Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (1)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Nukleosynthese (2)
- Activation (1)
- Beschleuniger (1)
- Chopper (1)
- Coulombdissoziation (1)
- Fluka (1)
- Gabor lens (1)
- Gammakalorimeter (1)
- Ion Beam (1)
- Kupfer-63 (1)
Institute
- Physik (23)
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 to 10^20 W/cm^2. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2)% when the targets have a thickness between 12 to 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.
The Large Hadron Collider (LHC) is the biggest and most powerful particle accelerator in the world, designed to collide two proton beams with particle momentum of 7 TeV/c each. The stored energy of 362MJ in each beam is sufficient to melt 500 kg of copper or to evaporate about 300 litre of water. An accidental release of even a small fraction of the beam energy can cause severe damage to accelerator equipment. Reliable machine protection systems are necessary to safely operate the accelerator complex. To design a machine protection system, it is essential to know the damage potential of the stored beam and the consequences in case of a failure. One (catastrophic) failure would be, if the entire beam is lost in the aperture due to a problem with the beam dumping system.
This thesis presents the simulation studies, results of a benchmarking experiment, and detailed target investigation, for this failure case. In the experiment, solid copper cylinders were irradiated with the 440GeV proton beam delivered by the Super Proton Synchrotron (SPS) at the High Radiation to Materials (HiRadMat) facility at CERN. The experiment confirmed the existence of the so-called hydrodynamic tunneling phenomenon for the first time. Detailed numerical simulations for particle-matter interaction with FLUKA, and with the two-dimensional hydrodynamic code, BIG2, were carried out. Excellent agreement was found between the experimental and the simulation results that validate predictions for the 7TeV beam of the LHC. The hydrodynamic tunneling effect is of considerable importance for the design of machine protection systems for accelerators with high stored beam energy. In addition, this thesis presents the first studies of the damage potential with beam parameters of the Future Circular Collider (FCC).
To detect beam losses due to fast failures it is essential to have fast beam instrumentation. Diamond based particle detectors are able to detect beam losses within a nanosecond time scale. Specially designed diamond detectors were used in the experiment mentioned above. Their efficiency and response has been studied for the first time over 5 orders of bunch intensity with electrons at the Beam Test Facility (BTF) at INFN, Frascati, Italy. The results of these measurements are discussed in this thesis. Furthermore an overview of the applications of diamond based particle detectors in damage experiments and for LHC operation is presented.
Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction
(2011)
The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt [1]. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos(θ) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos(θ) magnets providing resonant slow extraction.
Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant.
The field quality in superconducting cos(θ) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos(θ) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their effects have been taken into account in the optimization algorithm. As a result a compensation scheme has been proposed, in which time-dependent gradients in the sextupoles counteract the decay of the sextupole field errors in the dipole magnets during the slow extraction. For the limits where the compensation was no longer possible, tolerances to the magnet field errors have been determined.
Die Druckmessung in Tieftemperatur-Vakuumsystemen stellt ein großes messtechnisches Problem dar. Für die in solchen Systemen auftretenden Drücke im UHV und XHV-Bereich werden meist Ionisationsmanometer vom Glühkathodentyp zur Druckmessung verwendet. Diese haben jedoch den entscheidenden Nachteil, dass durch die Verwendung einer Glühkathode zur Erzeugung freier Elektronen eine große Wärmelast in das System eingekoppelt wird. Dies führt zu einer Störung des thermischen Gleichgewichts und damit zu einer Verfälschung der Druckmessung. Weiterhin muss diese zusätzliche Wärmelast abgeführt werden, was vor allem bei kryogenen Vakuumsystemen einen erheblichen Mehraufwand darstellt.
Um dieses Problem zu umgehen, wurde ein Ionisationsmanometer entwickelt, dessen Glühkathode durch eine kalte Elektronenquelle ersetzt wurde. Der verwendete Feldemitter, eine kommerziell erhältliche CNT-Kathode, wurde gegenüber dem Anodengitter einer Extraktormessröhre positioniert. Mit diesem Aufbau wurden die Charakteristika von Kathode und Messröhre sowohl bei Raumtemperatur als auch unter kryogenen Vakuumbedingungen untersucht.
Dabei konnte gezeigt werden, dass die modifizierte Messröhre auch bei einer Umgebungstemperatur von 6 K ohne funktionale Einbußen betrieben werden kann und der gemessene Ionenstrom über mehrere Dekaden linear mit dem von einer Extraktormessröhre mit Glühkathode gemessenen Referenzdruck ansteigt. Des Weiteren konnte gezeigt werden, dass der Extraktor mit CNT-Kathode unter diesen kryogenen Bedingungen deutlich sensitiver auf geringe Druckschwankungen reagiert als sein Äquivalent mit Glühkathode.
In der nuklearen Astrophysik sind Experimente mit hochgeladenen Radionukliden von großer Bedeutung. Diese exotischen Nuklide können in Schwerionenbeschleunigeranlagen hergestellt und in Speicherringen gespeichert werden. Momentan existieren weltweit zwei Anlagen, die solche Experimente ermöglichen: das GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt und das Institut für moderne Physik (IMP) in Lanzhou, China. Da die Ausbeute dieser Nuklide gering ist, werden zerstörungsfreie Nachweismethoden in den Speicherringen verwendet. Diese machen von den Methoden der Spektralanalyse Gebrauch. Nicht nur die geringe Ausbeute, sondern auch die kurze Lebensdauer dieser Nuklide stellen hohe Anforderungen an die Sensitivität und Geschwindigkeit dieser Detektoren.
Eine übliche Methode ist die Verwendung kapazitiver Schottky-Sonden. Eine solche Sonde ist seit 1991 an der GSI im Speicherring ESR im Einsatz. Um die Empfindlichkeit zu erhöhen, kann man Mikrowellenkavitäten als resonante Pickups verwenden. Die von den Teilchen induzierten elektromagnetischen Felder können resonante Moden im Resonator anregen. Die Geometrie des Pickups und das verwendete Material spielen eine wesentliche Rolle in der Gestaltung der Feldbilder. Die resultierenden Signale, auch Schottky Signale genannt, werden mittels einer Antenne ausgekoppelt und anschliessend an einen Spektrumanalysator angeschlossen. Für die Analyse der gespeicherten Daten können verschiedene Methoden der Spektralschätzung wie z.B. das Multi-Taper angewendet werden. Nachdem eine externe Kalibrierung durchgeführt worden ist, kann das Pickup auch als ein Stromsensor verwendet werden.
Diese Arbeit befasst sich mit der Theorie, dem Aufbau und ersten Anwendungen eines neuen resonanten Pickups, das im Jahr 2010 in den Speicherring ESR eingebaut und in mehreren Experimenten erfolgreich eingesetzt wurde. Ein ähnliches Pickup wurde im Jahr 2011 in den CSRe im IMP Lanzhou eingebaut. Einzelne Schwerionen mit 400 MeV pro Nukleon wurden erfolgreich mit dem GSI-Pickup nachgewiesen. Das Pickup wird regelmässig in Speicherringexperimenten eingesetzt. Ähnliche Experimente sind für CSRe in Lanzhou geplant.
Im Rahmen des FAIR Projektes wurde ein neuartiger Prototyp eines nicht strahlzerstörenden Bunch Struktur Monitors (BSM) am GSI UNILAC entwickelt. Ziel ist es, ein zuverlässiges Diagnosegerät zu entwickeln, welches die longitudinale Struktur der Ionenbunche innerhalb des LINACs untersuchen kann. Notwendig ist hierbei eine effektive Zeitauflösung deutlich unter 100 ps, bei möglichst wenigen Makropuls Mittelungen. Nach der erfolgreichen Inbetriebnahme soll der BSM Prototyp dazu dienen, die Umsetzbarkeit eines weiteren nichtinvasiven Geräts für den geplanten Proton-LINAC bei FAIR mit einer notwendigen Zeitauflösung von 10 ps zu beurteilen.
Die numerische Simulation von Materialien, welche dem Hochstrom-Ionenstrahl ausgesetzt sind, zeigten einen sehr hohen thermischen Stress. Daher wurde der Ansatz eines nicht strahlzerstörenden Diagnosegerätes verfolgt. Das Design beruht auf der Erzeugung von Sekundärelektronen durch Strahl-Restgas Kollisionen im Strahlrohr. Durch das Anlegen eines homogenen Hochspannungspotentials von bis zu -31 kV, wird ein Elektronenstrahl erzeugt, welcher die zeitliche Struktur des Ionenbunches trägt. Die zeitliche Information des Elektronenstrahles wird beim Durchfliegen eines HF-Ablenkers, welcher resonant an die 36 MHz des Beschleunigers gekoppelt ist, in eine räumliche Intensitätsverteilung umgewandelt. Anschließend wird die Elektronenverteilung auf einem bildgebenden MCP-Phosphor-Detektor durch eine CCD-Kamera detektiert und in die Bunch Struktur überführt.
Intensive Untersuchungen der BSM Eigenschaften ergaben eine höchste Auflösung von 37 ±6.3 ps bei gleichzeitig akzeptabler Intensität auf dem MCP-Detektor. Unter anderem wurden auch stabile Einzelschussmessungen durchgeführt, welche für die Profilmessung nur einen einzelnen Makropuls benötigten, statt über typischerweise 8-32 Pulse zu mitteln.
Durch die systematische Manipulation der Bunchlänge durch einen Rebuncher sind nicht gaußförmige Profile von 280 ps bis 650 ps detektiert worden, welche als Studie für eine Emittanzbestimmung genutzt worden sind. In Abhängigkeit des Analyseverfahrens sind Werte von εGauss = 1.42 ±0.14 keV/u ns bis εSD = 3.03 ±0.33 keV/u ns für die Emittanz bestimmt worden.
Des Weiteren ist ein Finite-Elemente Modell erstellt worden, um die Zeitstruktur der Sekundärelektronen innerhalb des elektronenoptischen Systems zu bestimmen. Für das Setup mit der höchsten Auflösung von 37 ps ergab sich eine zusätzliche Zeitverbreiterung von 5.6 ps, welche nur geringfügig die experimentell bestimmte Auflösung verschlechtert.
Der nicht strahlzerstörende BSM liefert eine ausreichend hohe zeitliche Auflösung für detailreiche Untersuchung der longitudinalen Bunchstruktur, ohne negative Einflüsse auf den Ionenstrahl auszuüben. Fortgeschrittene Messungen, wie longitudinale Emittanzbestimmung und Makropulsanalysen, sind möglich und werden dazu beitragen, die LINAC Strukturen besser zu verstehen und weiter zu optimieren.
Obwohl bei der Umsetzung des Arbeitsprinzips für den geplanten Proton-LINAC die veränderten Strahlparameter berücksichtigt werden müssen, zeigen die Ergebnisse, wie die Zeitstrukturuntersuchung und die erreichte Phasenauflösung von 0.5° bei 36 MHz, dass zeitliche Auflösungen bei Aufrechterhaltung der Phasenauflösung von bis zu 10 ps für einen neuen BSM Prototypen möglich sind.
Der langsame Neutroneneinfang-Prozess (s-Prozess) ist für die Erzeugung von rund der Hälfte der Elemente zwischen Eisen und Blei verantwortlich. Sein Reaktionspfad enthält entlang des Stabilitätstals einige Verzweigungspunkte an instabilen Isotopen, deren Neutroneneinfangquerschnitte die Produktion schwererer Elemente und deren Isotopen-Verhältnisse beeinflussen. Kennt man ihre Zerfalls- und Neutroneneinfangraten unter den angenommenen stellaren Bedingungen ist es möglich, Rückschlüsse auf die physikalischen Umstände während des s-Prozesses zu ziehen. Einer dieser Verzweigungspunkte ist 63-Ni. Die experimentelle Bestimmung des differentiellen Wirkungsquerschnittes für den Neutroneneinfang an diesem Isotop ist das primäre Ergebnis der vorliegenden Arbeit. Der 63-Ni(n,gamma)- Wirkungsquerschnitt hat Einfluss auf die Häufigkeiten von 64-Ni, die Kupfer- und die Zink-Isotope. Die Sensitivität der Produktion dieser Nuklide in s-Prozess-Szenarien wurde ebenfalls im Rahmen dieser Arbeit anhand von Simulationen des entsprechenden Nukleosynthesenetzwerkes untersucht. Zudem wurde die Datenlage für s-Prozess-Modelle mit einer Flugzeit-Messung des 63-Cu(n,gamma)-Wirkungsquerschnitts erweitert.
Die beiden Experimente zur Querschnittsbestimmung von 63-Ni und 63-Cu fanden am Los Alamos Neutron Science Center in New Mexico, USA statt. Eine aus angereichertem 62-Ni hergestellte 63-Ni-Probe wurde im Rahmen einer Flugzeit-Messung gepulst mit Neutronen bestrahlt. Der Nachweis der prompten Gammastrahlung aufgrund von Neutroneneinfängen erfolgte mit dem 4π-BaF_2-Detektor DANCE. Die kalorimetrische Messung macht den Q-Wert der Reaktion für jedes Einfangereignis zugänglich und erlaubt die Unterscheidung von Ereignissen verschiedener Isotope. Es konnte gezeigt werden, dass diese Methode die Bestimmung von Querschnitten selbst mit Proben ermöglicht, die nur zu einem Bruchteil aus dem zu untersuchenden Isotop bestehen. Der 63-Ni(n,gamma)-Wirkungsquerschnitt wurde für den Energiebereich von 40 eV bis 500 keV mit einer maximalen Unsicherheit von 15% bestimmt. Es zeigte sich, dass theoretische Abschätzungen den Querschnitt bislang um etwa einen Faktor 2 unterschätzten. In demselben Energiebereich konnte der 63-Cu(n,gamma)-Wirkungsquerschnitt mit einer maximalen Unsicherheit von 8% vermessen werden.
The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the corresponding boundary conditions at FAIR. Larger beam tube diameters, higher radiation resistivity and UHV requirements are of particular importance for the cryostat. At the same time these parameters affect the CCC superconducting magnetic shielding, which again has significant influence on the current resolution of the system. In order to investigate the influence of the geometry of the superconducting magnetic shield on different magnetic field components and to optimize the attenuation, FEM simulations have been performed. Based on the results of these calculations, modifications of the shield geometry for optimum damping behavior are proposed and discussed in the thesis.
Development of the timing system for the Bunch-to-Bucket transfer between the FAIR accelerators
(2017)
The FAIR project is aiming at providing high-energy beams of ions of all elements from hydrogen to uranium, antiprotons and rare isotopes with high intensities. The existing accelerator facility of GSI and the future FAIR facility employ a variety of circular accelerators like heavy ion synchrotrons (SIS18 and SIS100) and storage rings (ESR, CRYRING, CR and HESR) for the preparation of secondary beams and experiments. Bunches are required to be transferred into rf buckets among GSI and FAIR ring accelerators for different purposes. Without the proper transfer, the beam will be subject to various beam quality deterioration and even to beam losses. Hence, the proper bunch-to-bucket (B2B) transfer between two rings is of great importance for FAIR and is the topic, which has been investigated in this thesis.
These circular accelerators of GSI and FAIR have different ratios in their circumference. For example, the circumference ratio between SIS100 and SIS18 is an integer and between SIS18 and ESR is close to an integer and between CR and HESR is far away from an integer. The ring accelerators are connected via a complicated system of beam transfer lines, targets for the secondary particle production and the high energy separators mentioned above. For FAIR, not only the primary beams are required to be transferred from one ring to another, but also the secondary beams, e.g. the antiproton or rare isotope beams produced by the antiproton (pbar) target, the fragment separator (FRS) or the superconducting fragment separator (Super-FRS). An important topic for this system of accelerators is the proper transfer of beam between the different circular accelerators. Bunches of one ring must be transferred into buckets of another ring within an upper bound time constraint (e.g. 10 ms for most FAIR use cases) and with an acceptable B2B injection center mismatch +-1 degree for most FAIR use cases). Hence, a flexible FAIR B2B transfer system is required to realize the different complex B2B transfers between the FAIR rings in the future. In the focus of the system development and of this thesis is the transfer from SIS18 to SIS100, which can be tested at GSI on the transfer from SIS18 to ESR and from ESR to CRYRING. The system is based on the existing technical basis at GSI, the low-level radio frequency (LLRF) system and the FAIR control system. It coordinates with the Machine Protection System (MPS), which protects SIS100 and subsequent accelerators and experiments from damage caused by high intensity primary beams in case of malfunctioning. Besides, it indicates the beam status and the actual beam injection time for the beam instrumentation and diagnostics.
The conceptual realization of the FAIR B2B transfer system was introduced in this thesis for the first time. It achieves the most FAIR B2B transfers with a tolerable B2B injection center mismatch (e.g. +-1 degree) and within an upper bound time (e.g. 10 ms). It supports two synchronization methods, the phase shift and frequency beating methods. It is flexible to support the beam transfer between two rings with different ratios in their circumference and several B2B transfers running at the same time, e.g. the B2B transfer from SIS18 to SIS100 and at the same time the B2B transfer from ESR to CRYRING. It is capable to transfer beam of different ion species from one machine cycle to another and to transfer beams between two rings via the FRS, the pbar target and the Super-FRS. It allows various complex bucket filling pattern. In addition, it coordinates with the MPS system, which protects the SIS100 and subsequent accelerators or experiments from beam induced damage.
A list of criteria for the preservation of beam qualities during the rf frequency modulation of the phase shift method was analyzed. As an example the beam reaction on three different rf frequency modulation examples were analyzed for SIS18 beams. According to the beam dynamic analysis, there is a maximum value for the rf frequency modulation. The first derivative of the rf frequency modulation must be continuous and small enough and the second derivative must be small enough.
In addition to the analysis from the viewpoint of beam dynamics, two test setups were built. The first test setup was used to characterize the FAIR timing network – white rabbit network for the B2B transfer. In the second test setup, the firmware of the FAIR B2B transfer system was evaluated, which was running on the soft CPU, LatticeMico32, of the Scalable Control Unit - the FAIR standard Front End Controller. Besides, the boundary conditions of the different trigger scenarios of the SIS18 extraction and SIS100 injection kicker magnets were investigated. Finally, the application of the FAIR B2B transfer system for all FAIR use cases was demonstrated.
The dissertation plays a significant important role for the realization of the FAIR B2B transfer system and the further practical application of the system to all FAIR use cases.
Entwicklung und Inbetriebnahme zweier supraleitender 217 MHz CH-Strukturen für das HELIAC-Projekt
(2019)
Im Rahmen der hier vorgestellten Arbeit wurden zwei baugleiche CH-Strukturen für das im Bau befindliche HELIAC-Projekt (HELmholtz LInear ACcelerator) entwickelt und während der Produktion bis hin zu den finalen Kalttests bei 4.2 K begleitet. Zusammen mit der CH-Struktur des Demonstrator-Projektes ermöglichen sie die vollständige Inbetriebnahme und den ersten Strahltest des ersten Kryomoduls des HELIAC's, welcher aus vier Kryomodulen mit insgesamt 12 CH-Strukturen besteht. Im Vergleich zu bisherigen CH-Strukturen wurde das Design der Kavitäten im Rahmen dieser Dissertation grundlegend überarbeitet und optimiert. Durch die Entfernung der Girder und die konisch geformten Endkappen konnte die Stabilität der neuen CH-Strukturen deutlich erhöht werden, sodass die Drucksensitivität im Vergleich zur ersten CH-Kavität des Demonstrator-Projektes um ca. 80% reduziert werden konnte. Durch die nach außen gezogenen Lamellen der dynamischen Tuner konnte die mechanische Spannung sowie die benötigte Anzahl an Lamellen und damit das Risiko für das Auftreten von Multipacting reduziert werden. Das verringerte Risiko für Multipacting durch die entsprechenden Optimierungen der Kavitäten konnte durch die dauerhafte Überwindung aller Multipacting-Barrieren in den späteren Messungen verifiziert werden. Die Optimierung beider Kavitäten erfolgte dabei mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench.
Beide Kavitäten wurden von der Firma Research Instruments (RI) gefertigt und während der gesamten Konstruktion durch diverse Zwischenmessungen überwacht. Nach jedem einzelnen Produktionsschritt wurden alle Einflüsse auf die Resonanzfrequenz so präzise ermittelt, dass die Zielfrequenz bei 4.2 K auf mehr als 1‰ genau erreicht werden konnte. Sowohl während der Zwischenmessungen als auch während den finalen Messungen bei 4.2 K wurden automatisierte Aufzeichnungsroutinen verwendet, welche eine sekundengenaue Auslese der Messdaten und damit eine hohe Messgenauigkeit ermöglichten. Im Hinblick auf die Komplexität der CH-Strukturen sind die geringen Abweichungen von der Zielfrequenz der direkte Beweis dafür, wie erfolgreich und präzise die Auswertungen und daraus folgenden Abschätzungen der einzelnen Zwischenmessungen waren. Insgesamt konnten bis auf die mechanischen Eigenmoden alle Ergebnisse der Simulationen durch entsprechende Messungen in guter Näherung verifiziert werden. In jeder Kavität wurden zwei dynamische Tuner verbaut, welche statische und dynamische Frequenzabweichungen im späteren Betrieb ausgleichen können. Die dynamischen Tuner wurden hinsichtlich ihrer mechanischen Stabilität und der erzeugbaren Frequenzänderung sowie ihrer mechanischen Eigenfrequenzen ausführlich mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench untersucht und optimiert. Um die Ergebnisse der Simulationen zu überprüfen wurden ein eigens dafür entworfener und in der Werkstatt des Instituts für Angewandte Physik gefertigter Messaufbau verwendet, welcher es ermöglichte alle entscheidenden Eigenschaften der dynamischen Tuner präzise zu vermessen. Insgesamt stellen die ausführlichen Messungen mit Hilfe des entworfenen Aufbaus die bisher umfassendsten Messungen dynamischer Balgtuner innerhalb supraleitender CH-Strukturen dar und zeigen, mit welchen Abweichungen zwischen Simulationen und Messungen bei zukünftigen Kavitäten zu rechnen ist. Auch die Feldverteilung entlang der Strahlachse wurde während der Produktion der Kavitäten mit Hilfe der Störkörpermessmethode überprüft. Die dadurch ermittelten Werte stimmten mit einer maximalen Diskrepanz von 9% sehr gut mit den Simulationen überein.
Um eine möglichst gute Oberflächenqualität zu garantieren wurden an der Innenfläche beider Strukturen mindestens 200µm mit einer Mischung aus Fluss-, Salpeter und Phosphorsäure in mehreren Schritten abgetragen. Durch das Aufteilen der Behandlung in einzelne Schritte konnte der Einfluss der Oberflächenbehandlung auf die Resonanzfrequenz besser abgeschätzt und vorausgesehen werden. Dies führte, zusammen mit den Messungen zur Bestimmung der Drucksensitivität und der thermischen Kontraktion der Kavität beim Abkühlen, zu der hohen Übereinstimmung der gemessenen finalen Resonanzfrequenz mit der Zielfrequenz.
Die abschließenden Kalttests der beiden Kavitäten, ohne Heliummantel, wurden am Institut für Angewandte Physik der Johann Wolfgang Goethe Universität in einem vertikalen Bad-Kryostaten durchgeführt. Die erste CH-Struktur konnte erfolgreich bis zu einem maximalen Feldgradienten von 9.2 MV/m getestet werden, was einer effektiven Spannung von 3.37 MV entspricht. Die unbelastete Güte fiel dabei von anfangs 1.08 ∙ 109 auf 2.6 ∙ 108 ab. Die Vorgaben des HELIAC-Projektes liegen bei einem Beschleunigungsgradienten von 5.5 MV/m mit einer unbelasteten Güte von mindestens 3 ∙ 108. Diese Werte wurden von der ersten Kavität deutlich übertroffen, sodass sie für den Betrieb innerhalb des ersten Kryomoduls uneingeschränkt verwendet werden kann.
Bei der zweiten Kavität trat beim Abkühlen auf 4.2 K ein Vakuumleck auf, welches unter Raumtemperatur nicht detektierbar war. Aufgrund der schlechten Vakuumbedingungen innerhalb der Kavität konnten somit keine Messungen hinsichtlich der Leistungsfähigkeit durchgeführt werden, solange das Kaltleck vorhanden war. Ein erneuter Kalttest der Kavität nach Beseitigung des Lecks konnte zeitlich nicht mehr im Rahmen dieser Arbeit durchgeführt werden und ist aus diesem Grund Gegenstand nachfolgender Untersuchungen.
Insgesamt stellen die Entwicklungen, Untersuchungen und Messungen im Rahmen der hier vorgestellten Dissertation einen entscheidenden Schritt zur Inbetriebnahme des ersten Kryomoduls des HELIAC's sowie der Entwicklung weiterer CH-Kavitäten dar. Das überarbeitete Design der CH-Strukturen hat sich als erfolgreich erwiesen, weswegen es als Ausgangspunkt für die Entwicklung aller nachfolgenden CH-Strukturen des HELIAC, bis hin zur Fertigstellung des kompletten Beschleunigers, verwendet wird.