Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Schottky (1)
- detector (1)
- resonant (1)
- storage ring (1)
Institute
- Physik (4)
Die transversale Betatronbewegung eines Ionenstrahls, genannt Tune, stellt neben der Strahlposition die wichtigste zu messende Strahleigenschaft für den stabilen Betrieb eines Kreisbeschleunigers dar. Die Einstellung des Tunes auf einen Arbeitspunkt unterliegt engen Grenzen, da eine Vielzahl resonanter Störungen existiert, die die Teilchenbewegung beeinflussen und somit Emittanzvergrößerung und Strahlverlust hervorrufen. Den gemessenen Tune mit hoher Auflösung in Zeit und Frequenz während der gesamten Beschleunigungsphase auszugeben ermöglicht eine Justierung der ionenoptischen Elemente der Strahlführung. Dadurch läßt sich die Teilchenzahl bis zur theoretischen Raumladungsgrenze erhöhen und darüber hinaus Teilchenverluste minimieren. Die Messungen wurden an Positionssonden (BPM) des Schwerionensynchrotrons SIS18 der "GSI Helmholtzzentrum für Schwerionenforschung GmbH" mit zwei verschiedenen Meßsystemen durchgeführt, was einen Vergleich der Systemauflösungen ermöglicht. Das Direkt Digitalisierende Meßsystem (DDM) wandelt das BPM-Elektrodensignal direkt nach der Verstärkerkette mit einer Rate von 125 MSa/s in digitale Daten um. Der Strahlschwerpunkt eines jeden Einzelbunches wird daraus mittels digitaler Prozessierung berechnet und durch Fouriertransformation dessen Frequenzspektrum bestimmt. Man erhält den fraktionalen Tune dadurch direkt im Basisband. Das am CERN entwickelte und für Parameter des SIS18 adaptierte Direct Diode Detection - System (DDD) zeigt ebenfalls den Tune im Basisband. Um den zu bearbeitenden Frequenzbereich erheblich zu reduzieren, werden bei diesem Verfahren die Bunchpeakwerte, die die Strahlschwingung enthalten, über ein RC-Element analog verzögert ausgegeben. Der erhaltene Tune kann daraus mit hoher Auflösung digitalisiert werden. In der vorliegenden Dissertation werden die Meßaufbauten, die digitale Prozessierung der BPM-Daten mittels neuer Algorithmen sowie die Auswertung und Berechnung des Tunes gezeigt. Es werden typische Tuneverläufe diskutiert und ein Arbeitsbereich definiert, bei dem stabile Tunemessungen mit S/N von 30-50 dB ohne meßbare Vergrößerung der Strahlemittanz möglich sind. Die Auflösung der Tunemessung beträgt δqy = 3.50 · 10−4 und δqx = 7.97 · 10−4 für Anregungskickwinkel im Arbeitsbereich. Darüber hinaus werden physikalische Anwendungen des Systems diskutiert, indem verschiedene Einflüsse von ionenoptischen- und Strahlparametern auf den Tuneverlauf gezeigt und ausgewertet werden.
In der nuklearen Astrophysik sind Experimente mit hochgeladenen Radionukliden von großer Bedeutung. Diese exotischen Nuklide können in Schwerionenbeschleunigeranlagen hergestellt und in Speicherringen gespeichert werden. Momentan existieren weltweit zwei Anlagen, die solche Experimente ermöglichen: das GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt und das Institut für moderne Physik (IMP) in Lanzhou, China. Da die Ausbeute dieser Nuklide gering ist, werden zerstörungsfreie Nachweismethoden in den Speicherringen verwendet. Diese machen von den Methoden der Spektralanalyse Gebrauch. Nicht nur die geringe Ausbeute, sondern auch die kurze Lebensdauer dieser Nuklide stellen hohe Anforderungen an die Sensitivität und Geschwindigkeit dieser Detektoren.
Eine übliche Methode ist die Verwendung kapazitiver Schottky-Sonden. Eine solche Sonde ist seit 1991 an der GSI im Speicherring ESR im Einsatz. Um die Empfindlichkeit zu erhöhen, kann man Mikrowellenkavitäten als resonante Pickups verwenden. Die von den Teilchen induzierten elektromagnetischen Felder können resonante Moden im Resonator anregen. Die Geometrie des Pickups und das verwendete Material spielen eine wesentliche Rolle in der Gestaltung der Feldbilder. Die resultierenden Signale, auch Schottky Signale genannt, werden mittels einer Antenne ausgekoppelt und anschliessend an einen Spektrumanalysator angeschlossen. Für die Analyse der gespeicherten Daten können verschiedene Methoden der Spektralschätzung wie z.B. das Multi-Taper angewendet werden. Nachdem eine externe Kalibrierung durchgeführt worden ist, kann das Pickup auch als ein Stromsensor verwendet werden.
Diese Arbeit befasst sich mit der Theorie, dem Aufbau und ersten Anwendungen eines neuen resonanten Pickups, das im Jahr 2010 in den Speicherring ESR eingebaut und in mehreren Experimenten erfolgreich eingesetzt wurde. Ein ähnliches Pickup wurde im Jahr 2011 in den CSRe im IMP Lanzhou eingebaut. Einzelne Schwerionen mit 400 MeV pro Nukleon wurden erfolgreich mit dem GSI-Pickup nachgewiesen. Das Pickup wird regelmässig in Speicherringexperimenten eingesetzt. Ähnliche Experimente sind für CSRe in Lanzhou geplant.
The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the corresponding boundary conditions at FAIR. Larger beam tube diameters, higher radiation resistivity and UHV requirements are of particular importance for the cryostat. At the same time these parameters affect the CCC superconducting magnetic shielding, which again has significant influence on the current resolution of the system. In order to investigate the influence of the geometry of the superconducting magnetic shield on different magnetic field components and to optimize the attenuation, FEM simulations have been performed. Based on the results of these calculations, modifications of the shield geometry for optimum damping behavior are proposed and discussed in the thesis.
Precise intensity monitoring at CRYRING@ESR: on designing a Cryogenic Current Comparator for FAIR
(2023)
In the field of today’s beam intensity diagnostic there is a significant gap in the non-interceptive, calibrated measurement of the absolute intensity of continuous (unbunched) dc beams with current amplitudes below 1 μA. At the Facility for Antiproton and Ion Research (FAIR) low-intensity DC beams will occur during slow extraction from the synchrotrons as well as for coasting beams of highly-charged or exotic nuclei in the storage rings. The lack of adequate beam instrumentation limits the experimental program as well as the accuracy of experimental results.
The Cryogenic Current Comparator (CCC) can close the diagnostic gap with a high-precision dc current reading independent of ion-species and of beam parameters. However, the established detector design based on a core with high magnetic permeability and on a radial shield geometry has well-known weaknesses concerning magnetic shielding efficiency and intrinsic current noise. To eliminate these weaknesses, a novel coreless CCC with a co-axial shield was constructed and combined with a high-performance SQUID contributed by the Leibniz-Institute of Photonic Technology (Leibniz-IPHT Jena). The new axial CCC model was compared to a radial CCC with the established design provided by the Friedrich-Schiller-University Jena. According to numerical simulations prepared at TU Darmstadt and test measurements of the detectors in the laboratory, the new design offered a significant improvement of the shielding factor – from 75dB to 207dB at the required dimensions – and eliminated all noise contributions from the core material, promising an improved current resolution. Although the lower inductance of the pickup coil reduced the coupling to the beam significantly, the noise properties of the new CCC type were comparable to the classical version with a high-permeability core. However, the expected decrease of the low-frequency noise and thus an increase of the current resolution could not be observed at this stage of development.
Consequently, the classical CCC based on the radial shielding and high-permeability core had to be installed in CRYRING@ESR to provide best possible intensity measurements for the upcoming experimental campaign. In CRYRING the CCC was operated with beam currents between 1nA and 20μA and with different ion species (H, Ne, O, Pb, U). It was shown that the CCC provides a noise-limited current resolution of better than 3.2 nArms at a bandwidth of 200 kHz as well as a noise level below 40 pA/√Hz above 1 kHz. During the operation, the main noise sources of the accelerator environment had to be identified and suitable mitigation strategies were developed. Temperature and pressure fluctuations were suppressed with a newly-designed cryogenic support system based on a 70 l helium bath cryostat, developed and built in collaboration with the Institut für Luft- und Kältetechnik Dresden, in combination with a helium re-liquefier. The cryogenic operating time was restricted to around 7 days, which must be expanded significantly in the future. Digital filters were developed to remove the perturbations of the helium liquefier and of the neighboring dipole magnets. Given the promising results the CCC system can be considered as a prototype for future CCCs at FAIR.