESI. Polyacrylamidgele mit alternativen Quervernetzern, bei denen sich die Geldichte vor dem Verdau verringern lässt, könnten die Zugänglichkeit zum Membranprotein zukünftig vielleicht positiv beeinflussen. Der Einsatz von organischen Lösungsmitteln und bestimmter Detergenzien beim Verdau verbessert ebenfalls die Zugänglichkeit zum Membranprotein. Die Zahl der Tenside, die mit der Massenspektrometrie sehr gut kompatibel sind, ist aber sehr gering, wie Untersuchungen in dieser Arbeit ebenfalls ergeben haben. Außerdem beschränkt sich die Anwendung von diesen Detergenzien ausschließlich auf MALDI. Die zu erwartenden Fortschritte bei der Identifizierung und Charakterisierung von Membranproteinen umschreibt daher besonders gut ein Aphorismus von Christian Morgenstern (deutscher Schriftsteller; 1871 – 1914): „Es gibt nur ein Neues: Die Nuance.“ Einige Nuancen sind in dieser Arbeit enthalten. In der Zukunft werden aber viele weitere solcher Nuancen das Überwinden der Hürde „Membran Proteomics“ immer realistischer werden lassen.
Beim Übergang vom Wachstum zur Entwicklung entsteht in Dictyostelium discoideum aus einzelnen vegetativ wachsenden Zellen ein multizellulärer Organismus, der in der Lage ist ausdauernde Sporen zu bilden. Während der im multizellulären Verband stattfindenden morphologischen Veränderungen und Zelldifferenzierung nimmt die Proteinkinase A (PKA) eine Schlüsselfunktion ein. Der C-Modul bindende Faktor A (CbfA), ursprünglich aufgrund seiner spezifischen Bindung an eine regulatorische DNA-Sequenz des Non-LTR Retrotransposons TRE5-A.1 in D. discoideum entdeckt, ist für den Übergang vom Wachstum zur Differenzierungsphase essentiell. Zellen der CbfA-Mangelmutante JH.D2 weisen im Vergleich zu denen des Wildtyp-Stamms AX2 ein verlangsamtes Wachstum und eine verzögerte Einleitung der Aggregation und der Entwicklung auf. Charakteristisch für diese CbfA-Mutante ist die Unterexpression der mRNA für die katalytische Untereinheit der Proteinkinase A (PkaC). Da die Expression der PkaC sowohl auf der Transkriptions- als auch auf der Translationsebene reguliert ist, wurde in dieser Arbeit ein monoklonaler Antikörper gegen die katalytische Untereinheit hergestellt, um den Proteingehalt an PkaC in Zellen der CbfA-Mutante zu untersuchen. Dabei konnte eine starke Unterexpression der PkaC in den CbfA-depletierten Zellen nachgewiesen werden. Demnach scheint es einen mittelbaren Zusammenhang zwischen der Menge an CbfA und dem sich selbst verstärkenden cAMP-abhängigen Signaltransduktionssystem der Zellen zu geben, da ein Mangel an cAMP eine fehlende Aktivierung der sich selbst induzierenden PKA nach sich zieht. Für D. discoideum konnte erstmals eine reproduzierbare 2D-gelelektrophoretische Trennmethode etabliert werden, mit der es gelang, differentiell exprimierte Proteine im Stadium der frühen Entwicklung zwischen den untersuchten D. discoideum-Stämmen AX2 und JH.D2 aufzufinden. Die Anwendung der DIGE-Technologie ermöglichte dabei die Detektion von ca. 30-40 differentiell exprimierten Proteinen. Durch die massenspektrometrische Untersuchung dieser Proteine unter Verwendung der MALDI-TOF Methode in Kombination mit dem Peptid-Massen-Fingerabdruck konnten insgesamt ca. 30% der differentiell exprimierten Proteine identifiziert werden. Dabei stellte sich heraus, daß vor allem Proteine mit essentiellen Funktionen im zellulären Stoffwechsel in der CbfA-Mangelmutante JH.D2 auf geringerem Niveau exprimiert wurden als im Wildtyp-Stamm AX2. Dies könnte eine Erklärung für die letalen Auswirkungen eines vollständigen knockouts von CbfA in D. discoideum liefern. Zusätzlich wurde mit Hilfe der DIGE-Technologie die Funktion der C-terminalen Domäne des CbfA-Proteins untersucht. Für diese Experimente wurde eine CbfA-Mutante verwendet, die den C-Terminus konstitutiv überexprimiert. Die daraus resultierenden Proteinmuster haben gezeigt, daß die C-terminale Domäne unabhängig vom Rest des Proteins sowohl induzierenden als auch reprimierenden Einfluß auf die Proteinexpression nimmt. Diese Ergebnisse zeigen eine unerwartet komplexe Funktion des Proteins CbfA in der Regulation von Genen während der untersuchten Lebensphasen von D. discoideum.
Im Rahmen der vorliegenden Arbeit wurden verschiedene proteomanalytische Methoden untersucht und evaluiert, die, basierend auf der Verwendung 2D-gelelektrophoretischer, 2D-chromatographischer und massenspektrometrischer Techniken, die differentielle, quantitative Proteinanalyse zweier unterschiedlicher muriner Fibroblasten-Zelllinien ermöglichen. Hierfür wurden zunächst unterschiedliche Methoden für die 2D-elektrophoretische Proteinauftrennung analysiert. Im Hinblick auf eine größtmögliche Auflösung und Gel-zu- Gel-Reproduzierbarkeit wurden innerhalb der ersten Dimension (IEF) die Lademethode, die Fokussierungszeiten und der Reduktionsschritt (DTT oder HED) optimiert. Desweiteren wurde eine auf isoelektrischer Fokussierung basierende Vorfraktionierungsmethode auf ihre Anwendbarkeit bei einer quantitativen Proteomanalyse getestet. Für die Proteingelfärbung wurde unter anderem ein selbst synthetisierter Fluoreszenzfarbstoff eingesetzt, der hinsichtlich Färbesensitivität und MS-Kompatibilität mit etablierten Protokollen verglichen wurde. Eine Doppelfärbungs-Methode von Proteingelen (Silberfärbung nach Fluoreszenzfärbung) wurde auf ihre MS-Kompatibilität nach tryptischen Verdau untersucht. Desweiteren wurden manuelle und automatisierte Verdauprotokolle für eine möglichst hohe Peptide Recovery optimiert. Die zunächst durch die Anwendung von klassischen Färbe- und Quantifizierungsmethoden nach 2DE gewonnenen Ergebnisse wurden mit neueren Labelling-Methoden zur relativen Proteinquantifizierung verglichen. Dabei kamen zwei unterschiedliche Multiplexing-Verfahren zum Einsatz, die sich in der Proteinquantifizierung grundlegend unterscheiden (DIGE: gelbasierte Proteinquantifizierung; iTRAQ: LC-MS/MS basierte Peptidquantifizierung). Die für diese beiden Methoden bestehenden Protokolle wurden für die Anwendbarkeit auf die Fibroblasten-Proteinextrakte angepasst. Es konnte gezeigt werden, daß diese beiden Labelling-Methoden in Bezug auf Reproduzierbarkeit und quantitativer Aussagekraft dem klassischen 2DE-Experiment (Proteinfärbung nach der Auftrennung auf einzelnen Gelen) überlegen sind. Die statistische Absicherung der analysierten relativen Quantitätsunterschiede verbesserte sich durch die zusätzliche Anwendung der beiden neuen Labelling-Methoden erheblich. Dabei stützt sich die Signifikanz der quantitativen Bestimmung sowohl auf die große statistische Sicherheit, die innerhalb dieser beiden Multiplexing-Methoden erreicht wird, als auch auf die Wiederholbarkeit in unterschiedlichen Experimenten (21 Proteine wurden in unterschiedlichen Ansätzen bestätigt). Die beiden Labelling-Methoden DIGE und iTRAQ unterscheiden sich außer in der Quantifizierungsstrategie auch grundsätzlich in dem Ansatz der Auftrennung (DIGE: Proteine, 2DElektrophorese; iTRAQ: Peptide, 2D-Flüssigchromatographie). Damit besitzen sie unterschiedliche Limitierungen in Bezug auf die physiko-chemischen Eigenschaften der Peptide/Proteine, die mit der jeweiligen Methode aufgetrennt werden können. Der daraus resultierende komplementäre Charakter beider Methoden konnte anhand mehrerer Proteine verdeutlicht werden. Durch die relative Quantifizierung konnten insgesamt 30 Proteine identifiziert werden, die aufgrund der An- oder Abwesenheit des MLL-Proteins in den beiden murinen Zelllinien differentiell reguliert sind. Die alleine schon durch die unterschiedliche Morphologie der untersuchten murinen Fibroblasten vermutete Deregulation von Struktur- und Stressproteinen (Actin, HSP27, HSP70) konnte bestätigt werden. Weitere Expressionsunterschiede zwischen Mll-/-- und Mll+/+-Fibroblasten zeigten sich vor allem bei Proteinen, die funktionell der Gruppe RNA-prozessierender Proteine (Polyadenylate Binding Protein, PTB-associated Splicing Factor, hnRNPs) zugeordnet werden können. Ein Vergleich der quantitativen Proteomdaten dieser Arbeit mit den mRNA-Expressionsprofilen der gleichen Zellen zeigt nur eine sehr geringe Korrelation bezüglich der Regulationen einzelner Gene/Proteine. Die meisten der bisherigen Studien, die eine Untersuchung des mRNA/Protein-Verhältnisses zum Gegenstand haben, bestätigen das Fehlen einer Korrelation. Diese Tatsache unterstreicht die Wichtigkeit der Kombination genomischer und proteinanalytischer Daten zur Aufklärung zellulärer molekularer Prozesse.
Die im Rahmen dieser Arbeit erzielten Ergebnisse ermöglichten die Identifizierung neuer Inhibitoren der bakteriellen Transkriptions-/Translationsreaktion durch den Einsatz eines eigenständig etablierten nicht-kommerziellen zellfreien prokaryotischen GFP-Expressionsassays (ZFTT-Assay) als Screening Werkzeug. Der Nachweis der selektiven Inhibition der ZFTT-Reaktion durch antimikrobielle Translationsinhibitoren im Vergleich zu Antibiotika anderer Wirkmechanismen gelang im Rahmen einer proteomanalytischen Studie. Die parallele Anwendung des etablierten ZFTT-Assays und standardisierter Ganzzellassays ermöglichte die Charakterisierung der Aktivitätsprofile neun antimikrobieller Substanzen aus vier repräsentativen Translationsinhibitorklassen unter zellfreien und Ganzzellbedingungen in Abhängigkeit ihrer physikochemischen Substanzeigenschaften (Weidlich et al., 2008). Der Aufbau mehrerer interdisziplinärer Forschungkooperationen mit unterschiedlichen wissenschaftlichen Arbeitsgruppen wurde genutzt, um eine Substanzbibliothek chemisch heterogener Verbindungen als Quelle potentieller antimikrobieller Inhibitoren der bakteriellen Transkriptions-/Translationsreaktion zu generieren. Sowohl die Anwendung virtueller Screeningansätze und der Einsatz synthetischer Tripeptide ermöglichte die Identifizierung aktiver Substanzen. Im Rahmen einer globalen Identifizierungs- und Charakterisierungsphase wurde neben der zellfreien Aktivität auch die Wirksamkeit gegenüber bakteriellen Zellen, sowie die Toxizität gegenüber humanen Zellen untersucht. Der Einsatz der proteomanalytischen DIGE-Technologie ermöglichte schließlich die Charakterisierung der antimikrobiellen Wirkmechanismen ausgewählter Substanzen.
Durch die beiden Ionisationstechniken Matrix-Assisted Laser Desorption/Ionization (MALDI) und Electrospray-Ionization (ESI) sind Biopolymere für die Massenspektrometrie zugänglich geworden und die Zahl der biochemischen Applikationen ist sprunghaft angestiegen. Dagegen sind die zugrundeliegenden Prozesse der Ionenbildung nur zum Teil bekannt. Bei MALDI wird die Laserstrahlung durch die Matrix absorbiert, wodurch es zur explosiven Auflösung der festen Phase unter Bildung von geladenen Molekülen kommt. Der genaue Mechanismus vom Festkörper zum gasförmigen Ion ist nur teilweise aufgeklärt und Gegenstand vieler Diskussionen. Eine wichtige Funktion der Matrix ist die räumliche Separierung und Isolierung der Analyte beim Einbau in die Matrixkristalle. Während der Einschluß von Molekülen in Wirtskristalle schon früh als wesentliches Merkmal von MALDI erkannt wurde, ist bisher noch nicht systematisch untersucht worden, in welcher Form die Analyte im Kristall vorliegen. Genau diese Information ermöglicht jedoch Aussagen über die Relevanz verschiedener Mechanismen der Ionenbildung bei MALDI. Die Bestimmung des Ausgangszustandes des Analyten im Matrixkristall und die Abschätzung möglicher Reaktionen bei der nachfolgenden Freisetzung der Analytionen ist das zentrale Thema der vorliegenden Arbeit. In dieser wurde insbesondere der Ladungszustand der Analyte sowie der Einschluß von Lösungsmittel untersucht. Des weiteren wurden Experimente zur Zahl und Koordination möglicher Gegenionen, zur Neutralisation dieser Ionenpaare und zur Adduktbildung bei MALDI durchgeführt. Die Ergebnisse erlauben Aussagen über primäre und sekundäre Ionisationsreaktionen, die zu einem stimmigen Bild der Ionenbildung bei MALDI zusammengefaßt wurden. Grundlage des vorgestellten Modells sind bereits veröffentlichte Modelle, deren wesentliche Aspekte teilweise schon in den ersten Jahren nach der Einführung von MALDI, zu einem erheblichen Teil aber erst in jüngster Zeit erkannt wurden. Einen erneuten Anstoß für die Diskussion um den Mechanismus von MALDI gab die Hypothese, daß die Ionisation eng mit der Bildung von Clustern verbunden ist und dabei sowohl eine Freisetzung präformierter Ionen als auch nachfolgende Reaktionen unter Transfer von Protonen und Elektronen erfolgen. Der Ausgangspunkt für all diese Prozesse ist der Analyt im Matrixkristall. Die in dieser Arbeit vorgestellten Experimente zeigen, daß einige wesentliche Postulate des "Cluster-Modells" richtig sind. Insbesondere konnte der Beweis geführt werden, daß Analyte geladen im Matrixkristall existieren und daß die gelöste Form des Analyten weitgehend im Matrixkristall konserviert wird. Als einfache Testsysteme wurden Matrixlösungen mit verschiedenen pH-Indikatoren versetzt und die Farbe der Kristalle dokumentiert. Dabei zeigte sich, daß in Abhängigkeit vom pH-Wert der Lösung sowohl Moleküle mit einer positiven oder negativen Nettoladung als auch neutrale Zwitterionen gleichermaßen effizient in Matrixkristalle eingebaut werden. Die Ladung aller sauren und basischen funktionellen Gruppen des Analyten im Kristall ist damit durch den pH-Wert der Matrixlösung bestimmt. Wenn eine Nettoladung vorhanden ist, muß zudem diese Ladung durch Gegenionen kompensiert sein, so daß Ionenpaare entstehen. Aber auch bei Zwitterionen können Gegenionen vorhanden sein. Darüber hinaus gelang durch 1H-NMR-Spektroskopie der Nachweis, daß Lösungsmittel im Kristall eingeschlossen ist und selbst nach Trocknen der Kristalle bei erhöhter Temperatur oder im Vakuum dort verbleibt. Dies führt zu dem anschaulichen Bild, daß Analyte in Abhängigkeit vom pH-Wert als "Multi-Ionenpaare" und partiell solvatisiert im Matrixkristall konserviert werden. Ausgehend von diesen präformierten, solvatisierten Ionenpaaren wird durch den plötzlichen Energieeintrag des Laserpulses die explosive Bildung von Clustern ausgelöst. Für die Bildung von geladenem Clustern gibt es zwei plausible Erklärungsansätze. Durch die Existenz der geladenen Analyte im Kristall ist eine besonders einfache Ionisation unter Freisetzung "präformierter" Ionen durch die Trennung eines Ionenpaares denkbar. Eine zweite Möglichkeit wäre die Photoionisation eines Matrixmoleküls mit nachfolgendem Protonentransfer. Da aber stets negative Ladungen vorhanden sind (entweder im Analyten selbst oder als Gegenion), wird bevorzugt ein Anion neutralisiert. In beiden Fällen entsteht ein Cluster, der durch ein fehlendes oder neutralisiertes Gegenion geladen ist. Die Freisetzung des Analytions erfolgt durch Verdampfen von Neutralmolekülen (Matrix, Lösungsmittel). Ionenpaare werden durch Protonentransfer neutralisiert, so daß kleine Neutralmoleküle abdampfen und mit Ausnahme von Metallkationen keine ionischen Addukte detektiert werden. Der Protonierungsgrad des Analyten beim Einbau hat einen erheblichen Einfluß auf die detektierten Ionen. Sind bereits in Lösung und damit im Kristall positiv geladene Gruppen vorhanden, werden besonders leicht protonierte Molekülionen gebildet. Dagegen entstehen aus deprotonierten Vorläuferionen (in der Regel negativ geladen) verstärkt kationisierte Molekülionen. Dabei ist nicht die Nettoladung entscheidend, sondern die Existenz und Anzahl positiver und negativer Gruppen im Analyten. Die Kationisierung erfolgt bereits im Kristall, da die Ionen eine hohe, MALDI-typische Anfangsgeschwindigkeit zeigen. Die Koordination der Kationen an der negativen Ladung verhindert die Neutralisation durch Protonierung, die wesentlich für die Freisetzung von protonierter Molekülionen ist. Diese Neutralisation von Ionenpaaren ist auch die Ursache dafür, daß Anionenaddukte normalerweise nicht nachgewiesen werden. Durch Zugabe einer sehr starken Säure wird jedoch diese Zwischenstufe stabilisiert und erscheint in Form von Anionenaddukten im Spektrum. Dabei zeigte sich, daß die Anzahl der detektierten Addukte mit der Zahl der basischen Stellen im Analytmolekül korreliert, welches den Einbau von (mehrfach) geladenen Analytionen zusammen mit ihren Gegenionen bestätigt. Neben der Koordination der Anionen an positiv geladenen Stellen des Analyten ist die Energiebilanz des Protonentransfers dafür entscheidend, ob die Anionenaddukte den MALDI-Prozeß überstehen, so daß Anionen mit einer vergleichsweise geringen Gasphasenbasizität zur Adduktbildung neigen. Des weiteren kann die Konkurrenz verschiedener Anionen bei der Bildung der Ionenpaare eine Verschiebung der Adduktverteilung bewirken. Aber auch eine höhere Energiezufuhr (z.B. durch höhere Laserenergie) bewirkt eine verstärkte Neutralisation der Ionenpaare, wobei ein erheblicher Anteil metastabiler Fragmentierungen auftritt. Die Koordination von Gegenionen und die "metastabile Neutralisation" führt bei Verbindungen, die zur Ionenpaarbildung neigen, zur Peakverbreiterung und zu einer begrenzten Auflösung. Darüber hinaus sind bei MALDI weitere Sekundärreaktionen beteiligt. Dazu zählt die Übertragung von Wasserstoffatomen, die wahrscheinlich auch die Ursache für prompte Fragmentierungen ist (in-source decay, ISD). Ob eine Ladungsreduktion mehrfach geladener Vorläuferionen durch Elektronen auch bei Biopolymeren eine wesentliche Rolle spielt, bleibt dagegen weiterhin offen. Durch die in Abhängigkeit von der Nettoladung zunehmende Coulomb- Anziehung der koordinierten Gegenionen werden vermutlich erst gar keine hochgeladenen Ionen in die Gasphase freigesetzt. Die vorgestellten Ergebnisse ergeben ein plausibles, qualitatives Bild der Ionenbildung bei MALDI. Es wurde gezeigt, daß die gelöste Form des Analyten inklusive Ladungen, Gegenionen und Solvathülle bei der Kristallisation weitgehend erhalten bleibt, und daß diese Ausgangssituation entscheidend für die Art der letztendlich gebildeten Gasphasenionen ist. Zudem ist nicht die Protonierung neutraler Analyte, sondern eine Neutralisation von Ionen(paaren) durch Protonentransfer ein zentraler Bestandteil von MALDI.
Top-down and bottom-up approaches are the general methods used to analyse proteomic samples today, however, the bottom-up approach has been dominant in the last decade. Establishing a bottom-up method involves not only the choice of adequate instruments and the optimisation of the experimental parameters, but also choosing the right experimental conditions and sample preparation steps. LC-ESI MS/MS has widely been used in this field due to its advanced automation. The primary objective of the present study was to establish a sensitive high-throughput nLC-MALDI MS/MS method for the identification and characterisation of proteins in biological samples. The method establishment included optimisation and validation of parameters such as the capillaries in the HPLC systems, gradient slopes, column temperature, spotting frequencies or the MS and MS/MS acquisition methods. The optimisation was performed using two HPLC-systems (Agilent 1100 series and Proxeon Easy nLC system), three spotters and the 4800 MALDI-TOF/TOF analyzer. Furthermore, samples preparation protocols were modified to fit to the established nLCMALDI- TOF/TOF-platform. The potentials of this method was demonstrated by the successful analysis of complex protein samples isolated from lipid particles, pre-adipocytes/adipocytes tissues, membrane proteins and proteins pulled-down from protein-proteins interaction studies. Despite the small amount of proteins in the lipid particles or oil bodies, and the challenges encountered in studying such proteins, 41(6 novel + 14 mammal specific + 21 visceral specific) proteins were added to the already existing proteins of the secretome of human subcutaneous (pre)adipocytes and 6 novel proteins localised in the yeast lipid particles. Protein-protein interaction studies present another area of application. Here the analytical challenges are mostly due to the loss of binding partner upon sample clean-up and to differentiate from non-specific background. Novel interaction partners for AF4•MLL and AF4 protein complex were identified. Furthermore, a novel sample protocol for the analysis of membrane proteins, based on the less specific protease, elastase, was established. Compared to trypsin, a higher sequence coverage and higher coverage of the transmembrane domains were achieved. The use of this enzyme in proteomics has been limited because of its non specific cleavage. However, from the results obtained in these studies, elastase was found to cleave preferentially at the C-terminal site of the amino acids AVLIST. The advantage of the established protocol over conventional protocols is that the same enzyme can be used for shaving of the soluble dormains of intact proteins in membranes and the digestion of the hydrophobic domain after solubilisation. Furthermore, the solvents used are compatible with the nLC-MALDI method setup. In addition, it was also shown that for less specific enzymes, a higher mass accuracy is required to reduce the rate of false positive identifications, since current search engines are not perfectly adapted for these types of enzymes. A brief statistical analysis of the MS/MS data obtained from the LC-MALDI TOF/TOF system showed that for less specific enzymes, under high-energy collision conditions, approximately 43 % of the fragment ions could not be matched to the known y- b type ions and their resultant internal fragments. This limitation greatly influenced the search results. However, this limitation can be overcome by modifying the N-terminal amino acids with basic moieties such as TMT. The use of elastase as a digestion enzyme in proteomic workflow further increased the complexity of the sample. Therefore, orthogonal multidimensional separation was necessary. Offgel-IEF was used as the separation technique for the first dimension. Here peptides are separated according to the pI. However, the acquired samples could not be loaded to the nLC due to the high viscosity of the concentrated samples when using the standard protocol. In order to achieve compatibility of the Offgel-IEF to the nLC-MALDI-TOF/TOF-platform, the separation protocol of the Offgel-IEF was modified by omitting the glycerol, which was the cause of the viscous solution. The novel glycerol free protocol is advantageous over the conventional method because the samples could directly be picked-up and loaded onto the pre-column without resulting in an increase in back pressure or a subsequent pre-column clogging. The glycerol free protocol was then assessed using purple membrane and membrane fraction of C. glutamicum. The results obtained were comparable to those applied in published reports. Therefore, the absence of glycerol did not affect the separation efficiency of the Offgel-IEF. In addition the applicability of elastase and the glycerol free Offgel-IEF for quantitation of membrane proteins was assessed. Most of the unique peptides identified were in the acidic region and 85 % were focused only into one fraction and approximately 95 % in only two fractions. These results are in accordance with previously published results (Lengqvist et al., 2007). When compared with theoretical digests of the proteins identified in this study, it can be concluded that basic moiety (TMT) on the peptide backbone, did not affect the separation efficiency of the Offgel-IEF. In an applied study, changes in the protein content of yeast strain grown in two different media were relatively quantified. For example, prominent proteins, such as the hexose tranporter proteins responsible for transporting glucose accross the membrane, were successfully quantified. Last but not least, the nLC-MALDI-TOF/TOF platform also served as a basis for the development of a high-throughput method for the identification of protein phosphorylation. The establishment of such a method using MALDI has been challenging due to the lack of sensitive matrices, such as CHCA for non-modified peptides, which exhibit a homogenous crystallisation and thus yield stable signal intensity over a long period of time in an automated setup. The first step of this method was the establishment of a matrix/matrix mixture with better crystal morphology and higher analyte signal intensity than the matrix of choice, i.e. DHB. From MS and MS/MS measurements of standard phosphopeptides, a combination of FCCA and CHAC in a 3:1 ratio and 3 mM NH4H2PO4 facilitated high analyte signal intensities and good fragmentation behaviour. Combining a custom-packed biphasic column for the enrichment of phosphopeptides, the applicability of the matrix mixture was assessed in anautomated phosphopeptide analysis using standard phosphopeptides spiked to a 20-fold excess BSA digest. These analyses showed that this method is reproducibile and both flow throughs can be analysed. Applying the method to the analysis of 2 standard phosphoproteins, alpha/beta-casein, and a leukemia related protein, ENL, 13 phosphopeptides from both alpha/beta-Casein and 13 phosphopeptides with 6 phosphorylation sites from the ENL were identified. As a general conclusion, it can be stated that the nLC-MALDI-TOF/TOF method established here in various modifications for different analytical purposes is a robust platform for proteomic analyses.
Ziel der vorliegenden Dissertation war es, die initialen Bewegungsparameter von Ionen bei matrixunterstützter Laserdesorption zu bestimmen, um mit deren Kenntnis das Verständnis des Desorptions und Ionisationsprozesses bei MALDI zu verbessern. Die Etablierung einer Meßmethode der initialen Geschwindigkeit von Analytionen sowie die Überprüfung verschiedener experimenteller Parameter führten zur Bestimmung einer großen Zahl von Meßwerten der Startgeschwindigkeit von Ionen unterschiedlicher Masse, Ladung und Substanzklasse bei verschiedenen Matrizes und Präparationsbedingungen (siehe Kapitel 5 und 7). Durch Vergleich dieser Meßwerte ist eine Charakterisierung des Desorptions und Ionisationsprozesses bei MALDI möglich. Aufbauend auf diesen Untersuchungen der Startgeschwindigkeit von Ionen wurde ein Desorptions/Ionisationmodell für MALDI entwickelt (siehe Kapitel 6 und 8). Aus der festen Matrix/Analytpräparation werden durch den Laserimpuls oberhalb einer kritischen Laserbestrahlung geladene Bruchstücke ("Cluster") freigesetzt. Aus diesen Clustern resultiert nach Abdampfen von ungeladenenen Teilchen, wie zum Beispiel Matrixmolekülen, die Freisetzung von Ionen in der Gasphase. Hierbei kann das Modell der Clusterbildung sehr gut mit dem Desorptionsmodell nach Zhigilei (siehe Kapitel 2.4.1.5) verknüpft werden [Zhi97]. Die Cluster verschiedener Größe werden in der sich ausdehnenden Teilchenwolke transportiert. Sie bewegen sich mit der initialen Geschwindigkeit der expandierenden Teilchenwolke. Dieser Vorgang kann mit dem "Mitgerissen werden" der Biomoleküle (entrainment) [Bea91] bei MALDI korreliert werden: So wird beispielsweise beobachtet, daß die mittlere initiale Geschwindigkeit v 0 der Analytmoleküle im Mittel nie höher ist als die der Matrixmoleküle. Die Schwellbestrahlungsabhängigkeit der Ionisation kann weiterhin mit der Schwellbestrahlung der Ablation, d.h. der kollektiven Ablation von großen Partikeln aus der Matrix/Analytpräparation, wie sie von Zhigilei in molekulardynamischen Simulationen gefunden wurde, verknüpft werden. Desorption und Ionisation sind somit nicht getrennt voneinander zu betrachten, da während der Desorption die Freisetzung von Ionen erfolgt. Wenn Peptide und Proteine aus Clustern stammen, besitzen die freigesetzten Biomolekülionen die gleiche mittlere Analytionengeschwindigkeit wie die Matrixneutralen [Dre94]. Für kleine Oligosaccharide werden niedrigere Startgeschwindigkeiten detektiert als für Peptide und Proteine. Das kann darauf zurückgeführt werden, daß diese Ionen nicht als vorgeformte Ionen aus Clustern freigesetzt werden. Da die im Rahmen dieser Arbeit untersuchten neutralen Oligosaccharide kationisiert und (im wesentlichen) nicht protoniert im MALDIMassenspektrum auftreten und bei höheren Verzögerungszeiten eine verstärkte Kationisierung von Oligosacchariden zu beobachten ist, werden diese Teilchen voraussichtlich nach der Desorption in der Gasphase ionisiert (siehe Kapitel 7 und 8). Da Oligosaccharide in die Matrix DHB eingebaut werden, jedoch Kationen zur Ionisation nicht in den Matrixkristallen zur Verfügung stehen, ist anzunehmen, daß neutrale Oligosaccharide aus Clustern mit der gleichen Startgeschwindigkeit wie Peptide und Proteine in der desorbierten Teilchenwolke vorkommen; ihre Ionisation und damit ihre Detektion ist aufgrund der fehlenden Ladung jedoch nicht möglich. Die Ergebnisse der Startgeschwindigkeit von Ionen bei verschiedenen Präparationen verdeutlichen, daß Gasphasenionisation einer der möglichen Wege der Ionisation neben der Freisetzung von Analytionen aus geladenen Clustern ist. Da auch für Peptide und Proteine Kationisierung in der Gasphase auftreten kann, lassen sich auch langsame Molekülionenspezies experimentell feststellen, was mehrere initiale Geschwindigkeits komponenten und damit auch ein Ionensignal mit unterschiedlichen Komponenten der Startgeschwindigkeit zur Folge hat. Weiterhin sollte auch unterhalb der Schwelle des Analytionennachweises (und damit der kollektiven Ablationsschwelle gemäß dem breathing sphereModell) bei MALDI aufgrund von Verdampfung einzelner Moleküle gefolgt von Ionisation in der Gasphase ein Ionensignal feststellbar sein. Die beobachtete mittlere Startgeschwindigkeit von Analytionen wäre somit eine Mischung aus schnellen, aus Clustern stammenden, und aus langsamen, in der Gasphase ionisierten Teilchen. Eine Komponente kann als prompt ionisierte Komponente mit im wesentlichen massenunabhängiger, konstanter (hoher) initialer Geschwindigkeit verstanden werden. Die zweite Komponente kann durch verzögert auftretende Gasphasenionisation innerhalb des expandierenden Materials erklärt werden, wobei die Analytionen eine geringere Startgeschwindigkeit zeigen. Zusammenfassend (siehe Kapitel 8) wird eine kollektive Ablation von Partikeln und vorgeformten Ionen beim MALDIDesorptionsprozeß gefolgt von Sekundärreaktionen innerhalb der dichten Teilchenwolke in der Gasphase in der selvedgeRegion durch Ionen Molekülreaktionen vorgeschlagen, wie es bereits bei dem precursorModell für Sekundärionenmassenspektrometrie formuliert wurde [Sun88], [Pac85], [Ben83]. Bezogen auf die Auswahl potentieller Matrizes besitzt das Modell nach wie vor nur eine geringe "Voraussagekraft": Ob eine Substanz als Matrix geeignet ist oder ob sie einen hohen bzw. geringen Grad an metastabiler Fragmentierung für zum Beispiel Peptide oder Proteine zeigt, kann weiterhin nur experimentell bestimmt werden, wobei jedoch eine Charakterisierung mit Hilfe der Startgeschwindigkeit möglich ist. Der Zusammenhang eines ClusterDesorptions/Ionisationsmodells mit molekulardynamischen Simulationen nach Zhigilei ermöglicht jedoch eine Beschreibung vieler experimenteller Ergebnisse bei MALDI. Weiterführende Experimente sollen die Verifikation des "ClusterModells" der Ionisation zum Ziel haben. Hier ist insbesondere die Untersuchung des Ladungszustandes von Analytmolekülen in festen Matrix/Analytpräparationen von Bedeutung. Weitere Untersuchungen zur Spektrenqualität bei Matrizes, die keinen Einbau der Analytmoleküle in die Matrixkristalle zeigen, sowie eine eingehende Untersuchung der verschiedenen alternativen Präparationstechniken aus Kapitel 7 sind hierbei geplant.
Die Kombination aus proteolytischer Spaltung, massenspektrometrischer Analyse und Datenbanksuche ist eine etablierte Methode zur Identifizierung von Proteinen. Ist die Identität eines Proteins geklärt, dann stellt sich im Anschluß daran häufig die Frage nach den posttranslationalen Modifikationen des Proteins. Auch hierfür ist die Massenspektrometrie eine prädestinierte und häufig angewandte Methode. Eine der wichtigsten posttranslationalen Modifikationen eukaryotischer Proteine ist die Phosphorylierung an Ser-, Thr- und Tyr-Resten. In der vorliegenden Arbeit ist die Weiterentwicklung und Anwendung zweier massenspektrornetrischer Methoden zur Analyse der Proteinphosphorylierung beschrieben: i) der Neutralverlust-Scan zur selektiven Detektion von Ser/Thr-phosphorylierten Peptiden, und ii) die Metallaffinitätschromatographie zur selektiven Anreicherung von Phosphopeptiden. Bei der Optimierung der Analytik der Proteinphosphorylierung mittels Neutralverlust-Scan hatte sich am Beispiel der katalytischen Untereinheit der Proteinkinase A gezeigt, dass die Verwendung einer Protease mit geringer Spaltungsspezifität (Elastase) wesentliche Vorteile gegenüber einer Protease mit hoher Spaltungsspezifität (Trypsin) besitzt. Die kleineren Elastase-generierten Phosphopeptide zeigen im Vergleich zu den Trypsin-generierten Phosphopeptiden eine effektivere Phosphorsäure-Abspaltung und lassen sich im Neutralverlust-Scan mit deutlich besserer Empfindlichkeit detektieren. in weiterer Vorteil der Elastase ist in ihrer Eigenschaft partiell überlappende Peptide zu generieren begründet. Die Metallaffinitätschrornatographie wurde eingesetzt, um die Elastase-generierten Phosphopeptide selektiv anzureichern. Es konnte gezeigt werden, dass die Metallaffinitätschromatographie eine geeignete Methode ist, um die Komplexität des Elastase-generierten Peptidgemischs drastisch zu reduzieren, so dass eine automatische Fragmentionen-Analyse aller angereicherten Peptide mittels nanoESl möglich ist. Die Leistungsfähigkeit der Kombination aus Elastase-Verdau, Metallaffinitätschromatographie und Q-TOF- Tandem-MS wurde am Beispiel des Transkriptionsinitiationsfaktors IA unter Beweis gestellt, wo mit Hilfe dieser Analysen-Strategie drei bislang unbekannte in-vivo-Phosphorylierungsstellen nachgewiesen werden konnten. Neben der Proteinphosphorylierung wurden in dieser Arbeit auch eine Reihe anderer kovalenter Modifikationen untersucht. Bei der Analyse der katalytischen Untereinheit der Proteinkinase A konnten neben einer bislang unbekannten fünften Phosphorylierungsstelle an Ser259 auch die Modifikation von Cys343 durch Glutathion und die N-terminale Modifikation durch Gluconsäure nachgewiesen werden. Mittels Q-TOF-Tandem-MS wurde die in-vivo-Myristoylierung des humanen Proteins GAPR 1 nachgewiesen. Mittels der sog Top-Down-Analyse wurde am Beispiel des Proteins Dynamin A gezeigt, wie mittels dieser Strategie eine vollständige Charakterisierung aller kovalenten Modifikationen eines Proteins erreicht werden kann. Im Falle von Dynamin A konnte die Acetylierung des N-terminalen Methionins nachgewiesen werden. Andere kovalente Modifikationen konnten ausgeschlossen werden. Im letzten Kapitel der vorliegenden Arbeit wird am Beispiel von Dynamin A gezeigt, wie sich die Kombination aus partieller proteolytischer Spaltung, Tandem-MS und Datenbanksuche effektiv zur Charakterisierung der Domänenstruktur von Proteinen einsetzen lässt.