Refine
Document Type
- Doctoral Thesis (4)
- Master's Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Beschleunigung von Elektronen und Protonen (1)
- Betatronstrahlung (1)
- DLA Elektronen (1)
- FLASH Effekt (1)
- Schaum (1)
Institute
- Physik (5)
This Dissertation deals with the development of FAIR-relevant X-ray diagnostics based on the interaction of lasers and particle beams with matter. The associated experimental methods are supposed to be employed in the HIHEX-experiments in the HHT-cave of the GSI Helmholtz Center for Heavy-Ion Research GmbH (GSI) in Phase-0 and in the APPA-cave at the Facility for Antiproton and Ion Research in Darmstadt, Germany.
Diagnostic of high aerial density targets that will be used in FAIR experiments demands intense and highly penetrating X-ray sources. Laser generated well-directe relativistic electron beams that interact with high Z materials is an excellent tool for generation of short-pulse high luminous sources of MeV-gammas.
In pilot experiments carried out at the PHELIX laser system, GSI Darmstadt, relativistic electrons were produced in a long scale plasma of near critical electron density (NCD) by the mechanism of the direct laser acceleration (DLA). Low density polymer foam layers preionised by a well-defined nanosecond laser pulse were used as NCD targets. The analysis of the measured electron spectra showed up to 10- fold increase of the electron "temperature" from T_Hot = 1–2 MeV, measured for the case of the interaction of 1–2 ×10^19 Wcm^(−2) ps-laser pulse with a planar foil, up to 14 MeV for the case when the relativistic laser pulse propagates through the by a ns-pulse preionised foam layer. In this case, up to 80–90 MeV electron energy was registered. An increase of the electron energy was accompanied by a strong increase of the number of relativistic electrons and well-defined directionality of the relativistic electron beam measured to be (12 ±1)° (FWHM). This directionality increases the gamma flux on target by far compared to the soft X-ray sources.
Additionally to laser based active diagnostics, passive techniques involving inherent X-ray fluorescence radiation of projectile and target emitted during heavy-ion target interaction can be used to measure the ion beam distribution on shot. This information is of great importance, since the target size is chosen to be smaller than the beam focus in order to ensure homogeneous heating of the HIHEX-target by the ion beam. High amounts of parasitic radiation and activation of experimental equipment is expected for experiments at the APPA-cave. For this reason, all electronic devices must be placed at a safe distance to the target chamber. In order to transport the signal over a large distance, the X-ray image of the target irradiated by heavy-ions has to be converted into an optical one.
For these purposes, the X-ray Conversion to Optical radiation and Transport (XCOT)-system was developed in the frame of a BMBF-project and commissioned in two beamtimes at the UNILAC, GSI during this work.
In experiments, we observed intense radiation of target atoms (K-shell transitions in Cu at 8–8.3 keV and L-shell transition in Ta) ionised in collisions with heavy ions as well as Doppler-shifted L-shell transitions of Au-projectiles passing through targets. This radiation can be used for monochromatic (dispersive elements like bent crystals) or polychromatic (pinhole) 2D X-ray mapping of the ion beam intensity distribution in the interaction region during the beam-target interaction. We measured the efficiency of the X-ray photon production depending on the target thickness and the number of ions passing through the target. The spatial resolution of the XCOT-system based on the multi-pinhole camera was measured to be (91±17) μm for the image magnification factor M = 2. It was considerably improved by application of a toroidally bent quartz crystal and reached 30 μm at M = 6. This resolution is optimal to image the distribution of a 1mm in diameter ion beam. As next step, the XCOT-system will be tested during the SIS18 beam-time at the HHT-experimental area.
This Ph. D. thesis with the title "Characterisation of laser-driven radiation beams: Gamma-ray dosimetry and Monte Carlo simulations of optimised target geometry for record-breaking efficiency of MeV gamma-sources" is dedicated to the study of the acceleration of electrons by intense sub-picosecond laser pulses propagating in a sub-millimeter plasma with near-critical electron density (NCD) and resulting generation of the gamma bremsstrahlung and positrons in the targets of different materials and thickness.
Laser-driven particle acceleration is an area of increasing scientific interest since the recent development of short pulse, high-intensity laser systems. The interaction of intense high-energy, short-pulse lasers with solid targets leads to the production of high-energy electrons in the relativistic laser intensity regime of more than 1018 W /cm2. These electrons play the leading role in the first stage of the interaction of laser with matter, which leads to the creation of laser sources of particles and radiation. Therefore, the optimisation of the electron beam parameters in the direction of increasing the effective temperature and beam charge, together with a slight divergence, plays a decisive role, especially for further detection and characterisation of laser-driven photon and positron beams.
In the context of this work, experiments were carried out at the PHELIX laser system (Petawatt High-Energy Laser for Heavy Ion eXperiments) at GSI Helmholtz Center for Heavy-Ion Research GmbH in Darmstadt, Germany. This thesis presents a thermoluminescence dosimetry (TLD) based method for the measurement of bremsstrahlung spectra in the energy range from 30 keV to 100 MeV. The results of the TLD measurements reinforced the observed tendency towards the strong increase of the mean electron energy and number of super-ponderomotive electrons. In the case of laser interaction with long-scale NCD-plasmas, the dose caused by the gamma-radiation measured in the direction of the laser pulse propagation showed a 1000-fold increase compared to the high contrast shots onto plane foils and doses measured perpendicular to the laser propagation direction for all used combinations of targets and laser parameters.
In this thesis I present novel characterisation method using a combination of TLD measurements and Monte Carlo FLUKA simulations applicable to laser-driven beams. The thermoluminescence detector-based spectrometry method for simultaneous detection of electrons and photons from relativistic laser-induced plasmas initially developed by Behrens et al. (Behrens et al., 2003) and further applied in experiments at PHELIX laser (Horst et al., 2015) delivered good spectral information from keV energies up to some MeV, but as it was presented in (Horst et al., 2015) this method was not really suitable to resolve the content of photon spectra above 10 MeV because of the dominant presence of electrons. Therefore, I created new evaluation method of the incident electron spectra from the readings of TLDs. For this purpose, by means of MatLab programming language an unfolding algorithm was written. It was based on a sequential enumeration of matching data series of the dose values measured by the dosimeters and calculated with of FLUKA-simulations. The significant advantage of this method is the ability to obtain the spectrum of incident electrons in the low energy range from 1 keV, which is very difficult to measure reliably using traditional electron spectrometers.
The results of the evaluation of the effective temperature of super-ponderomotive electrons retrieved from the measured TLD-doses by means of the Monte-Carlo simulations demonstrated, that application of low density polymer foam layers irradiated by the relativistic sub-ps laser pulse provided a strong increase of the electron effective temperature from 1.5 - 2 MeV in the case of the relativistic laser interaction with a metallic foil up to 13 MeV for the laser shots onto the pre-ionized foam and more than 10 times higher charge carried by relativistic electrons.
The progressive simulation method of whole electron spectra described with two -temperatures Maxwellian distribution function has been developed and the results of dose simulations were compared with the acquired experimental data. The advanced feature of this method, which distinguishes it from the results of the simulation of the photon spectrum using the interaction with the target of mono-energetic electron beams (Nilgün Demir, 2013; Nilgün Demir, 2019) or the initial electron spectrum expressed as a function of one electron temperature (Fiorini, 2012), is the ability to simulate the initial electron spectrum described by the Maxwellian distribution function with two temperatures.
The important objective of this thesis was dedicated to the study and characterisation of laser-driven photon beams. In addition to this, the positron beams were evaluated. The investigation of bremsstrahlung photons and positrons spectra from high Z targets by varying the target thickness from 10 µm to 4 mm in simulated models of the interactions of electron spectra with Maxwellian distribution functions allowed to define an optimal thickness when the fluences of photons and positrons are maximal. Furthermore based on the results of FLUKA simulations the gold material was found to be the most suitable for the future experiments as e − γ target because of its highest bremsstrahlung yield.
Additionally Monte Carlo simulations were performed applying the obtained electron beam parameters from the electron acceleration process in laser-plasma interactions simulated with particle-in-cell (PIC) code for two laser energies of 20 J and 200 J. The corresponding electron spectra were imported into a Monte Carlo code FLUKA to simulate the production process of bremsstrahlung photons and positrons in Au converter. FLUKA simulations showed the record conversion of efficiency in MeV gammas can reach 10%, which reinforces the generation of positrons. The obtained results demonstrate the advantages of long-scale plasmas of near critical density (NCD) to increase the parameters of MeV particles and photon beams generated in relativistic laser-plasma interaction. The efficiency of the laser-driven generation of MeV electrons and photons by application of low-density polymer foams is essentially enhanced.
Im Rahmen dieser Doktorarbeit werden drei Schwerpunkte behandelt: 1) Die hocheffektive Beschleunigung von Elektronen und Protonen durch die Wechselwirkung von relativistischen Laserpulsen mit Schäumen. 2) Die Erzeugung und Messung hochintensiver Betatronstrahlung von direkt laserbeschleunigten (DLA-) Elektronen. 3) Die Anwendung von DLA-Elektronen für den biologischen FLASH-Effekt mit einer rekordbrechenden Dosisrate.
Die direkte Laserbeschleunigung von Elektronen wurde durch die Wechselwirkung eines sub-ps-Laserpulses mit einer Intensität von ~ 10^19 W/cm^2 mit einem Plasma nahe kritischer Elektronendichte (NCD) untersucht. Ein sub-mm langes NCD-Plasma wurde durch Erhitzen eines Schaums mit einer niedrigen Dichte mit einem ns-Puls von 10^13-10^14 W/cm^2 erzeugt. Die Experimente wurden an der PHELIX-Anlage (Petawatt Hoch- Energie Laser für Schwerionenexperimente) in den Jahren 2019 – 2023 durchgeführt. Während der Suche nach optimalen Bedingungen für die Beschleunigung von Elektronen und Protonen wurden die Parameter des ns-Pulses variiert und verschiedene Targets verwendet. Es wurde gezeigt, dass das Plasma im Schaum gute Voraussetzungen für die Erzeugung gerichteter, ultrarelativistischer DLA-Elektronen mit Energien von bis zu 100 MeV bietet. Die Elektronen weisen eine Boltzmann-ähnliche Energieverteilung mit einer Temperatur von 10-20 MeV auf.
Optimale Bedingungen für eine effektive Beschleunigung von DLA-Elektronen wurden bei der Kombination eines CHO-Schaums mit einer Dichte von 2 mg/cm3 und einer Dicke von 300-500 µm mit einer Metallfolie erreicht. Die Gesamtladung der detektierten Elektronen mit Energien über 1,5 MeV erreichte 0,5-1 µC mit der Umwandlungseffizienz der Laserenergie von ~ 20-30%.
Außerdem wird die Beschleunigung von Protonen durch DLA-Elektronen anders verursacht als bei typischer Target Normal Sheath Acceleration (TNSA). Für die Untersuchung der lokalen Protonenenergieverteilung wurden Magnetspektrometer unter verschiedenen Winkeln zur Laserachse verwendet. Dafür wurde eine Filtermethode entwickelt, welche es ermöglicht, Spektren von Protonen mit Energien von bis zu 100 MeV zu rekonstruieren. Es wurde gezeigt, dass am PHELIX durch die Kombination von einem ~ 300-400 µm dicken CHO-Schaum mit einer Dichte von 2 mg/cm^3 und einer 10 µm dicken Au-Folie bei einer Intensität des sub-ps-Pulses von ~ 10^19 W/cm^2 und unter Verwendung eines optimierten ns-Vorpulses eine optimale Protonenbeschleunigung erreicht wurde. Es wurde ein TNSA-ähnliches Regime mit einer maximalen Cut-off-Energie von 34±0,5 MeV beobachtet. Im Vergleich dazu wurde bei der typischen TNSA unter Verwendung einer 10 µm dicken Au-Folie als Target und derselben Laserintensität eine maximale Cut-off-Energie von 24±0,5 MeV gemessen. Darüber hinaus beobachteten wir einen sehr schwachen Abfall der Protonenanzahl in Abhängigkeit von der Protonenenergie (anders als bei der typischen TNSA) und eine sehr regelmäßige Protonenstrahlverteilung in einem breiten Winkelbereich bis zu hohen Energien. Dies könnte zur Verbesserung der Qualität der Protonenradiographie von Plasmafeldern genutzt werden.
Beim DLA-Prozess (im NCD-Plasma) entsteht Betatronstrahlung durch die Oszillationen von Elektronen in quasi-statischen elektrischen und magnetischen Feldern des Plasmakanals. Um diese Strahlung zu untersuchen, wurde ein neues modifiziertes Magnetspektrometer (X-MS) konstruiert. Das X-MS ermöglicht die 1D-Auflösung mehrerer Quellen. Dank dieser Spezifikation war es möglich, Betatronstrahlung von Bremsstrahlung der ponderomotorischen Elektronen im Metallhalter zu trennen und zu messen.
Im Experiment mit einem CHO-Schaum mit einer Dichte von 2 mg/cm^3 und einer Dicke von ~ 800 µm als Target wurde die von den optimierten DLA-Elektronen erzeugte Betatronstrahlung gemessen. Bei einer Peak-Intensität des dreieckigen ns-Pulses von ~ 3·10^13 W/cm^2 und des sub-ps-Pulses von ~ 10^19 W/cm^2, welcher 4±0,5 ns gegenüber dem ns-Puls verzögert war, betrug der Halbwinkel im FWHM-Bereich des Elektronenstrahls 17±2°. Unter diesen Bedingungen war die Betatronstrahlung mit einem Halbwinkel im FWHM-Bereich von 11±2° für die Photonen mit Energien über 10 keV ebenfalls gerichtet. Die Photonenanzahl mit Energien über 10 keV wurde auf etwa 3·10^10 / 3·10^11 (gerichtete Photonen / Photonen im Halbraum entlang der Laserstrahlrichtung) abgeschätzt. Die maximale Photonenanzahl pro Raumwinkel betrug ~2·10^11 photons/sr. Die Brillanz der registrierten Betatronstrahlung erreichte ~ 2·10^20 photons/s/mm^2/mrad^2/(0.1% BW) bei 10 keV.
Die Verwendung eines Hochstromstrahls aus DLA-Elektronen für die FLASH-Strahlentherapie ermöglicht das Erreichen einer Dosis von bis zu 50-70 Gy während eines sub-ps-Laserpulses. Im Jahr 2021, während der P213-Strahlzeit am PHELIX wurde der Sauerstoffkonzentrationsabfall bei der Bestrahlung von Medien (Wasser und andere biologische Medien) mit DLA-Elektronen in Abhängigkeit von der Dosis untersucht. Die Strahlendosis wurde hierbei indirekt gemessen. Hierfür wurde eine Rekonstruktionsmethode entwickelt, die es ermöglicht, die Dosis innerhalb des „Wasser-Containers“ auf Basis von Messungen außerhalb des Containers mit einem untersuchten Medium zu ermitteln. Es wurde eine gute Übereinstimmung zwischen dem Experiment und einer Monte-Carlo-Simulation für Wasser gezeigt. Die registrierte Dosisrate erreichte einen Rekordwert von ~ 70 TGy/s.