Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Biochemistry (1)
- Biophysics (1)
- Cryo-electron Tomography (1)
- Membrane Protein (1)
- Subtomogram averaging (1)
Institute
Over the last decade, cryo-EM has developed exponentially due to improvements in both hardware (“machine”-based) and software (“algorithm”-based). These improvements have pushed the best achievable resolutions closer to atomic level, bridging “gaps” not covered by other biophysical techniques, and allowing more difficult biological questions to be addressed. Thus, this PhD project was designed and constructed to apply cryo-EM to answer biological questions, while allowing simultaneous cryo-EM method development.
The biological focus of this research is pentameric ligand-gated ion channels (pLGICs), specifically the serotonin receptor type-3 receptor (5HT3R), which also belongs to the Cys-loop receptor family. 5HT3R plays an important role in fast synaptic signal transduction in response to agonist and antagonist binding. Binding to its native ligand results in opening of the channel at the transmembrane domain, allowing cations to pass through, resulting in membrane depolarization and conversion of the chemical signal into an electrical one.
This work consisted mainly of two specific aims. One was focused on conformational investigation of 5HT3R in its ligand-bound open conformation, using cryo-electron microscopy (cryo-SPA), in order to understand the gating mechanism upon ligand activation. The other one was to combine SPA with cryo-ET and STA to push the resolution limitation of conventional cryo-ET and STA workflows.
In the end, three different cryo-EM conformations of membrane-embedded 5HT3R were resolved using cryo-SPA, two structures in resting closed forms, one C5-symmetric and one C1-asymmetric, and one serotonin-bound open form. These three structures presented a number of novel features related to the transition of the receptor to its ion-conductive state. Specifically, the serotonin-bound receptor shows asymmetric opening, which was speculated to occur via an intermediate asymmetric Apo state. In addition to the cryo-SPA work, application of cryo-ET and STA to the study of 5HT3R in native vesicles is described in this thesis. Additional work on methods development, focused on combining SPA and STA techniques, along with preliminary results on tobacco mosaic virus are also detailed and discussed.
Moreover, previously unreported asymmetric arrangements of the subunits of the homopentameric 5HT3R around the pore axis were revealed. The asymmetric open state is stabilized by phospholipids inserted at the interface between subunits, at a site well-documented for the binding of allosteric pLGIC modulators. These results not only give structural support to a large body of functional data on the effects of lipids on the function of this receptor family, but also provide structural guidance for future studies in this field. Meanwhile, the SPA-STA combined methods developed during the course of this work have the potential to help resolve higher resolution tomography-based structures, which would benefit researchers seeking to do in-situ-based structural studies.
Während meiner Promotion habe ich zwei Projekte unter der Aufsicht von Dr. Misha Kudryashev durchgeführt. Im ersten Projekt habe ich die Strukturen des Ryanodinrezeptors 1 (RyR1) in Apo- und Ryanodin-Bindungszuständen in der nativen Membran durch Tomographie und Subtomogramm-Mittelung bei 12,6 bzw. 17,5 Å bestimmt. Im Vergleich zur Struktur von gereinigtem RyR1 unter Verwendung der Einzelpartikel-Kryo-Elektronenmikroskopie (Cryo-EM) können zusätzliche Dichten in der cytoplasmatischen Domäne und der sarkoplasmatischen Retikulum (SR)-Membran bzw. im SR-Lumen beobachtet werden. Die Auflösung der Struktur von RyR1 im Apo-Zustand wurde von den Kollegen in meinem Labor mithilfe der Hybridmethode auf 9,5 Å verbessert. Diese Arbeit hat unser Verständnis für die Mechanismen von RyR1 in nativen Membranen erweitert. Im zweiten Projekt habe ich die Struktur des Proteins SdeC der SidE-Familie durch Einzelpartikel-Kryo-EM bei 4,6 Å bestimmt. Die Kristallstruktur des C-Terminus von SdeA wurde von meinem Forschungspartner Dr. Mohit Misra gelöst. Durch Überlagerung einer gemeinsamen Helix dieser beiden Strukturen konnten wir ein kombiniertes Modell erstellen und ein allgemeines Verständnis der Proteine der SidE-Familie erhalten.
Biological membranes serve as physical barriers in cells and organelles, enabling the maintenance of chemical or ionic gradients that are essential for triggering various integral, peripheral, or lipid-anchored membrane proteins, necessary for their life-essential functions. The study of membrane proteins has unique challenges due to their hydrophobic nature, limited expression levels, and inherent flexibility. Single-particle analysis (SPA) enables the determination of high-resolution three-dimensional structures using minimal amounts of specimen without the need for crystallization. Additionally, cryogenic electron tomography (cryo-ET) and subtomogram averaging (StA) offer the ability to study membrane protein complexes, cellular architecture, and molecular interactions while preserving close-to-life conditions. With ongoing improvements in cryo-EM technologies, obtaining high-resolution structures of membrane proteins in vitro can allow people to understand their mechanisms and functions, and to facilitate the design and optimization of new therapeutic agents. Furthermore, there has been significant growth in the structural characterization of membrane proteins in situ, as studying biomolecules within their physiological context is an ultimate goal in structural biology for a comprehensive understanding of molecular networks in cells.
Due to the amphipathic nature of membrane proteins, their production, purification, and isolation pose significant challenges compared to soluble proteins. To maintain the membrane protein fold in an aqueous buffer after disrupting lipid membranes, the use of detergents, amphipols, lipid nanodiscs, saposin-lipoprotein (salipro), styrene-maleic acid co-polymer lipid particles (SMALPS) is common and often essential. A limitation of the membrane-mimetic systems is the absence of an actual lipid bilayer environment. To address this issue, membrane proteins can be reconstituted into liposomes, and this closed membrane environment closely mimics the physiological conditions of the proteins. The use of liposomes for structure determination is expected to significantly expand in the in vitro study of membrane proteins and membrane-associated proteins, particularly for capturing transient complexes in specific functional states.
Resolving the structures of membrane proteins in their native cellular context is considered the ideal approach for understanding their functions and associated molecular networks. While single-particle cryo-EM can achieve higher resolution than subtomogram averaging, it often requires at least partial purification of the target molecules from their native environment inside cells and tissues. By combining averaging tools on subvolumes obtained through cryo-ET, structures can currently be determined at resolutions of 10-30 Å. With ongoing advancements and refinements in cryo-ET methodologies, routine high-resolution structure determination in situ is poised to become a valuable tool for both structural and cell biologists in the long run, and the field holds great promise for further expanding our understanding of cellular structures and processes at the molecular level.
The main aim of this thesis is to further our knowledge of the structure and function of a small prokaryotic voltage-gated sodium ion channel, NaChBac in liposomes, and a large knob complex found on the surface of Plasmodium falciparum-infected human erythrocyte by cryo-ET and StA.
Chapter 2 presents the first StA map of the 120-kDa NaChBac embedded in liposomes under a resting membrane potential at a modest resolution of 16 Å. The approach presented in this study, which can be widely applied to cryo-EM analysis of membrane proteins, with a specific focus on membrane proteins with small soluble domains, lays the foundation for cryo-ET and StA of integral or peripheral membrane proteins whose functions are affected by transmembrane electrochemical gradients and/or membrane curvatures. Chapter 3 shows the first cryo-EM structure of the supramolecular knob complex in P. falciparum-infected human erythrocyte. While a previous study provided an overall architectural view of knobs using negative stain tomography, the in situ structure bridges this gap, guiding future investigations into the molecular composition and the role of these native knobs in Plasmodium infection and immunity.
This thesis opens up several promising lines for future studies of membrane proteins in vitro and in situ, where other membrane proteins can be studied in physiologically relevant environments. Already with the present generation of cryo-EM hardware and software, this thesis represents pioneering research in the field of membrane protein structural biology.