Refine
Document Type
- Doctoral Thesis (21)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- ABCE1 (1)
- Agonist selection (1)
- Biomarker (1)
- Colorectal Cancer (1)
- Conventional T cell selection (1)
- MAIT cells (1)
- MEK inhibition (1)
- Negative selection (1)
- Organoids (1)
- Positive selection (1)
Institute
RNA modifications are present in all three kingdoms of life and detected in all classes of cellular RNAs. RNA modifications are diverse, with more than 100 types of chemical modifications identified to date. These chemical modifications expand the topological repertoire of RNAs and are expected to fine-tune their functions. Ribosomal RNA (rRNA) contains two types of covalent modifications, either methylation on the sugar (Nm) or bases (mN), or base isomerization (conversion of uridine into pseudouridines, "). Pseudouridylations and ribose methylations are catalyzed by site-specific H/ACA and C/D box snoRNPs, respectively. The RNA component (snoRNA) of both types of snoRNPs is responsible for the site selection by base pairing with the rRNA substrate, whereas the protein component catalyzes the modification reaction: Nop1 in C/D box and Cbf5 in H/ACA box snoRNPs. Contrastingly, base methylations are performed by snoRNA independent, ‘protein-only’, methyltransferases (MTases). rRNA modifications occur at highly conserved positions, all clustering around functional ribosomal sites. Mutations in factors involved in rRNA modification have been linked to severe human diseases (e.g. X-linked Dyskeratosis congenita). Emerging evidences indicate that heterogeneity in RNA modification prevails, i.e. not all positions are modified at all time, and the concept of ‘specialized ribosomes’ has been coined. rRNA modification heterogeneity has been correlated with disease etiology (cancer), and shown to play a role in cell differentiation(hematopoiesis). Remarkably, alteration in rRNA modification patterns profoundly affects the preference of ribosomes for cap- versus IRESdependent translation initiation, with major consequences on cell physiology.
Heat stress transcription factors (Hsfs) play essential role in heat stress response and thermotolerance by controlling the transcriptional activation of heat stress response (HSR) genes including molecular chaperones. Plant Hsf families show a striking multiplicity, with more than 20 members in the many plant species. Among Hsfs, HsfA1s act as the master regulators of heat stress (HS) response and HsfA2 becomes one of the most abundant Hsfs during HS. Using transgenic plans with suppressed expression of HsfA2 we have shown that this Hsf is involved in acquired thermotolerance of S. lycopersicum cv Moneymaker as HsfA2 is required for high expression and maintenance of increased levels of Hsps during repeated cycles of HS treatment.
Interestingly, HsfA2 undergoes temperature-dependent alternative splicing (AS) which results in the generation of seven transcript variants. Three of these transcripts (HsfA2-Iα-γ), generated due to alternative splicing of a second, newly identified intron encode for the full length protein involved in acquired thermotolerance. Another 3 transcripts (HsfA2-IIIα-γ) are generated due to alternative splicing in intron 1, leading in all cases to a premature termination codon and targeting of these transcripts for degradation via the non-sense mRNA decay mechanism (NMD).
Interestingly, excision of intron 2, results into the generation of a second previously unreported protein isoform, annotated as HsfA2-II. HsfA2-II shows similar transcriptional activity to the full-length protein HsfA2-I in the presence of HsfA1a but lacks the nuclear export signal (NES) required for nucleocytoplasmic shuttling which allows efficient nuclear retention and stimulation of transcription of HS-induced genes. Furthermore, stability assays showed that HsfA2-II exhibits lower protein stability compared to HsfA2-I.
The presence of a second intron and the generation of a second protein isoform we identified in other Solanaceae species as well. Remarkably, we observed major differences in the splicing efficiency of HsfA2 intron 2 among different tomato species. Several wild tomato accessions exhibit higher splicing efficiency that favors the generation of HsfA2-II, while in these species the splice variant HsfA2-Iγ is absent. This natural variation in splicing efficiency specifically occurring at temperatures around 37.5oC is associated with the presence of 3 intronic polymorphisms. In the case of wild species these polymorphisms seemingly restrict the binding of RS2Z36, identified as a putative splicing silencer for HsfA2 intron 2.
Tomato accessions with the polymorphic “wild” HsfA2 show enhanced thermotolerance against a direct severe heat stress incident due to the stronger increase of Hsps and other stress induced genes. Introgression of the “wild” S. pennellii HsfA2 locus into the cultivar M82, resulted in enhanced seedling thermotolerance highlighting the potential use of the polymorphic HsfA2 for breeding.
We conclude that alterations in the splicing efficiency of HsfA2 have contributed to the adaption of tomato species to different environments and these differences might be directly related to natural variation in their thermotolerance.
Heat stress transcription factors (Hsfs) are required for transcriptional changes during heat stress (HS) thereby playing a crucial role in the heat stress response (HSR). The target genes of Hsfs include heat shock proteins (Hsps), other Hsfs and genes involved in protection of the cell from irreversible damages due to exposure to elevated temperatures. Among 27 Hsfs in Solanum lycopersicum, HsfA1a, HsfA2 and HsfB1 constitute a functional triad which regulates important aspects of the HSR. HsfA1a is constitutively expressed and described as the master regulator of stress response and thermotolerance. Activation of HsfA1a under elevated temperatures leads to the induction of HsfA2 and HsfB1 which further stimulate the transcription of HS-responsive genes by forming highly active complexes with HsfA1a. Despite the well-established role of these three Hsfs in tomato HSR, information about functional relevance of other Hsfs is currently missing.
The heat stress inducible HsfA7 belongs alongside with HsfA2 to a phylogenetically distinct clade. Thereby the two proteins share high homology and a functional redundancy has been assumed. However, HsfA7 function and contribution to stress responses have not been investigated into detail in any plant species.
Tomato HsfA7 protein accumulates already at moderately elevated temperatures (~35°C) while HsfA2 becomes dominant at higher temperatures (>40°C). HsfA7 pre-mRNA undergoes complex and temperature-dependent alternative splicing resulting in several transcripts that encode for three protein isoforms. HsfA7-I contains a functional nuclear export signal (NES) and shows nucleocytoplasmic shuttling while HsfA7-II and HsfA7-III have a truncated NES which leads to the strong nuclear retention of the protein. Differences in the nucleocytoplasmic equilibrium have a major impact on the stability of protein isoforms, as nuclear retention is associated with increased protein turnover. Consequently, HsfA7-I shows a higher stability and can be detected even after 24 hours of stress attenuation, while HsfA7-II is rapidly degraded. The degradation of these factors is mediated by the ubiquitin-proteasome pathway.
HsfA7 can physically interact with HsfA1a and HsfA3 and form co-activator (“superactivator”) complexes with a very high transcriptional activity as shown on different HS-inducible promoters. In order for the complex to be successfully transferred to the nucleus and confer its activity it needs a functional nuclear localization signal (NLS) of HsfA7. In contrast, the activator (AHA) motif of HsfA7 is not essential for its co-activator function. Interestingly, while interaction of HsfA7 with either HsfA3 or HsfA1a stabilizes HsfA7 isoforms, concomitantly this leads to an increased turnover of HsfA1a and HsfA3. In contrast, HsfA2 has a stabilizing effect on the master regulator HsfA1a.
Thus, HsfA7 knockout mutants generated by CRISPR/Cas9 gene editing, show increased HsfA1a levels and a stronger induction of HS-related genes at 35°C compared to wild-type plants and HsfA2 knockout mutants. Consequently, HsfA7 knockout seedlings exhibit increased thermotolerance as shown by the enhanced hypocotyl elongation under a prolonged mild stress treatment at 35°C. In summary, these results highlight the importance of HsfA7 in regulation of cellular responses at elevated temperatures. Under moderately elevated temperatures, the accumulation of HsfA7 and its subsequent interaction with HsfA1a, leads to increased turnover of the latter, thereby ensuring a milder transcriptional activation of temperature-responsive genes like Hsps. In turn, in response to further elevated temperatures, HsfA2 becomes the dominant stress-induced Hsf. HsfA2 forms co-activator complexes with HsfA1a which in contrast to HsfA7, allows the stabilization of the master regulator, leading to the stronger expression of HS-responsive genes required for survival. Thereby, this study uncovers a new regulatory mechanism, where the temperature-dependent competitive interaction of HsfA2 and HsfA7 with HsfA1a control the fate of the master regulator and consequently the activity of temperature-responsive networks.
Translation is a universal process in all kingdoms of life and organized in a cycle that requires ribosomal subunits (40S and 60S), messenger RNA (mRNA), aminoacylated transfer RNAs (tRNAs), and a myriad of regulatory factors. As soon as translation reaches a stop codon or stalls, a termination or surveillance process is launched via release factors eRF1 or Pelota (Dom34), respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors at the ribosomal A-site and coordinates the recycling process in Eukarya and Archaea. Two asymmetric nucleotide-binding sites (NBSs) control and execute the ribosome splitting upon dimerization and closure of the two nucleotide-binding domains (NBDs).
Ribosome nascent chain complexes (RNCs), ABCE1, and Dom34 from S. cerevisiae were produced for the reconstitution of splitting assays in order to probe for ABCE1’s actions in the splitting process with its native substrate. Translating ribosomes were stalled in vivo in a no-go situation on truncated mRNAs by a 3´-ribozyme motif that generates truncated mRNAs. The initiated decay mechanisms were circumvented by genomic deletion of the release factor Dom34 (Pelota) of the no-go decay machinery. The mRNA coded for an N terminal affinity purification tag (His-tag) and the green fluorescent protein (GFP) as a reporter of the translated nascent chain in the ribosomal complexes. RNCs were successfully in vivo stalled, enriched, and purified. In native gels, the reconstituted splitting experiments were analyzed by separation of RNCs, ribosomal subunits, and nascent chain-tRNA complexes based on the fluorescence readout of the GFP reporter. In addition, the anti-association factor eIF6 was added in the splitting reaction because it blocks the immediate re-association of ribosomal subunits after splitting. The anti-association activity of eIF6 was probed by an anti-/re-association assay, in which ribosomes are anti-associated by high salt and low magnesium conditions and in a second step re-associated. The re-association can be blocked by binding of eIF6 and other anti-associating factors to the ribosomal intersubunit sites. This approach allowed for the discovery of an anti-association activity of ABCE1 that was dependent on the non-hydrolysable ATP analog AMP-PNP. In addition, the formed complex between 40S and ABCE1 represented formally a post-splitting intermediate.
In collaboration with the Beckmann lab, the structure of the post-splitting complex was reconstructed at 3.9 Å. The ABC system of ABCE1 is fully closed and its N-terminal iron-sulfur (FeS) cluster domain is rotated by 150-degree to a cleft at helix 44 and uS12. The FeS cluster domain is stabilized by interactions of Pro30 to uS12, Arg7 to helix 5, and the cantilever arm that links it to NBD1. Tyr301 of NBD1 stabilizes the FeS cluster domain in the rotated position by interaction to the backbone of the cantilever arm. Upon transition to the post-splitting state, the FeS cluster domain must clash with the release factor and push it in between the ribosomal subunits like a wedge and split the ribosome. In addition, in the post-splitting state, the FeS cluster domain would putatively clash with uL14 of the large ribosomal subunit, and this is the structural explanation for the anti-association effect of ABCE1. In Archaea, a similar conformation of the post-splitting complex was reconstructed in collaboration with the Beck and Beckmann labs and Kristin Kiosze-Becker and Elina Nürenberg-Goloub. Based on the high-resolution structure of the post-splitting complex, the post-splitting state of ABCE1 was identified in the 43S initiation complex 40S–ABCE1–tRNA–eIF2–eIF3. Subsequently, we proposed the post-splitting complex as a platform for initiation.
In the quest to elucidate conformational dynamics of ABCE1, a reconstituted system was established to study conformational dynamics in real-time. Single-molecule Förster resonance energy transfer (smFRET) was used for the relative distance detection between a donor and acceptor fluorophore. A cysteine-less ABCE1 variant was engineered with additional cysteines for fluorescent labeling by thiol-maleimide-coupling. In collaboration with Philipp Höllthaler, the double-cysteine variants were labeled for smFRET studies and alternating-laser excitation (ALEX) smFRET measurements were performed with ABCE1 and the small ribosomal subunit. ABCE1’s nucleotide-dependent NBD dimerization and FeS cluster domain rotation was determined in real-time. Finally, a higher opening and closing frequency of the NBDs was discovered than the determined ATPase rate. This observation could be explained by the hypothesis of elastic dimerization that is not immediately connected to ATP hydrolysis.
Protein biosynthesis is a conserved process, essential for life. Proteins are assembled from single amino acids according to their genetic blueprint in the form of a messenger ribonucleic acid (mRNA). Peptide bond formation is catalyzed by ancient ribonucleic acid (RNA) residues within the supramolecular ribosomal complex, which is organized in two dynamic subunits (Ramakrishnan, 2014). Each subunit comprises large ribosomal RNA (rRNA) molecules and several dozens of peripheral proteins. mRNA translation has been divided into three phases, namely translation initiation, elongation and termination in biochemistry textbooks. During initiation, the ribosomal subunits assemble into a functional ribosome on an activated mRNA and acquire the first transfer RNA (tRNA), an adapter between the start codon on the mRNA and the N-terminal methionine of the protein (Hinnebusch and Lorsch, 2012). During elongation, the ribosome translocates along the mRNA exposing one codon after the other, and amino acids are delivered to the ribosome by the respective tRNAs, and attached to the nascent polypeptide chain. During termination, the polypeptide is released and the ribosome remains loaded with mRNA and tRNA at the end of the open reading frame for the translated gene (Hellen, 2018). Bacterial ribosomes are subsequently recycled by a specific ribosome recycling factor and the small ribosomal subunit is simultaneously consigned to initiation factors for a next round of translation – rendering bacterial translation as a cyclic process with an additional ribosome recycling phase. However, the process of ribosome recycling remained enigmatic in Eukarya and Archaea until the simultaneous discovery of the twin-ATPase ABCE1 as the major ribosome recycling factor. Strikingly, ABCE1 has initially been shown to participate in translation initiation (Nürenberg and Tampé, 2013). Thus, closing the translation cycle by revealing the detailed molecular mechanism of ABCE1 and its role for translation initiation are the two goals of this research.
Beyond the plenitude of well-studied translational GTPases, ABCE1 is the only essential factor energized by ATP, delivering the energy for ribosome splitting via two nucleotide-binding sites. Here, I define how allosterically coupled ATP binding and hydrolysis events in ABCE1 empower ribosome recycling. ATP occlusion in the low-turnover control site II promotes formation of the pre-splitting complex and facilitates ATP engagement in the high-turnover site I, which in turn drives the structural re- organization required for ribosome splitting. ATP hydrolysis and ensuing release of ABCE1 from the small subunit terminate the post-splitting complex. Thus, ABCE1 runs through an allosterically coupled cycle of closure and opening at both sites consistent with a processive clamp model. This study delineates the inner mechanics of ABCE1 and reveals why various ABCE1 mutants lead to defects in cell homeostasis, growth, and differentiation (Nürenberg-Goloub et al., 2018).
Additionally, a high-resolution cryo-electron microscopy (EM) structure of the archaeal post-splitting complex was obtained, revealing a central macromolecular assembly at the crossover of ribosome recycling and translation initiation. Conserved interactions between ABCE1 and the small ribosomal subunit resemble the eukaryotic complex (Heuer et al., 2017). The conformational state of ABCE1 at the post-splitting complex confirms the molecular mechanism of ribosome recycling uncovered in this study. Moving further along the reaction coordinate of cellular translation, I reconstitute the complete archaeal translation initiation pathway and show that essential archaeal initiation factors are recruited to the post-splitting complex by biochemical methods and cryo-EM structures at intermediate resolution. Thus, the archaeal translation cycle is closed, following its bacterial model and paving the way for a deeper understanding of protein biosynthesis.
BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders worldwide. As described in the DSM-5, ADHD is clinically heterogeneous with three main subtypes; predominant hyperactive, predominant attention deficit and combined. The severity of symptoms widely differs among the patients and interferes with the person functioning, negatively impacting social and occupational activities (American Psychiatric Association, 2013). Despite the many efforts, the etiology of the disorder is still unclear. Therefore, there is an increasing demand of models that would help elucidating the causative mechanisms of the disorder and, in parallel, would be valuable tools to discover new and effective treatments. The main goal of the study is the identification of disease specific cellular phenotypes related to Attention-Deficit/Hyperactivity Disorder (ADHD) in cellular models from patients carrying rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD (Elia et al., 2010; Jarick et al., 2014).
METHODS: Human dermal fibroblast (HDF) cultures were obtained from skin punches and reprogrammed into human induced pluripotent stem cells (HiPSC) and successively induced to differentiate into HiPSC-derived dopaminergic neurons. Both HiPSC and HiPSC-derived neurons, were proven to be bona fide models by morphological analysis, RT-PCR, RT-qPCR, immunofluorescence, embryoid body assay, molecular karyotyping and dopamine level quantification. A total of six donors were selected for HiPSC and dopaminergic neuron generation: 3 adult ADHD PARK2 CNV risk carriers (1 duplication and 2 deletion carriers, 1 ADHD non-risk CNV variant carrier and 2 healthy controls).
We conducted stress-response experiments (nutrient deprivation and CCCP administration) that are well known to increase PARK2 expression, on both fibroblasts and HiPSC. After assessing PARK2 gene and protein expression levels, we evaluated the gene expression of genes that are involved with different processes orchestrated by PARK2. We then performed a series of assays with a special focus on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, ROS abundance) and evaluated changing in the mitochondrial network morphology.
To evaluate the effect of nicotine exposure, one of the best replicated prenatal risk factors for having a child later on diagnosed with ADHD, we treated HiPSC-derived dopaminergic neurons with smoking-relevant nicotine concentrations and evaluated PARK2 protein expression after treatment and gene expression by RNA sequencing.
RESULTS: The cell models created in this study passed all the characterization tests required to assess whether the lines can be considered bona fide models without underling genotype differences. The evaluation of patho-phenotypes connected with ADHD/PARK2 CNVs in HDF and HIPSC showed that, although PARK2 gene expression was unchanged, ADHD/PARK2 CNV carriers show different PARK2 protein levels possibly implying the presence of different post-transcriptional processes. ADHD/PARK2 CNV carriers show lower levels of ATP production and basal oxygen consumption rates compared to controls, a result in line with what was already reported in ADHD cybrids cells model (Verma et al., 2016). Our experiments indicate that both the amount of reactive oxygen species (ROS) and the mitochondrial network morphology is influenced by the treatment but not by the genotype. The evaluation of nicotine effects on HiPSC-derived dopaminergic neuron from aADHD patients showed no effects on PARK2 protein levels and gene expression. ADHD/PARK2 CNVs carriers show gene ontology enrichment in modules connected with the regulation of cell growth after nicotine acute treatment. Additionally, genes connected with energy production & oxidative stress response and extracellular matrix & cell adhesion were significantly differentially expressed after nicotine treatments.
CONCLUSIONS: This study points out the presence of impairment of mitochondrial energetics in cellular models derived from adult ADHD patients carrying rare CNVs within the PARK2 locus. In the last years, several studies have linked mitochondrial impairments to the etiology of psychiatric and neurodevelopmental disorders (McCann & Ross, 2018) and reported an overall increase of oxidative stress or insufficient response to oxidative damage both in children and adults with ADHD (Joseph, Zhang-James, Perl, & Faraone, 2015; Lopresti, 2015). Additionally, different groups have underlined an abnormal brain connectivity in ADHD patients in their work (Gehricke et al., 2017). Our preliminary investigation of the effects of a well-known prenatal risk factor for ADHD, nicotine gestation exposure, point out a susceptibility of the PARK2 CNVs carriers in processes involved in regulation of cell growth and in proteins connected with extracellular matrix composition and cell-adhesion molecules, all factors necessary for neuronal maturation and formation of proper neural connections (Washbourne et al., 2004). In conclusion, this study presents novel and fully validated cellular model systems to study the etiopathogenesis of ADHD based on rare CNVs in the PARK2 locus. Moreover, the identification of disease-relevant phenotypes in the model might be helpful in the future for testing new alternative medications.
In times of a growing world population and the associated demand for high crop yield, the understanding and improvement of plant reproduction is of central importance. One key step of plant reproduction is the development of the male gametophyte, which is better known as pollen. In addition, the development of pollen was shown to be very sensitive to abiotic stresses, such as heat, which can cause crop damage and yield loss. To obtain new insights in the development and heat stress response of pollen, a combined transcriptome and proteome analysis was performed for three pollen developmental stages of non- and heat-stressed tomato plants.
The analysis of the transcriptomes of non-stressed pollen developmental stages enabled the determination of mRNAs accumulated in certain developmental stages. The functional analysis of these mRNAs led to the identification of protein families and functional processes that are important at different times of pollen development. A subsequent comparison of the transcriptomes of non- and heat-stressed pollen revealed a core set of 49 mRNAs, which are upregulated in all three developmental stages. The encoded proteins include among other things different heat stress transcription factors and heat shock proteins, which are known key players of the plant heat stress response.
Furthermore, 793 potential miRNAs could be identified in the transcriptome of non- and heat-stressed pollen. Interestingly, 38 out of the 793 miRNAs have already been identified in plants. For more than half of these miRNAs potential target mRNAs were identified and the interactions between miRNAs and mRNAs linked to the development and heat stress response of pollen. In total, 207 developmentally relevant interactions could be determined, out of which 34 have an effect on transcriptional-networks. In addition, 24 of the interactions contribute the heat stress response of pollen, whereby this mainly affects post-meiotic pollen.
An initial correlation of the proteome and transcriptome of the developmental stages revealed that transcriptome analyses are not sufficient to draw exact conclusions about the state of the proteome. A closer look on the relationship of the transcriptome and proteome during pollen development revealed two translational modes that are active during the development of pollen. One mode leads to a direct translation of mRNAs, while the second mode leads a delayed translation at a later point in time. Regarding the delayed translation, it could be shown that this is likely due to a short-term storage of mRNAs in so-called EPPs. The comparison of the proteome and transcriptome response to heat stress revealed that the proteome reacts much stronger and that the reaction is mainly independent from the transcriptome. Finally, the comparison of the proteome of non- and heat-stressed pollen provided first indications for changes in the ribosome composition in response to heat stress, as 57 ribosomal proteins are differentially regulated in at least one developmental stage.
Cardiovascular diseases are a leading cause of morbidity and mortality worldwide. Aging inflicts structural and molecular changes on the heart that oftentimes involve ischemic events, cardiomyocyte apoptosis and cardiac stiffening, which makes it a major risk factor for cardiovascular disease. After being disregarded as transcriptional noise for a long time, long non-coding RNAs have lately emerged as key regulators of many cellular processes in physiology and disease of virtually all tissues and organs, with some of them being differentially regulated during aging.
This study identified a long non-coding transcript antisense to the OXCT1 gene locus, Sarrah, to be downregulated in the heart during aging, after acute myocardial infarction and upon heart failure with preserved ejection fraction. Sarrah is expressed in several cardiac cell types with highest levels in cardiomyocytes, where it is predominantly localized in the nucleus. In mouse and human cardiomyocytes, Sarrah levels are reduced upon exposure to hypoxia or treatment with hypoxiamimetic agents in vitro.
Sarrah exerts an anti-apoptotic function in mouse and human cardiomyocytes as assessed from caspase activity and annexin V staining. Histological stainings of Sarrah-depleted human engineered heart tissue organoids and Sarrah overexpressing infarcted mouse hearts confirmed its anti-apoptotic function. Sarrah also plays a role in cardiomyocyte contractility, which is substantially impaired upon Sarrah silencing in human engineered heart tissue and neonatal rat cardiomyocytes. Additionally, cardiomyocytal Sarrah stimulates endothelial cell proliferation via paracrine effects as observed after Sarrah overexpression in mouse hearts as well as in co-culture settings with human endothelial cells and Sarrah-depleted or Sarrah overexpressing human cardiomyocytes. A microarray analysis revealed that silencing Sarrah in human cardiomyocytes induced apoptosisrelated gene expression. Mechanistically, Sarrah was predicted to form triplexes in human and mouse with promoters of genes downregulated, but not upregulated after Sarrah knockdown, suggesting that Sarrah interacts with target genes to activate their transcription. This interaction was confirmed in vitro using nucleic acid oligonucleotides containing the sequences of the Sarrah triplex motif and the Sarrah binding site of the exemplary target gene GPC6 of both human and mouse. RNA immunoprecipitation experiments in human cells demonstrated that Sarrah is associated with open chromatin, transcription factor CRIP2, transcriptional co-activator p300 and DNA-RNA hybrid structures that also occur in Sarrah target gene promoters, which indicated that Sarrah activates gene expression by triplex formation and recruitment of protein interaction partners. Deleting the triplex motif of endogenous Sarrah in mouse cardiomyocytes augmented apoptosis, showing that triplex formation is of functional relevance for Sarrah action.
Finally, overexpressing Sarrah in an acute myocardial infarction mouse model improved recovery of cardiac contractile function as assessed from ejection fraction, stroke volume, wall motion and wall thickness measured by echocardiography and magnetic resonance imaging. Infarct size was substantially reduced in Sarrah overexpressing mice compared with controls. This in vivo study implies that restoring Sarrah levels in the aged or infarcted heart bears significant therapeutic potential, which can be attributed to the combination of three Sarrah effects: increased cardiomyocytes survival, enhanced contractility of individual cardiomyocytes and paracrine stimulation of endothelial cell proliferation likely contributing to increased angiogenesis and tissue perfusion.
In summary, cardiac lncRNA Sarrah is evolutionary conserved with regard to its genomic locus, function and molecular mechanism. Via triplex formation with gene promoters, it is capable to activate a set of target genes that together mediate the anti-apoptotic and pro-contractile function of Sarrah in cardiomyocytes and that confer angiogenic effects to endothelial cells. A therapeutic utilization of Sarrah in the context of myocardial ischemia is conceivable in the future if Sarrah upregulation proves to be beneficial in further studies.
Identification and characterization of hypoxia-regulated long non-coding RNAs in endothelial cells
(2018)
RNA deep sequencing of the human transcriptome revealed that almost ~84 % of the genome are transcribed, however, only 2 % of all transcripts encode for proteins. All remaining transcripts are referred to as non-coding RNAs and can be divided into small non-coding RNAs (<200 nt) and long non-coding RNAs (lncRNAs; >200 nt). Studies throughout the last decade suggest a broad functional spectrum for lncRNAs. Regarding the cardiovascular field, several studies could show that lncRNAs are implicated in various aspects of endothelial cell biology. The response to hypoxia and the regulation of angiogenesis are key events in the context of several diseases. Therefore, the aim of this study was to determine the influence of hypoxia on lncRNA expression in human umbilical vein endothelial cells and furthermore, to characterize the lncRNA function on a molecular level. ...