Refine
Document Type
- Doctoral Thesis (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- Silicium (2)
- Anorganische Synthese (1)
- Anthracen (1)
- Bindungsanalyse (1)
- Chemical Force Microscopy (1)
- Halbleiter (1)
- Kraftmikroskopie (1)
- Lateral Force Microscopy (1)
- Mikrowelle (1)
- Modifizierung (1)
Institute
Der Einsatz von Mikrowellen zur Synthese von Organosilicioumverbindungen ist bislang nicht beschrieben und wird mit der vorliegenden Arbeit eingeführt. Dazu wurde eine Haushaltsmikrowelle durch Öffnen des Sicherheitskäfigs und entsprechender Abschirmung so modifiziert, dass mit den üblichen Labormaterialien gearbeitet werden konnte. Exemplarische Reaktionen in flüssiger Phase, wie die Synthese von Silatranen und silatrananalogen Verbindungen, können gegenüber der klassischen Reaktionsführung bis zum Faktor 60 bei vergleichbaren Ausbeuten und Reinheiten beschleunigt werden. Auch die direkte Konversion von SiO2 in reaktive Verbindungen gelingt unter Mikrowellenbedingungen deutlich beschleunigt. Weitere Modifikationen der Apparatur ermöglichen die Durchführung von Festphasen-Gas Reaktionen unter Verwendung von Silicium und verschiedenen Reaktionsgasen. Verwendet wurden dazu Cl2, HCl, CH3Cl sowie Gemishce dieser Gase. Auch wurden die Reaktionen unter verschiedenen Stufen der Argonverdünnung durchgeführt. Erstaunlicherweise glüht dabei das Silicium innerhalb von Sekunden mit einer Temperatur von über 1000°C. Die Untersuchungen zeigen eine hohe Tendenz zur Bildung von monomeren Siliciumverbindungen, sobald Methylchlorid beteiligt ist, wird bevorzugt das technisch bedeutsame Me2SiCl2 beobachtet. Alle Ergebnisse gehen konform mit der Annahme, dass durche Mikrowelle aktiviertes Silicium bereitgestellt wird. Dadurch kann es zur Bildung und Stabilisierung von intermediären Silylenen kommen, die in verschiedene Bindungen der Reaktionspartner insertieren. Bemerkenswert ist auch die geringe elektrische Leistung von 200 Watt, die in allen diskutierten Umsetzungen ausreicht, um die gewünschten Reaktionen durchzuführen. Darüber hinaus wurde auch der Unterschied zwischen Multimode- und Singlemodegeräten untersucht. Nur bei Verwendung von Multimodegeräten könenn die beschriebenen Ergebnisse erzielt werden. Beim Einsatz von Singlemodegeräten entsprechen die Resultate denen, die bei klassischer thermischer Reaktionsführung erzielt werden.
Der Schwerpunkt der vorliegenden Arbeit lag in der Synthese und strukturellen Charakterisierung von sandwichartig aufgebauten kupferhaltigen Organosiloxanen. Diese sollten nach Möglichkeit kristalline Eigenschaften aufweisen und ein interessantes magnetisches Verhalten zeigen. Es galt, die Beziehungen zwischen molekularer Struktur und magnetischen Eigenschaften herauszuarbeiten, um auf der Basis experimenteller Daten dem maßgeschneiderten Design neuer molekularer Magnete näher zu kommen. .... Die in der hier vorgelegten Arbeit erzielten Ergebnisse belegen, dass der Weg zur gezielten Erzeugung molekularer Magnete erfolgreich beschritten wurde. Es wird weiteren Arbeiten vorbehalten bleiben, Cluster der nun vorliegenden Art chemisch so zu verknüpfen, dass daraus polymere Ketten oder Netzwerke entstehen. Deren magnetisches Verhalten lässt erwarten, dass damit möglicherweise neue Materialien zugänglich werden, die dem Anspruch eines molekularen Magneten voll gerecht werden.
In der vorliegenden Arbeit ist es gelungen, OTS-, MPTMS-, und MPTMS/OTS gemischte SAMs aus der Lösung auf SC-1 chemisch oxidierten Siliziumwafern („SiO2“) zu präparieren. Die Adsorption der OTS oder MPTMS SAMs auf SiO2 wird von zwei konkurrierenden Reaktionen bestimmt, d.h. „Selbstaggregation” in der Ausgangslösung und “Oberflächendehydration” des SiO2 -Substrates. Die beiden Alkylsiloxan-SAMs weisen unterschiedliches Bildungsverhalten auf. Die Reifungsdauer der Ausgangslösung vor der Adsorption wirkt sich signifikant auf die Bildung der OTS SAMs aus, demgegenüber ist bei MPTMS SAMs kein Einfluß zu beobachten. Für OTS SAMs sind große Dendriten oftmals von kleinen Rundinseln umgeben, dagegen für MPTMS SAMs treten prinzipiell nur sporadisch verteilte kleine Rundinseln auf. Die Abwesenheit des Chlor-Signals in XPS-Spektren bestätigt, dass innerhalb der Adsorption die Si-Cl Bindungen der OTS-Moleküle zum größten Teil hydrolysiert werden. Doch für MPTMS SAMs ist in C 1s-Spektren ein Peak bei 286.4 eV, der der unhydrolysierten Si-OCH3 Bindung entspricht, zu beobachten. Die Hydrolysefähigkeit der Si-Cl Bindung des OTS ist erwartungsgemäß stärker als jene der Si-OCH3 Bindung des MPTMS. Diese Tendenz samt dem Unterschied in der Alkylkettenlänge wirkt sich beträchtlich auf die Bildung und die Morphologie der adsorbierten Inseln aus. Bei gleicher Konzentration (5 mM) und Reifungsdauer der Ausgangslösung bilden sich OTS SAMs viel schneller als MPTMS SAMs bei Raumtemperatur. Sie hat auch eine größere Oberflächenbedeckung wegen der seitlichen Vernetzung zur Folge. Diese Beobachtung zeigt eine prognostizierbare kinetische Schwierigkeit zur Präparation der OTS/MPTMS gemischten SAMs durch Koadsorption. Grund hierfür ist, dass die Adsorption voraussichtlich von OTS-Molekülen dominiert wird. Darüber hinaus ist Aggregation zwischen hydrolysierten OTS- und MPTMS-Molekülen nicht ausgeschlossen. Neben der Koadsorption steht in der zweistufigen Adsorption ein weiteres herkömmliches Verfahren zur Verfügung. Das Endprodukt kann nach der Reaktionsreihe der Silane mit „OTS+MPTMS“ oder „MPTMS+OTS“ gemischte SAMs bezeichnet werden. Unter Berücksichtigung der individuellen Oberflächenbedeckung und Morphologie wurde eine Rezeptur aufgestellt, in der die Adsorption jeweils höchstens 30s (für OTS) und 20 min (für MPTMS) dauert. Angesichts der vielfältigen Inselstruktur, d.h. Monoschicht, polymerisierte Bälle, und sogar Multischicht, ist eine Phasenunterscheidung nach der Dicke, z.B. mittels AFM, nicht zu erwarten. Die Existenz der lateralen unvernetzten Si-OH Gruppen der adsorbierten OTS-Inseln könnte die Präparation der homogenen OTS+MPTMS gemischten SAMs erschweren. In diesem Fall ist es fraglich, ob die hydrolysierten MPTMS-Moleküle vollständig wie geplant mit oberflächnahen OH-Gruppen von SiO2 reagieren. Mit einer umgekehrten Reaktionsreihe löst sich das Problem von selbst, da die adsorbierten MPTMS-Inseln hauptsächlich unhydrolysierte seitliche Si-OCH3 Gruppen besitzen. Die morphologische Erkennbarkeit unterstützt die Machbarkeit der Präparation der MPTMS+OTS gemischten SAMs. Die unterschiedlichen Messmodi des AFM, mit denen die Morphologie der OTS SAMs aufgenommen wurde, ergaben deutliche Unterschiede in ihrem Erscheinungsbild. Im Vergleich zum Tappingmodus sind die Grenzen der OTS-Inseln auf Kontaktmodus-Bildern nur undeutlich erkennbar. Die großen Inseln erscheinen nicht so dendritisch. Die Ursache dieser Phänomene könnte am Wassermeniskus zwischen Spitze und Probe liegen, da die Messung nicht in Flüssigkeit, sondern an Luft durchgeführt wurde. Auf LFM-Bildern sind die adsorbierten OTS-Inseln heller als unbedecktes SiO2, während die MPTMS-Inseln dunkler als SiO2 aussehen. Eine ähnliche Auswirkung der Messmodi auf die Morphologie der MPTMS SAMs wurde nicht beobachtet. Durch die Adsorption von 1-Decanthiol lässt sich die Si3N4-AFM-Spitze modifizieren. Eine solche CH3-terminierte Spitze ist hydrophob und verursacht einen gegenteiligen Helligkeitskontrast auf LFM-Bildern der adsorbierten OTS-Inseln.
Die vorliegende Arbeit fasst folgende experimentellen Arbeiten zusammen: • Synthese von amorphem, schwarzem, basischem Silicium Si am,schw,ox und amorphem, schwarzem, nicht basischem Silicium Siam,schw durch Reduktionsreaktion von Siliciumtetrachlorid mit Natrium. • Reaktivität des amorphen Siliciums Si am gegenüber verschiedenen Gasen: Cl2, HCl, CH3Cl • Reaktivität von Si am gegenüber Alkoholen bei Raumtemperatur. • Reaktivität von Si am gegenüber Alkoholen und Essigsäure in einem geschlossenen System, nicht katalysiert/katalysiert durch Cu(I)Cl und Cu(I)O. • Reaktivität von Si am,schw,ox und Si am,schw gegenüber Alkoholen und Essigsäure in einem offenen System (Ofen, „slurry phase“-Reaktor), nicht katalysiert/katalysiert durch Cu(I)Cl und Cu(I)O. • Thermische und katalytische Disproportionierungsreaktionen von Methylmethoxysilanen, katalysiert durch Alkalimetalle (Na), salzartige Verbindungen (Ca(OH)2, MgSO4/C, Na2SO4/C und (NH4)2SO4/C) und Lewis-Säuren (AlCl3). • Komproportionierung zwischen Trimethylmethoxysilan und Methyltrimethoxysilan Der Schwerpunkt dieser Arbeit lag in Untersuchung der chemischen Reaktivität von amorphem Silicium Si am, synthetisiert durch Na-Reduktion von Siliciumtetrachlorid, gegenüber verschiedenen Gasen, wie z. B. Chlorgas, Chlorwasserstoff und Methylchlorid, gegenüber Alkoholen, wie z. B. Methanol, Ethanol und Phenol und gegenüber Essigsaure unter unterschiedlichen Reaktionsbedingungen. Die Reaktion zwischen amorphem Silicium Si am und Cl2-Gas führt bei 240-250°C zu Tetrachlorsilan SiCl4 als einziges Produkt. Die Reaktion mit HCl-Gas liefert im Temperaturbereich zwischen 360-370°C zwei Produkte: 15% Dichlorsilan, H2SiCl2 und 85% Trichlorsilan, HSiCl3. Im Temperaturbereich zwischen 370-420°C entstehen drei Produkte: 36,4% Dichlorsilan H2SiCl2, 58,5% Trichlorsilan HSiCl3 und 5,1% Tetrachlorsilan SiCl4. Über eine Temperaturführung kann die Produktbildung wesentlich beeinflusst und damit auch gesteuert werden. Durch eine Reaktion mit Methylchlorid bei 560°C entstehen zwei Produkte: 79% Methyltrichlorsilan CH3SiCl3 und 21% Dimetyldichlorsilan (CH3)2SiCl2. Basisches Silicium Siam,schw,ox liefert in den Reaktionen mit Alkoholen und Essigsäure unter Rückfluss-Bedingungen (Temperaturen zwischen 20 und 420°C; offene Reaktionssysteme) jeweils ein einziges Produkt und führt mit den korrespondierenden Partnern selektiv zu Tetramethoxy-, Tetraethoxy-, Tetraphenoxy- und Tetraacetoxysilan. Diese Reaktionen werden durch die im eingesetzten Siam/NaCl-Gemisch vorhandene Base (NaOH, Na2Ox; x = 1, 2) katalysiert. Gemischte Alkylalkoxysilane oder Siloxane entstehen unter den vorgegebenen Bedingungen nicht. Silicium setzt sich dabei in den Reaktionen mit Methanol und Ethanol vollständig um. Werden die Bedingungen modifiziert und die Reaktionen in geschlossenen Systemen (Reaktionsampullen) bei 150°C, katalysiert durch 5 Gew. % Cu(I)Cl im Mol-Verhältnis Si am,schw,ox/CH3OH 1:3 und 1:4 durchgeführt, wird Trimethoxysilan in 91% und 84% Ausbeute gewonnen. Der Produktbildungsweg führt offensichtlich über die Katalyse eines Komplexes Na+[Cu(OH)Cl]-, der in situ aus Cu(I)Cl und NaOH gebildet wird. Nicht basisches Silicium, Siam,schw, reagiert mit Methanol bei Raumtemperatur zu Trimethoxysilan HSi(OCH3)3 (16-18%) und zu Tetramethoxysilan Si(OCH3)4 (84-82%). Die Produktbildung kann durch Änderungen Reaktionsbedingungen in Richtung von Trimethoxysilan verschoben werden. So entsteht Trimethoxysilan in einer geschlossenen Ampulle zu 95% als Hauptprodukt der Reaktion zwischen amorphem Silicium und Methanol im Mol-Verhältnis 1:3 in Anwesenheit von NH4HF2 als Aktivator. 84,5% Trimethoxysilan entstehen in einer Ampulle bei 200°C nach 5 Stunden Reaktionszeit, dann wenn Methanol im stöchiometrischen Verhältnis 8:1 eingesetzt wird. Der Umsatz an Silicium ist praktisch vollständig (100%). Wird die Reaktion zwischen Siam,schw und Methanol in einem „slurry phase“-Reaktor durchgeführt, resultiert eine Abhängigkeit der Produktausbeute vor allem vom Lösungsmittel, dann aber auch von den weiteren Bedingungen. In Dodecylbenzol entsteht das Trimethoxysilan bei 230°C und mit Cu(I)O als Katalysator zu 72% in einer 8-stündigen Reaktion. Unter vergleichbaren Bedingungen, aber in Isoparaffinöl bildet sich Trimethoxysilan zu 61%. In einem modifizierten „slurry phase“-Reaktor, in dem die Produkte mit überschüssigem Methanol sofort aus der Reaktion abgeführt werden, entsteht das Trimethoxysilan nicht. Allerdings bilden sich in diesem Fall methylierte Methoxysilane. Der Umsatz an Silicium hängt auch von der Temperatur des Methanol-Dampfes ab. Wird die Temperatur zwischen 150-200°C gehalten, werden 49% des Siliciums umgesetzt. Ansonsten beträgt die Umsatzrate des Siliciums 20-25%. Amorphes, schwarzes, basenfreies Silicium, Si am,schw, reagiert bei 150°C mit Ethanol im Mol-Verhältnis 1:3 zu 91% und bei 200°C (Mol-Verhältnis Si : EtOH 1:8) zu 86% Triethoxysilan, HSi(OEt)3. Die Reaktion zwischen nicht basischem Silicium Si am,schw und Essigsäure liefert in der Siedehitze kein Tetraacethoxasilan, sondern nur Polyacethoxysilane mit einem Polymerisationsgrad von n = 2, 3, in einer Ampulle bildet sich jedoch ein Gemisch aus Tetraacetoxysilan und verschiedenen Acethoxypolysilanen. Die Polysilanbildung verstärkt sich mit zunehmender Reaktionstemperatur und –dauer. Die Reaktion zwischen Si am,schw und Essigsäure in einem offenen System (Ofen) liefert bei 300°C außer Tetraacetoxysilan ein Gemisch von Acethoxypolysilanen mit n=2-6. Versuche zur Bildung von Phenoxsilanen aus Si am,schw. und Phenol schlugen bei Temperaturen zwischen 150-300°C fehl. Das MALDI-TOF-MS-Spektrum einer bei 225-230°C im Vakuum siedenden Fraktion, die aus Reaktion von Si am,schw mit Phenol bei 420°C im Ofen entstanden ist, zeigt Spuren von Tetraphenoxysilan und organische Polymere mit dem Molekulargewichht bis zu 960 Dalton. Während Umsetzungen von amorphem Silicium mit Methanol in geschlossenen Reaktionsampullen Trimethoxysilan und Tetramethoxysilan als Hauptprodukte liefern, bilden sich in einem offenen System methylierte Methoxysilane MenSi(OMe)4-n (n=1, 2) in unterschiedlichen Ausbeuten. Dimethyldimethoxysilan entsteht aus basischem Silicium Siam,schw,ox nicht; selbst durch Katalysatorzusatz entsteht das gewünschte Produkt nur in Spuren. Die Monomethylierung verläuft dagegen erfolgreicher. Die höchste Ausbeute an Methyltrimethoxysilan (33,7%) wird bei 320°C mit 20 Gew. % Cu(I)Cl als Katalysator erzielt. Völlig anders verhält sich nicht basisches Silicium Si am,schw , denn es reagiert mit Methanol in einem offenen System bei 350°C zu 13% Dimethyldimethoxysilan (CH3)2Si(OCH3)2, und 37% Methyltrimethoxysilan CH3Si(OCH3)3. In Reaktionen mit größeren Silicium-Mengen (Si-Gehalt: 39-60 mmol) entstehen in einem nicht gerührten Reaktionsreaktor nach 20’ Minuten Reaktionszeit bei 300°C 26% Dimethyldimethoxysilan (CH3)2Si(OCH3)2 und nach 45’ Minuten Reaktionszeit 49,5% Methyltrimethoxysilan CH3Si(OCH3)3. In einem nicht gerührten Reaktionsrohr entstehen nach 3 Stunden Reaktionszeit 25-30% Dimethyldimethoxysilan bei 300°C und mit 20 Gew. % Kupfer(I)Chlorid als Katalysator. In einem gerührten Reaktionsrohr bilden sich bei 350°C und mit 20 Gew. % Cu(I)Cl nach 3-stündiger Reaktion 23,5% (CH3)2Si(OCH3)2 und 53,3% CH3Si(OCH3)3. Das Vorhandensein des Katalysators erhöht die Ausbeute an methylierten Methoxysilanen in den Reaktionen zwischen nicht basischem Silicium und Methanol. Aus dem Verlauf der Reaktion im Ofen lässt sich schließen, dass die größte Menge des Dimethyldimethoxysilans, (CH3)2Si(OCH3)2, während der ersten 20-40 Minuten entsteht. Danach sinkt der Anteil mit zunehmender Reaktionszeit, es bilden sich verstärkt die festen Dimethyloligosiloxane. Die Ausbeute an Tetramethoxysilan, Si(OCH3)4, wächst mit der Reaktionszeit kontinuierlich. Dagegen bleibt die Ausbeute an Methyltrimethoxysilan, CH3Si(OCH3)3, während 3-stündiger Reaktion relativ konstant. Die Bildung aller drei Produkte wurde zwischen 300° und 350°C detailliert verfolgt. Nur ca. 20% des Siliciums setzen sich zu den flüchtigen Produkten um, rund 80% Silicium bleiben in fester Form als nicht abreagiertes Silicium und als feste Oligodimethylsiloxane erhalten. Eine nicht katalysierte Reaktion zwischen Si am,schw und Ethanol liefert nach 3h Reaktionszeit in einem nicht rührenden Reaktor etwa 23% HSi(OCH3)3 und etwa 72% Si(OEt)4. Etylenethoxysilane oder -siloxsane bilden sich nicht. Zum Weiteren ist es gelungen, Dimethyldimethoxysilan durch Disproportionierungsreaktion aus Methyltrimethoxysilan und Tetramethoxysilan über metallischem Natrium im Mol-Verhältnis 1:1 in einer Ampulle bei 250°C herzustellen. Aus Disproportionierung von Methyltrimethoxysilan sind 12% Dimethyldimethoxysilan zu erhalten. Die Disproportionierung von Tetramethoxysilan führt zu 27% Dimethyldimethoxysilan, (CH3)2Si(OCH3)2, 34% Methyltrimethoxysilan, CH3Si(OCH3)3, und 11% Trimethylmethoxysilan, (CH3)3SiOCH3. Die Menge des eingesetzten Natriums muss in weiteren Arbeiten noch optimiert werden. Eine Komproportionierungsreaktion zwischen Trimethylmethoxysilan, (CH3)3SiOCH3, und Methyltrimethoxysilan, CH3Si(OCH3)3, zu Dimethyldimethoxysilan, (CH3)2Si(OCH3)2, fand unter den in dieser Arbeit beschriebenen Bedingungen nicht statt. Diese Ergebnisse sind ein im Labormaßstab chlorfreies Verfahren zur Herstellung von methylierten Methoxysilanen. Unter der Voranstellung der Aufskalierbarkeit wird damit eine neue Route eines möglicherweise technisches Prozesses (das Q-Verfahren) zu Darstellung von Siliconen zugänglich; diese führt wie folgt aus: Siliciumtetrachlorid → amorphes Silicium → Tetramethoxysilan/Tetraethoxysilan/Tetraacetoxysilan → Methylmethoxysilane → Silicone. Es gilt nun, die Synthesebedingungen nach erfolgreicher Optimierung in den Pilotmaßstab zu überführen. Die Synthese von Trimethoxysilan, HSi(OCH3)3, erscheint bereits jetzt schon den Bedingungen des technisch durchführenden Cromptonprozesses überlegt zu sein. Diese bietet jedoch den Vorteil, von technisch verfügbarem Silicium anzugehen. Eine exakte und vergleichende Prozess-Analyse wird darüber Aufschluss geben, ob die in dieser Arbeit erworbenen Ergebnisse zu einer technischen Umsetzung führen.
Die in der vorliegenden Arbeit gewonnenen Erkenntnisse zur Reaktivität zweifach reduzierter 9,10-Dihydro-9,10-diboraanthracene [A]2– erweitern das Einsatzspektrum von Hauptgruppenverbindungen im Hinblick auf die Aktivierung kleiner Moleküle. Komplementär zu Übergangsmetallkomplexen und FLPs ermöglichen die Salze M2[A] (M+ = Li+, Na+, K+) die Entwicklung neuartiger Synthesestrategien. Als besondere Herausforderung gilt die Aktivierung des stabilen H2-Moleküls, dessen Bindung die Dianionen [A]2– homolytisch in einer konzertierten Reaktion spalten.
Untersuchungen zur Kinetik der H2-Addition an M2[A] stellten die Abhängigkeit dieses Reaktionsschritts vom borgebundenen Substituenten und vom Kation heraus. Eine geringe sterische Abschirmung der Boratome durch kleine borgebundene Substituenten (C≡CtBu, Me, H) begünstigt die H2-Aufnahme gegenüber großen Substituenten (pTol, Xyl, Et). Die maximale Ausbeute an M2[A-H2] wird für M+ = Li+ erst nach mehreren Tagen bei 100 °C erhalten, während einige Stunden bei nur 50 °C für die quantitative Bildung von K2[A-H2] ausreichen.
Unter den Salzen M2[A] eignet sich Li2[68] mit borgebundenen Me-Substituenten besonders gut für den Einsatz als Hydrierungskatalysator. Mit Li2[68] konnten das Imin Ph(H)C=NtBu, das terminale Alken Ph2C=CH2 und Anthracen erfolgreich im NMR-Maßstab hydriert werden (Katalysatorladung 37 mol%, THF-d8, 1 atm H2-Initialdruck, 100 °C, 16 h). Im Reaktionsautoklaven war für die Hydrierung von Ph(H)C=NtBu eine Verringerung der Katalysatorladung auf 10 mol% Li2[68] möglich (THF, 7 atm H2-Initialdruck, 100 °C, 18 h). Konkurrenzreaktionen begründen Einschränkungen in Bezug auf die Substratpalette, da M2[68] (M+ = Li+, Na+) mit elektronenarmen ungesättigten Verbindungen, die C=C-, C≡C-, C=O- oder C=N-Bindungen enthalten, [4+2]-Cycloadditionsprodukte bilden können. Die Reversibilität dieser Reaktion entscheidet, ob Li2[68] als Katalysator fungiert oder irreversibel in den Strukturen gebunden bleibt.
Vielseitiger sind die H2-Aktivierungsprodukte M2[A-H2] als H–-Donoren geeignet: Na2[68-H2] ersetzt Halogenid- durch H–-Substituenten in Bromethan, sowie in Chlorsilanen und PCl3; CO2 wird in Natriumformiat überführt. Unabhängig von der Anzahl der Chlorliganden werden die Produkte immer vollständig hydriert. Eine erneute Reduktion von 68 kann wieder Na2[68] bereitstellen, das H2 aufnimmt und Na2[68-H2] regeneriert, welches für neue H–-Abgaben zur Verfügung steht. Bei der experimentellen Umsetzung des Kreislaufs ist es wichtig, die beschriebenen Reaktionsschritte nacheinander auszuführen und jeweils nur stöchiometrische Mengen des Elektrophils zuzugeben. Bei Abweichungen vom schrittweisen Syntheseprotokoll finden formale nukleophile Substitutionen mit M2[68] statt und monoanionische Spezies entstehen, z. B. wenn Et3SiBr als Elektrophil anwesend ist.
Gegenüber CO2 zeigt Li2[68] eine hohe Reaktivität, durch die selektiv CO und [CO3]2– gebildet werden. Wie zuvor bei den H–-Transferreaktionen ermöglicht die Reduktion der Neutralverbindung 68 die Regeneration von Li2[68].
Die Dianionen [A]2– stechen unter anderen cyclischen Borverbindungen in niedrigen Oxidationsstufen heraus, da mit [A]2– nicht nur die Aktivierung von H2 oder CO2 gelang, sondern erstmalig über die Einbindung der Additionsprodukte in zum Teil katalytische Folgereaktionen berichtet werden konnte.
In der vorliegenden Arbeit galt es, stabile, lumineszente, tetrakoordinierte Organoborane unter Verwendung eines Bor-funktionalisierten ditopen Grundbausteins und unterschiedlicher π- konjugierter Ligandensysteme zu synthetisieren. Die Bifunktionalität sollte die gleichzeitige Einführung von zwei Lewis-Basen erlauben, um eine mögliche elektronische Kommunikation oder einen Energietransfer zwischen den Chromophoren zu gewährleisten.
...
Zusammenfassend war es möglich unter Einsatz eines Bor-haltigen Grundsystems (DBA) durch die Variation der chelatisierenden bzw. verbrückenden π-konjugierten Liganden stabile und effiziente Fluorophore mit nützlichen optischen Eigenschaften zu realisieren.
Quantenchemische Untersuchungen zu Reaktionsmechanismen reaktiver Carben- und Silylenverbindungen
(2018)
In dieser Arbeit werden Reaktionsmechanismen verschiedener Carben- und Silylenverbindungen mit quantenchemischen Methoden untersucht: Die Zerfallsreaktion acylischer Diaminocarbene, die Reaktion verschiedener Diaminocarbene mit CO, die C-C Kupplung von Benzophenon mit SiCl2, die Reaktion von NHC mit Si2Br6 und die Reaktion von Dimethyltitanocen mit neo-Si5H12
In dieser Arbeit werden die Ergebnisse quantenchemischer Untersuchungen von verschiedenen Siliciumverbindungsklassen vorgestellt, die in weiten Teilen als Begleitung zu experimentellen Arbeiten durchgeführt wurden. Das erste Hauptkapitel befasst sich mit den Chloridkomplexen von Perchlorsilanen, zu denen die inversen Sandwichkomplexe und die Silafullerane mit endohedralem Gast gehören. Der Fokus liegt dabei auf den Bindungseigenschaften zwischen Ligand und Silan. Weiterhin werden thermodynamische Untersuchungen zu Aufbaureaktionen und Eigenschaften der Verbindungen vorgestellt. Mit den durchgeführten Rechnungen kann gezeigt werden, dass durch Wahl geeigneter Substituenten am Siliciumatom ein Wechsel in den Chloridkomplexen von einem hyperkoordinierten Siliciumatom hin zu einem Siliciumatom mit ausgebildeter Tetrelbindung erreicht werden kann. Bei den inversen Sandwichkomplexen sind beide Bindungsmodi möglich, von denen die Tetrelbindung die stärkere darstellt. Neben Chloridionen können hier auch Nitrile und Chlorsubstituenten am eigenen Silangerüst als Liganden fungieren. Die stärksten Tetrelbindungen können bei den endohedral funktionalisierten Silafullerankomplexen gefunden werden. Hier stellt das experimentell isolierte Strukturmotiv mit zwölf äußeren Trichlorsilylsubstituenten das thermodynamisch stabilste Substitutionsmuster dar. Im folgenden Kapitel werden die generellen physikalischen Ursachen für die beobachteten thermodynamischen Trends zwischen Perchlorsilanisomeren sowie Disproportionierungsreaktionen behandelt und ein direkter Vergleich mit Alkanhomologen angestellt. Bei den Perchlorsilanen und den meisten Homologen ist bei den untersuchten Systemen eine energetische Präferenz von verzweigteren Strukturen zu erkennen. Die Ursache hierfür liegt hauptsächlich bei stärkeren attraktiven Wechselwirkungen durch Korrelationseffekte, Hyperkonjugation sowie elektrostatische Effekte, welche stärkere repulsive Wechselwirkungen wie die Pauli-Repulsion überkompensieren. Im letzten Kapitel kommen zu den bisher behandelten Reaktionen unter Si-Cl- und Si-Si-Bindungsbeteiligung noch Reaktionen unter Si-C-Bindungsbeteiligungen hinzu. Dort werden die auch wegen ihrer Elektronentransporteigenschaften interessanten Silacyclopentadiene (Silole) hinsichtlich ihrer Isomerisierung, Dimerisierung und weiteren pericyclischen Reaktivität untersucht. Gegenüber dem verwandten Cyclopentadien zeigen diese eine deutlich erhöhte Reaktivität, was zu verschiedenen Dimerisierungsreaktionen führt, solange keine Abfangreagenzien im Überschuss zugegen sind.
Die moderne Hauptgruppenchemie ermöglicht es Siliciumverbindungen in unterschiedlichen Oxidationsstufen und mit ungewöhnlichen Koordinations- umgebungen zu realisieren: Silane, Silylene, Disilene, Disiline und molekularer Sand (SiO2) können soweit stabilisiert werden, dass eine Charakterisierung gelingt. Ein Verständnis für die Eigenschaften und Reaktivitäten dieser Verbindungen eröffnet Perspektiven zur gezielten Synthese verschiedener Siliciumverbindungen. Industriell sind im wesentlichen zwei Substanzklassen interessant: Perchlorierte Silane, die als Vorstufen für die Abscheidung elementaren Siliciums als Halbleitermaterial Verwendung finden und Organo(Chlor)silane, die wichtige Bausteine für den Aufbau von Silikonen und für Hydrosilylierungsreaktionen darstellen. Im Rahmen dieser Dissertationsschrift wurden mittels quantenchemischer Rechnungen Schlüssel-intermediate für den Aufbau solcher Verbindungen identifiziert und durch Einblicke in den Reaktionsmechanismus das Fundament für ein tiefergehendes Verständnis der dynamischen kovalenten Chemie der Oligosilane gelegt. Dies geschah in enger Zusammenarbeit mit den experimentellen Arbeitsgruppen von Prof. Wagner und Prof. Auner.
Im ersten Teil dieser Arbeit wurde die Hochtemperatur-Komproportionierungsreaktion von gasförmigem Siliciumtetrachlorid und elementarem Silicium untersucht (Chem. Eur. J. 2017, 23, 12399). In einer Gasphasenreaktion entsteht dabei ein perchloriertes Polysilan (PCS) unbekannter Zusammensetzung. Im Ergebnis konnten wir zeigen, dass PCS eine komplexe Mischung verschiedener molekularer perchlorierter Silane darstellt, von denen lediglich cyc-Si5Cl10 experimentell eindeutig charakterisiert werden kann. Ausgehend von Dichlorsilylen als reaktive Spezies in der Gasphase zeigten DFT-Berechnungen, dass durch Silylendimerisierung, Silyleninsertion und eine Reihe von Isomerisierungsreaktionen der Aufbau cyclischer Perchlorsilane mit unterschiedlichem Silylierungsgrad gegenüber dem entsprechenden Aufbau acyclischer Perchlorsilane aus nicht umgesetzten Siliciumtetrachlorid bevorzugt stattfindet. PCS liefert ein 29Si-NMR- Spektrum mit einer verwirrenden Vielzahl verschiedener Signale, die auch anhand quantenchemisch berechneter 29Si-NMR-chemischer Verschiebungen nicht eindeutig zugeordnet werden konnten. Dennoch war eine Einteilung der berechneten Verschiebungen in Bereiche möglich, in denen Verschiebungen für Siliciumatome cyclischer und acyclischer Perchlorsilane mit einer bestimmten formalen Oxidationsstufe zu erwarten sind.
Weiterhin wurde der Chlorid-induzierte Aufbau perchlorierter Silane aus Si2Cl6 untersucht: Der Bildungsmechanismus für die durch Tillmann röntgen- kristallographisch charakterisierten perchlorierten Silikate und dianionischen (silylsubstituierten) Cyclohexasilane wurde in einer DFT-Studie untersucht und Schlüsselintermediate sowie stabile Zwischenstufen identifiziert (Chem. Eur. J. 2014, 20, 9234). Wir konnten zeigen, dass SiCl3– als reaktives Intermediat für die Si–Si Bindungsknüpfung verantwortlich ist. Die experimentell nachgewiesenen Silikate sind, mit einer Ausnahme für die ein anderes Konformer gefunden wurde, identisch mit den theoretisch vorhergesagten lokalen Minima. Sie entstehen durch eine Reihe von reversiblen Additions- und Isomerisierungsreaktionen. Dabei sind die acyclischen Silikate über Gleichgewichtsreaktionen miteinander verknüpft, wobei die berechneten Aktivierungsbarrieren für die Rückreaktion immer etwas höher sind als die Barrieren für den nächsten Aufbauschritt. Im Rahmen dieser Gleichgewichtsreaktionen entsteht nicht nur SiCl3–, sondern es können auch höhere Silanide eliminiert werden, die ab einer Größe von drei Siliciumatomen zu Cyclohexasilanen dimerisieren. Mit der head- to-tail Dimerisierung des bevorzugt gebildeten Silanids erklärt sich zwanglos das Substitutionsmuster aller röntgenkristallographisch charakterisierten zweifach silylsubstituierten Cyclohexasilane. Weiterhin ist es gelungen, den Reaktions- mechanismus für den Chlorid-induzierten Aufbau des dianionischen inversen Sandwichkomplexes [Si6Cl12*2Cl]2– aus HSiCl3 aufzuklären, in dem ebenfalls SiCl3– das Schlüsselintermediat darstellt. Letzteres entsteht durch die Eliminierung von HCl aus dem Chloridaddukt von HSiCl3. Der Reaktionsmechanismus beinhaltet Chlorid- abstraktionen, Hydridabstraktionen, Deprotonierungen, Silanid-Additionen, sowie Silanid-Eliminierungen, die nahezu gleichberechtigt nebeneinander vorkommen. Alle identifizierten Reaktionsschritte münden immer wieder in die Pfade, die bereits für den Aufbau aus Si2Cl6 gefunden wurden.
...