Refine
Document Type
- Doctoral Thesis (3)
- diplomthesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
- Mathematik (4)
Das libor Markt Modell (LMM) ist seit seiner Entwicklung in den Veröffentlichungen von Brace, Gatarek, Musiela (1997), einerseits, und unabhängig von diesen von Miltersen, Sandmann, Sondermann (1997), andererseits, zu dem anerkanntesten Instrument zur Modellierung der Zinsstruktur und der damit verbundenen Preisfindung für relevante Finanzderivate geworden. libor steht dabei für London Inter-Bank Offered Rate, ein täglich in London fixierter Referenz-Zins für kurzfristige Anlagen. Drei- oder sechsmonatige Laufzeiten sind in Verbindung mit dem LMM üblich. Die Forschung zur Verbesserung dieses Modells hat in den letzten Jahren an Zuwachs gewonnen. Beim Versuch den Fehler der Anpassung an die täglich beobachteten Preise von Zinsoptionen wie Caps und Swaptions zu verringern, erhält man in der Folge auch genauere Bewertungen für andere, exotischere, Derivate. Die zugrunde liegende und zentrale Idee des LMM besteht darin, die Forward (Termin) Zinsen direkt als primären (Vektor) Prozess mehrerer libor Sätze zu betrachten und diese simultan zu modellieren, anstatt sie nur herzuleiten aus einem übergeordneten, unendlich dimensionalen Forward Zinsprozess, wie im zeitlich früher entwickelten Heath-Jarrow-Morton Modell. Das überzeugendste Argument für diese Diskretisierung ist, dass die libor Sätze direkt im Markt beobachtbar sind und ihre Volatilitäten auf eine natürliche Weise in Beziehung gebracht werden können zu bereits liquide gehandelten Produkten, eben jenen Caps und Swaptions. Dennoch beinhaltet das Modell eine gravierende Insuffizienz, indem es keine Krümmung der Volatilitätsoberfläche, im Hinblick auf Optionen mit verschiedenen Basiszinsen, abbildet. Wie im einfachen eindimensionalen Black-Scholes Modell prägen sich auch hier die Ungenauigkeiten der Verteilung in fehlenden heavy tails deutlich aus. Smile und Skew Effekte sind erkennbar. Im klassischen liborMarkt Modell wird in Richtung der Basiszinsdimension nur eine affine Struktur erzeugt, welche bestenfalls als Approximation für die erwünschte Oberfläche dienen kann. Die beobachteten Verzerrungen führen naturgemäss zu einer ungenauen Abbildung der Realität und fehlerhaften Reproduktion der Preise in Regionen, die ein wenig entfernt vom Bereich am Geld liegen. Derartig ungewollte Dissonanzen in Gewinn und Verlustzahlen führten z.B. in 1998 zu gravierenden Verlusten im Zinsderivateportfolio der heutigen Royal Bank of Scotland. ...
Strong convergence rates for numerical approximations of stochastic partial differential equations
(2018)
In this thesis and in the research articles which this thesis consists of, respectively, we focus on strong convergence rates for numerical approximations of stochastic partial differential equations (SPDEs). In Part I of this thesis, i.e., Chapter 2 and Chapter 3, we study higher order numerical schemes for SPDEs with multiplicative trace class noise based on suitable Taylor expansions of the Lipschitz continuous coefficients of the SPDEs under consideration. More precisely, Chapter 2 proves strong convergence rates for a linear implicit Euler-Milstein scheme for SPDEs and is based on an unpublished manuscript written by the author of this thesis. This chapter extends an earlier result1 by slightly lowering the assumptions posed on the diffusion coefficient and a different approximation of the semigroup. In Chapter 3 we introduce an exponential Wagner-Platen type numerical scheme for SPDEs and prove that this numerical approximation method converges in the strong sense with oder up to 3/2−. Moreover, we illustrate how the (mixed) iterated stochastic-deterministic integrals, that are part of our numerical scheme, can be simulated exactly under suitable assumptions.
The second part of this thesis, i.e. Chapter 4 and Chapter 5, is devoted to strong convergence rates for numerical approximations of SPDEs with superlinearly growing nonlinearities driven by additive space-time white noise. More specifically, in Chapter 4, we prove strong convergence with rate in the time variable for a class of nonlinearity-truncated numerical approximation schemes for SPDEs and provide examples that fit into our abstract setting like stochastic Allen-Cahn equations. Finally, in Chapter 5, we extend this result with spatial approximations and establish strong convergence rates for a class of full-discrete nonlinearity truncated numerical approximation schemes for SPDEs. Moreover, we apply our strong convergence result to stochastic Allen-Cahn equations and provide lower and upper bounds which show that our strong convergence result can, in general, not essentially be improved.
Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) which have a stochastic process in their vector field functions. RODEs have been used in a wide range of applications such as biology, medicine, population dynamics and engineering and play an important role in the theory of random dynamical systems, however, they have been long overshadowed by stochastic differential equations.
Typically, the driving stochastic process has at most Hoelder continuous sample paths and the resulting vector field is, thus, at most Hoelder continuous in time, no matter how smooth the vector function is in its original variables, so the sample paths of the solution are certainly continuously differentiable, but their derivatives are at most Hoelder continuous in time. Consequently, although the classical numerical schemes for ODEs can be applied pathwise to RODEs, they do not achieve their traditional orders.
Recently, Gruene and Kloeden derived the explicit averaged Euler scheme by taking the average of the noise within the vector field. In addition, new forms of higher order Taylor-like schemes for RODEs are derived systematically by Jentzen and Kloeden.
However, it is still important to build higher order numerical schemes and computationally less expensive schemes as well as numerically stable schemes and this is the motivation of this thesis. The schemes by Gruene and Kloeden and Jentzen and Kloeden are very general, so RODEs with special structure, i.e., RODEs with Ito noise and RODEs with affine structure, are focused and numerical schemes which exploit these special structures are investigated.
The developed numerical schemes are applied to several mathematical models in biology and medicine. In order to see the performance of the numerical schemes, trajectories of solutions are illustrated. In addition, the error vs. step sizes as well as the computational costs are compared among newly developed schemes and the schemes in literature.
In dieser Arbeit wurde deutlich, dass die Multilevel Monte Carlo Methode eine signifikante Verbesserung gegenüber der Monte Carlo Methode darstellt. Sie schafft es den Rechenaufwand zu verringern und in fast allen Fällen die gewollte Genauigkeit zu erreichen. Die Erweiterung durch Richardson Extrapolation brachte immer eine Verringerung des Rechenaufwands oder zumindest keine Verschlechterung, auch wenn nicht in allen Fällen die schwache Konvergenzordnung verdoppelt wurde.
Im Falle der Optionssensitivitäten ist eine Anwendung des MLMC-Algorithmus problematisch. Das Funktional, das auf den Aktienkurs angewendet wird, darf keine Unstetigkeitsstelle besitzen, bzw. im Falle des Gammas muss es stetig differenzierbar sein. Die Anwendung der MLMC Methode macht dann vor allem Sinn, wenn sich die Sensitivität als Funktion des Aktienkurses umformen lässt, so dass nur der Pfad der Aktie simuliert werden muss. Nur wenn dies nicht möglich ist, wäre es sinnvoll, die in Kapitel 6.5 am Beispiel des Deltas vorgestellte Methode zu benutzen, in der man einen zweiten Pfad für das Delta simuliert.
Weitere Verbesserungsmöglichkeiten könnten in der Wahl von anderen varianzreduzierenden Methoden liegen oder durch Verwendung von Diskretisierungsverfahren mit höherer starker Ordnung als das Euler-Verfahren (vgl. [7], Verwendung des Milstein-Verfahrens). In diesem Fall ist theoretisch ein Rechenaufwand der Größenordnung O(ϵexp-2) möglich, da die Anzahl der zu erstellenden Samples nicht mehr mit steigendem L erhöht wird. Somit könnte das L so groß gewählt werden, dass der Bias verschwindet und der MSE ausschließlich von der Varianz des Schätzers abhängt. Um diese auf eine Größenordnung von O(ϵexp2) zu bringen, ist es nötig, O(ϵexp2) Pfade zu erstellen (siehe Gleichung (3.6)), was den Rechenaufwand begründet.