Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (1)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Nukleosynthese (2)
- Activation (1)
- Beschleuniger (1)
- Chopper (1)
- Coulombdissoziation (1)
- Fluka (1)
- Gabor lens (1)
- Gammakalorimeter (1)
- Ion Beam (1)
- Kupfer-63 (1)
Institute
- Physik (23)
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 to 10^20 W/cm^2. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2)% when the targets have a thickness between 12 to 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.
The Large Hadron Collider (LHC) is the biggest and most powerful particle accelerator in the world, designed to collide two proton beams with particle momentum of 7 TeV/c each. The stored energy of 362MJ in each beam is sufficient to melt 500 kg of copper or to evaporate about 300 litre of water. An accidental release of even a small fraction of the beam energy can cause severe damage to accelerator equipment. Reliable machine protection systems are necessary to safely operate the accelerator complex. To design a machine protection system, it is essential to know the damage potential of the stored beam and the consequences in case of a failure. One (catastrophic) failure would be, if the entire beam is lost in the aperture due to a problem with the beam dumping system.
This thesis presents the simulation studies, results of a benchmarking experiment, and detailed target investigation, for this failure case. In the experiment, solid copper cylinders were irradiated with the 440GeV proton beam delivered by the Super Proton Synchrotron (SPS) at the High Radiation to Materials (HiRadMat) facility at CERN. The experiment confirmed the existence of the so-called hydrodynamic tunneling phenomenon for the first time. Detailed numerical simulations for particle-matter interaction with FLUKA, and with the two-dimensional hydrodynamic code, BIG2, were carried out. Excellent agreement was found between the experimental and the simulation results that validate predictions for the 7TeV beam of the LHC. The hydrodynamic tunneling effect is of considerable importance for the design of machine protection systems for accelerators with high stored beam energy. In addition, this thesis presents the first studies of the damage potential with beam parameters of the Future Circular Collider (FCC).
To detect beam losses due to fast failures it is essential to have fast beam instrumentation. Diamond based particle detectors are able to detect beam losses within a nanosecond time scale. Specially designed diamond detectors were used in the experiment mentioned above. Their efficiency and response has been studied for the first time over 5 orders of bunch intensity with electrons at the Beam Test Facility (BTF) at INFN, Frascati, Italy. The results of these measurements are discussed in this thesis. Furthermore an overview of the applications of diamond based particle detectors in damage experiments and for LHC operation is presented.
The elements in the universe are mainly produced by charged-particle fusion reactions and neutron-capture reactions. About 35 proton-rich isotopes, the p-nuclei, cannot be produced via neutron-induced reactions. To date, nucleosynthesis simulations of possible production sites fail to reproduce the p-nuclei abundances observed in the solar system. In particular, the origin of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru is little understood. The nucleosynthesis simulations rely on assumptions about the seed abundance distributions, the nuclear reaction network and the astrophysical environment. This work addressed the nuclear data input.
The key reaction 94Mo(g,n) for the production ratio of the p-nuclei 92Mo and 94Mo was investigated via Coulomb dissociation at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. A beam of 94Mo with an energy of 500 AMeV was directed onto a lead target. The neutron-dissociation reactions following the Coulomb excitation by virtual photons of the electromagnetic field of the target nucleus were investigated. All particles in the incoming and outgoing channels of the reaction were identified and their kinematics were determined in a complex analysis. The systematic uncertainties were analyzed by calculating the cross sections for all possible combinations of the data selection criteria. The integral Coulomb dissociation cross section of the reaction 94Mo(g,n) was determined to be (571 +- 14 (stat) +- 46 (syst) ) mb. The result was compared to the data obtained in a real photon experiment carried out at the Saclay linear accelerator. The ratio of the integral cross sections was found to be 0.63 +- 0.07, which is lower than the expected value of about 0.8.
The nucleosynthesis of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru was investigated in post-processing nucleosynthesis simulations within the NuGrid research platform. The impact of rate uncertainties of the most important production and destruction reactions was studied for a Supernova type II model. It could be shown that the light p-nuclei are mainly produced via neutron-dissociation reactions on heavier nuclei in the isotopic chains, and that the final abundances of these p-nuclei are determined by their main destruction reactions. The nucleosynthesis of 92Mo and 94Mo was also studied in different environments of a Supernova type Ia model. It was concluded that the maximum temperature and the duration of the high temperature phase determine the final abundances of 92Mo and 94Mo.
Am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, wird für die Erweiterung der Forschungsmöglichkeiten am Bau des FAIR Projektes gearbeitet. Hierfür wird unter anderem ein Ringbeschleuniger gebaut (SIS100), der mit 100Tm den bestehenden Ring (SIS18) in magnetischer Steifigkeit ergänzen wird. Um SIS100 an SIS18 anzubinden, wird eine Transferstrecke benötigt, welche den Transfer von Ionen zwischen den Ringen übernimmt. In solchen Transferstrecken werden Quadrupollinsen mit hohen Gradienten benötigt. Ebenso werden für die finale Fokussierung von hochintensiven Strahlpulsen aus Synchrotronen auf Targets Linsen mit hohen Feldgradienten benötigt. Allerdings sind die Pulse nur sehr kurz und das Tastverhältnis bei Synchrotronen sehr klein. Daher sollte ein gepulster Fokussiermagnet entwickelt werden, der den hohen Gradientenanforderungen gerecht wird und sowohl platz- als auch energiesparend ist. Die vorliegende Arbeit befasst sich mit der Auslegung des elektrischen Schaltkreises, der Simulation des Magnetfeldes und der konstruktiven Umsetzung eines solchen gepulsten Quadrupols. Der elektrische Schaltkreis ist so ausgelegt, dass eine hohe Repetitionsrate zur Fokussierung für Teilchenpakete möglich ist. Die Linse wurde aus einer Luftspule ohne Eisenjoch aufgebaut. Die cos(2θ)-Verteilung des Stroms durch die Leiter wurde durch ein Design gesichert, welches den Skin-Effekt berücksichtigt und entsprechend ausgelegte Litzenkabel verwendet. Um die Magnetfeldverteilung des Fokussiermagneten zu untersuchen, wurden statische und transiente Simulationen mit dem Programm CST Mircowave Studio Suite vorgenommen. Zentraler Punkt bei der Neuentwicklung waren die Luftspulen. Um einen linearen Magnetfeldanstieg von der Strahlachse zum Aperturrand zu gewährleisten, muss die Stromverteilung in der Leiterspule so homogen wie möglich sein. Um bei Pulslängen von 170 µsec den Skineffekt zu berücksichtigen, wurde die Leiterspule aus HF-Litzen von je mehreren hundert Einzelleitern zusammengestellt, die jeweils gegeneinander isoliert und in Bündeln miteinander verdrillt sind. Außerdem wurde die Linse mit einer lamellierten Schirmung versehen, um das Magnetfeld effektiv nutzen zu können. Ziel der Auslegung war es, zusammen mit einem zweiten Quadrupol im Duplett einen Strahl mit einer magnetischen Steifigkeit von 11 Tm und einer Bunchlänge von 2µsec auf einen Punkt von 0,5 mm Radius zu fokussieren. Bei dem hierfür angestrebten Gradienten von 76 T/m wird eine maximale Stromamplitude von 400 kA benötigt. Im Rahmen dieser Arbeit wurde die Linse ausgelegt, konstruiert und gebaut. Die Funktionalität wurde untersucht und die Feldqualität wurde vermessen und zeigten die erwarteten Parameter. Bei 26 kA Messstrom wurden im Zentrum des Magneten ein maximaler Gradient von 4,5 T/m und Feldwerte von 0,11 T ermittelt. Somit liegt die Abweichung des gemessenen Gradienten bei ca. 5 %. Die durchgängige Umsetzung der homogenen Verteilung der Leiterbündel in der Luftspule und eine vollständige Kompensation des Skineffekts konnten nicht nachgewiesen werden. Jedoch konnte der Einfluss der Kabelzuleitung des Quadrupols auf den Magnetfeldverlauf in den Simulationen und Messungen nachgewiesen werden. Weiterhin wurde für den energieeffizienten Einsatz im Transferkanal zwischen SIS18 und SIS100 ein Energierückgewinnungsschaltkreis entwickelt, der eine Ersparnis von 84 % der Betriebsleistung ermöglicht.
Als Plasmafenster wird ein Aufbau bezeichnet, welcher zwei Bereiche unterschiedlicher Drücke voneinander trennt, Teilchenstrahlen jedoch nahezu verlustfrei passieren lässt.
Diese Anwendung einer kaskadierten Bogenentladung wurde von A. Hershcovitch vorgeschlagen.
Im Rahmen dieser Arbeit wurde ein solches Plasmafenster mit Kanaldurchmessern von 3.3 mm und 5.0 mm aufgebaut sowie die erreichbaren Druckunterschiede untersucht.
Auf der Bestimmung des Einflusses der Plasmaparametern und deren Abhängigkeit von äußeren Parametern auf die erreichbare Trennung der Druckbereiche liegt der Schwerpunkt dieser Arbeit.
Ein ausgeklügeltes optisches System ermöglicht die simultane Aufnahme mehrerer Spektren entlang der Entladungsachse, welche die gleichzeitige Bestimmung der Elektronendichte und -temperatur ermöglichen.
Für die Analyse der Plamaparameter aus über 6700 Spektren wird eine selbst entwickelte Software genutzt.
Die gemessenen Elektronendichte reicht von 8e14 cm^-3 bis zu 4.2e16 cm^-3.
Sie skaliert sowohl mit der Entladungsstromstärke als auch dem Teilchenfluss.
Für die Elektronentemperatur stellen sich Werte zwischen 1 eV und 1.3 eV ein, sie variiert nur leicht mit der Stromstärke und dem Teilchenfluss.
Wie später gezeigt wird, stimmen die hier präsentierten Daten gut mit Ergebnissen aus Simulationen und Experimenten anderer Arbeitsgruppen überein.
Als Betriebsgas wurde eine 98%Ar-2%H2 Mixtur genutzt, da die Stark-Verbreiterung der H-beta-Linie sowie die physikalischen Eigenschaften von Argon gut beschrieben sind und somit eine akkurate Elektronendichte- und -temperaturbestimmung ermöglichen.
Während die Drücke auf der Niederdruckseite einigen mbar entsprechen, werden auf der Hochdruckseite Drücke bis zu 750 mbar bei Teilchenflüsse zwischen 4.5e20 s^-1 und 18e20 s^-1 sowie Stromstärken von 45 A bis 60 A erreicht.
Die erzielten Druckverhältnisse entsprechen Werten zwischen 40 und 150, was eine Steigerung um einen Faktor von bis zu 12 gegenüber dem Druckverhältnis einer einfachen differentiellen Pumpstufe entspricht.
Zusätzlich zur Trennung der Druckbereiche kann am vorgestellten Experiment die Starkverbreiterung von Emissionslinien untersucht werden.
Vorteilhaft gegenüber anderen Aufbauten ist hier die Möglichkeit, zeitgleich Spektren unterschiedlicher Elektronendichten aufzunehmen.
Die entwickelte Software ist in der Lage, akkurate Halbwertsbreiten zu bestimmen und daher für eine solche Anwendung gut geeignet.
Alleinstellungsmerkmale dieses Aufbaus sind unter anderem die angesprochene Möglichkeit der simultanen Bestimmung von Plasmaparamertern und Linienverbreiterungen sowie der Verzicht auf Keramikisolatoren zwischen den Kühlplatten des Aufbaus.
Optische Analysen ergaben keine signifikante Schädigung der Bestandteile des Aufbaus nach einer Betriebsdauer von über 10 h; einzig die Kathodenspitzen müssen alle 5 h ausgetauscht werden.
Im Rahmen der hier vorgestellten Arbeit wurden eine Master- sowie Bachelorarbeit betreut und erfolgreich zum Abschluss gebracht.
Wie im Rahmen dieser Arbeit gezeigt, ist das entwickelte Plasmapfenster in der Lage, zwei Bereiche unterschiedlicher Drücke zu trennen und diese Trennung sicher aufrecht zu erhalten.
Die zugrundeliegenden Plasmaparameter sind erforscht und ihr Einfluss auf die Trennungseigentschaft des Plasmafensters beschrieben.
Als nächsten Schritt bietet sich die Erschließung technischer Einsatzmöglichkeiten des Plasmafensters an, so könnte dieses als Plasmastripper oder zum Schutz einer Beschleunigerstruktur vor durch Kollisionsexperimente entstandene radioaktive Isotope oder Sekundärteilchen.
This dissertation presents the development of a new radio frequency quadrupole (RFQ) structure of the 4-rod type with an operating frequency of 108 MHz for the acceleration of heavy ions with mass-to-charge ratios of up to 8.5 at high duty cycles up to CW operation ("continuous wave") at the High Charge Injector (HLI) of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt.
The need to develop a completely new RFQ for the HLI arises from the fact that with the previously designed and built 4-rod RFQ structure, which was commissioned at the HLI in 2010 as part of the planned HLI upgrade program, the desired operating modes in both pulsed and CW operation could not be achieved even after several years of operating experience and considerable efforts to eliminate or at least mitigate the severe operational instabilities. Mechanical vibrations of the electrodes, which result in strong modulated power reflection, as well as the high thermal sensitivity proved to be particularly problematic.
In addition to the RF design of the new RFQ by simulations performed with the CST Microwave Studio software, the focus of the investigations fell on the mechanical analysis of vibrations on the electrode rods caused by RF operation, for which the ANSYS Workbench software was used. Due to the high thermal load of the RFQ structure of more than 30 kW/m in CW operation, an accurate analysis of the thermal effects on electrode deformation as well as resulting frequency detuning of the resonator is also required, which was investigated by simulations within the capabilities of CST Mphysics Studio.
Based on the results of the design studies carried out by simulations and the thereby achieved design optimizations, a 4-rod RFQ prototype with 6 stems was finally manufactured, on which most of the properties expected from the simulations could be validated by measurements of the RF characteristics as well as of the vibration behavior.
Finally, based on the results of the pre-tests and considering a newly developed beam dynamics concept, a completely revised RF design for a new full-length HLI-RFQ was derived from the prototype design.
Entwicklung und Inbetriebnahme zweier supraleitender 217 MHz CH-Strukturen für das HELIAC-Projekt
(2019)
Im Rahmen der hier vorgestellten Arbeit wurden zwei baugleiche CH-Strukturen für das im Bau befindliche HELIAC-Projekt (HELmholtz LInear ACcelerator) entwickelt und während der Produktion bis hin zu den finalen Kalttests bei 4.2 K begleitet. Zusammen mit der CH-Struktur des Demonstrator-Projektes ermöglichen sie die vollständige Inbetriebnahme und den ersten Strahltest des ersten Kryomoduls des HELIAC's, welcher aus vier Kryomodulen mit insgesamt 12 CH-Strukturen besteht. Im Vergleich zu bisherigen CH-Strukturen wurde das Design der Kavitäten im Rahmen dieser Dissertation grundlegend überarbeitet und optimiert. Durch die Entfernung der Girder und die konisch geformten Endkappen konnte die Stabilität der neuen CH-Strukturen deutlich erhöht werden, sodass die Drucksensitivität im Vergleich zur ersten CH-Kavität des Demonstrator-Projektes um ca. 80% reduziert werden konnte. Durch die nach außen gezogenen Lamellen der dynamischen Tuner konnte die mechanische Spannung sowie die benötigte Anzahl an Lamellen und damit das Risiko für das Auftreten von Multipacting reduziert werden. Das verringerte Risiko für Multipacting durch die entsprechenden Optimierungen der Kavitäten konnte durch die dauerhafte Überwindung aller Multipacting-Barrieren in den späteren Messungen verifiziert werden. Die Optimierung beider Kavitäten erfolgte dabei mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench.
Beide Kavitäten wurden von der Firma Research Instruments (RI) gefertigt und während der gesamten Konstruktion durch diverse Zwischenmessungen überwacht. Nach jedem einzelnen Produktionsschritt wurden alle Einflüsse auf die Resonanzfrequenz so präzise ermittelt, dass die Zielfrequenz bei 4.2 K auf mehr als 1‰ genau erreicht werden konnte. Sowohl während der Zwischenmessungen als auch während den finalen Messungen bei 4.2 K wurden automatisierte Aufzeichnungsroutinen verwendet, welche eine sekundengenaue Auslese der Messdaten und damit eine hohe Messgenauigkeit ermöglichten. Im Hinblick auf die Komplexität der CH-Strukturen sind die geringen Abweichungen von der Zielfrequenz der direkte Beweis dafür, wie erfolgreich und präzise die Auswertungen und daraus folgenden Abschätzungen der einzelnen Zwischenmessungen waren. Insgesamt konnten bis auf die mechanischen Eigenmoden alle Ergebnisse der Simulationen durch entsprechende Messungen in guter Näherung verifiziert werden. In jeder Kavität wurden zwei dynamische Tuner verbaut, welche statische und dynamische Frequenzabweichungen im späteren Betrieb ausgleichen können. Die dynamischen Tuner wurden hinsichtlich ihrer mechanischen Stabilität und der erzeugbaren Frequenzänderung sowie ihrer mechanischen Eigenfrequenzen ausführlich mit Hilfe der Simulationsprogramme CST Studio Suite und Ansys Workbench untersucht und optimiert. Um die Ergebnisse der Simulationen zu überprüfen wurden ein eigens dafür entworfener und in der Werkstatt des Instituts für Angewandte Physik gefertigter Messaufbau verwendet, welcher es ermöglichte alle entscheidenden Eigenschaften der dynamischen Tuner präzise zu vermessen. Insgesamt stellen die ausführlichen Messungen mit Hilfe des entworfenen Aufbaus die bisher umfassendsten Messungen dynamischer Balgtuner innerhalb supraleitender CH-Strukturen dar und zeigen, mit welchen Abweichungen zwischen Simulationen und Messungen bei zukünftigen Kavitäten zu rechnen ist. Auch die Feldverteilung entlang der Strahlachse wurde während der Produktion der Kavitäten mit Hilfe der Störkörpermessmethode überprüft. Die dadurch ermittelten Werte stimmten mit einer maximalen Diskrepanz von 9% sehr gut mit den Simulationen überein.
Um eine möglichst gute Oberflächenqualität zu garantieren wurden an der Innenfläche beider Strukturen mindestens 200µm mit einer Mischung aus Fluss-, Salpeter und Phosphorsäure in mehreren Schritten abgetragen. Durch das Aufteilen der Behandlung in einzelne Schritte konnte der Einfluss der Oberflächenbehandlung auf die Resonanzfrequenz besser abgeschätzt und vorausgesehen werden. Dies führte, zusammen mit den Messungen zur Bestimmung der Drucksensitivität und der thermischen Kontraktion der Kavität beim Abkühlen, zu der hohen Übereinstimmung der gemessenen finalen Resonanzfrequenz mit der Zielfrequenz.
Die abschließenden Kalttests der beiden Kavitäten, ohne Heliummantel, wurden am Institut für Angewandte Physik der Johann Wolfgang Goethe Universität in einem vertikalen Bad-Kryostaten durchgeführt. Die erste CH-Struktur konnte erfolgreich bis zu einem maximalen Feldgradienten von 9.2 MV/m getestet werden, was einer effektiven Spannung von 3.37 MV entspricht. Die unbelastete Güte fiel dabei von anfangs 1.08 ∙ 109 auf 2.6 ∙ 108 ab. Die Vorgaben des HELIAC-Projektes liegen bei einem Beschleunigungsgradienten von 5.5 MV/m mit einer unbelasteten Güte von mindestens 3 ∙ 108. Diese Werte wurden von der ersten Kavität deutlich übertroffen, sodass sie für den Betrieb innerhalb des ersten Kryomoduls uneingeschränkt verwendet werden kann.
Bei der zweiten Kavität trat beim Abkühlen auf 4.2 K ein Vakuumleck auf, welches unter Raumtemperatur nicht detektierbar war. Aufgrund der schlechten Vakuumbedingungen innerhalb der Kavität konnten somit keine Messungen hinsichtlich der Leistungsfähigkeit durchgeführt werden, solange das Kaltleck vorhanden war. Ein erneuter Kalttest der Kavität nach Beseitigung des Lecks konnte zeitlich nicht mehr im Rahmen dieser Arbeit durchgeführt werden und ist aus diesem Grund Gegenstand nachfolgender Untersuchungen.
Insgesamt stellen die Entwicklungen, Untersuchungen und Messungen im Rahmen der hier vorgestellten Dissertation einen entscheidenden Schritt zur Inbetriebnahme des ersten Kryomoduls des HELIAC's sowie der Entwicklung weiterer CH-Kavitäten dar. Das überarbeitete Design der CH-Strukturen hat sich als erfolgreich erwiesen, weswegen es als Ausgangspunkt für die Entwicklung aller nachfolgenden CH-Strukturen des HELIAC, bis hin zur Fertigstellung des kompletten Beschleunigers, verwendet wird.
The first part of this work addresses the automatic online tuning of transfer lines in particle accelerator facilities. In the second part the focus lies on the automatic construction and optimisation of such transport lines. It can be shown that genetic algorithms can be used very well for optimisation in both cases. Automatic online tuning can be performed very efficiently at accelerators under certain boundary conditions and is particularly well suited for initial beam commissioning with low intensity pilot beams. The construction of transfer lines can also be formulated and solved as an minimisation problem with an adopted parameterisation. Thereby, both the imaging properties of the beam transport and the robustness against error studies can be optimised at the same time.
Die Druckmessung in Tieftemperatur-Vakuumsystemen stellt ein großes messtechnisches Problem dar. Für die in solchen Systemen auftretenden Drücke im UHV und XHV-Bereich werden meist Ionisationsmanometer vom Glühkathodentyp zur Druckmessung verwendet. Diese haben jedoch den entscheidenden Nachteil, dass durch die Verwendung einer Glühkathode zur Erzeugung freier Elektronen eine große Wärmelast in das System eingekoppelt wird. Dies führt zu einer Störung des thermischen Gleichgewichts und damit zu einer Verfälschung der Druckmessung. Weiterhin muss diese zusätzliche Wärmelast abgeführt werden, was vor allem bei kryogenen Vakuumsystemen einen erheblichen Mehraufwand darstellt.
Um dieses Problem zu umgehen, wurde ein Ionisationsmanometer entwickelt, dessen Glühkathode durch eine kalte Elektronenquelle ersetzt wurde. Der verwendete Feldemitter, eine kommerziell erhältliche CNT-Kathode, wurde gegenüber dem Anodengitter einer Extraktormessröhre positioniert. Mit diesem Aufbau wurden die Charakteristika von Kathode und Messröhre sowohl bei Raumtemperatur als auch unter kryogenen Vakuumbedingungen untersucht.
Dabei konnte gezeigt werden, dass die modifizierte Messröhre auch bei einer Umgebungstemperatur von 6 K ohne funktionale Einbußen betrieben werden kann und der gemessene Ionenstrom über mehrere Dekaden linear mit dem von einer Extraktormessröhre mit Glühkathode gemessenen Referenzdruck ansteigt. Des Weiteren konnte gezeigt werden, dass der Extraktor mit CNT-Kathode unter diesen kryogenen Bedingungen deutlich sensitiver auf geringe Druckschwankungen reagiert als sein Äquivalent mit Glühkathode.
Der langsame Neutroneneinfang-Prozess (s-Prozess) ist für die Erzeugung von rund der Hälfte der Elemente zwischen Eisen und Blei verantwortlich. Sein Reaktionspfad enthält entlang des Stabilitätstals einige Verzweigungspunkte an instabilen Isotopen, deren Neutroneneinfangquerschnitte die Produktion schwererer Elemente und deren Isotopen-Verhältnisse beeinflussen. Kennt man ihre Zerfalls- und Neutroneneinfangraten unter den angenommenen stellaren Bedingungen ist es möglich, Rückschlüsse auf die physikalischen Umstände während des s-Prozesses zu ziehen. Einer dieser Verzweigungspunkte ist 63-Ni. Die experimentelle Bestimmung des differentiellen Wirkungsquerschnittes für den Neutroneneinfang an diesem Isotop ist das primäre Ergebnis der vorliegenden Arbeit. Der 63-Ni(n,gamma)- Wirkungsquerschnitt hat Einfluss auf die Häufigkeiten von 64-Ni, die Kupfer- und die Zink-Isotope. Die Sensitivität der Produktion dieser Nuklide in s-Prozess-Szenarien wurde ebenfalls im Rahmen dieser Arbeit anhand von Simulationen des entsprechenden Nukleosynthesenetzwerkes untersucht. Zudem wurde die Datenlage für s-Prozess-Modelle mit einer Flugzeit-Messung des 63-Cu(n,gamma)-Wirkungsquerschnitts erweitert.
Die beiden Experimente zur Querschnittsbestimmung von 63-Ni und 63-Cu fanden am Los Alamos Neutron Science Center in New Mexico, USA statt. Eine aus angereichertem 62-Ni hergestellte 63-Ni-Probe wurde im Rahmen einer Flugzeit-Messung gepulst mit Neutronen bestrahlt. Der Nachweis der prompten Gammastrahlung aufgrund von Neutroneneinfängen erfolgte mit dem 4π-BaF_2-Detektor DANCE. Die kalorimetrische Messung macht den Q-Wert der Reaktion für jedes Einfangereignis zugänglich und erlaubt die Unterscheidung von Ereignissen verschiedener Isotope. Es konnte gezeigt werden, dass diese Methode die Bestimmung von Querschnitten selbst mit Proben ermöglicht, die nur zu einem Bruchteil aus dem zu untersuchenden Isotop bestehen. Der 63-Ni(n,gamma)-Wirkungsquerschnitt wurde für den Energiebereich von 40 eV bis 500 keV mit einer maximalen Unsicherheit von 15% bestimmt. Es zeigte sich, dass theoretische Abschätzungen den Querschnitt bislang um etwa einen Faktor 2 unterschätzten. In demselben Energiebereich konnte der 63-Cu(n,gamma)-Wirkungsquerschnitt mit einer maximalen Unsicherheit von 8% vermessen werden.