Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Renormierungsgruppe (4)
- Heisenberg-Modell (3)
- Functional Renormalization Group (2)
- Funktionale Renormierungsgruppe (2)
- Quantenspinsystem (2)
- Spinwelle (2)
- Anderson Impurity model (1)
- Anderson-Modell (1)
- Anregung (1)
- Beliaev Dämpfung (1)
Institute
- Physik (22)
- Biochemie und Chemie (1)
The objective of this work is twofold. First, we explore the performance of the density functional theory (DFT) when it is applied to solids with strong electronic correlations, such as transition metal compounds. Along this direction, particular effort is put into the refinement and development of parameterization techniques for deriving effective models on a basis of DFT calculations. Second, within the framework of the DFT, we address a number of questions related to the physics of Mott insulators, such as magnetic frustration and electron-phonon coupling (Cs2CuCl4 and Cs2CuBr4), high-temperature superconductivity (BSCCO) and doping of Mott insulators (TiOCl). In the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4, we investigate the interplay between strong electronic correlations and magnetism on one hand and electron-lattice coupling on the other as well as the effect of this interplay on the microscopic model parameters. Another object of our investigations is the oxygen-doped cuprate superconductor BSCCO, where nano-scale electronic inhomogeneities have been observed in scanning tunneling spectroscopy experiments. By means of DFT and many-body calculations, we analyze the connection between the structural and electronic inhomogeneities and the superconducting properties of BSCCO. We use the DFT and molecular dynamic simulations to explain the microscopic origin of the persisting under doping Mott insulating state in the layered compound TiOCl.
The topic of this thesis is the functional renormalization group. We discuss some approximations schemes. Thereafter we apply these approximations to study different fields of condensed matter physics. Generally we have to evaluate an infinite set of vertex functions describing the scattering of particles. These vertex functions get renormalized away from their bare values governed by an infinite hierarchy of flow equations. We cannot expect to actually solve these equations but have to apply a couple of approximations. The aim is to somehow separate relevant contributions from irrelevant ones. One possible scheme opens up if we rescale fields and vertices. Here "relevance" is used in a quantitative way to describe the scaling behaviour of vertices close to a fixed point of the RG. One disadvantage of describing the system in terms of infinitely many vertices is that the majority of these vertices we have to evaluate are not of interest to us. In most cases we are just looking for the self-energy or the two-particle effective interaction. However there might be contributions to the flow of these vertices that are generated by irrelevant vertices. We generally assume that we can express irrelevant vertices in terms of the relevant and marginal ones. Then in turn it should be possible to write the contributions of these irrelevant vertices to the flow of relevant and marginal ones in terms of relevant and marginal vertices as well. We show how this can be achieved by what we term the adiabatic approximation. We now consider weakly interacting bosons at the critical point of Bose-Einstein condensation. As the transition takes place at a finite temperature this temperature defines an effective ultraviolet cut-off. For the investigation of physical properties that depend on momenta smaller than this cut-off it is therefore sufficient to describe the system by a classical field theory. Our central topic here is the self-energy of the bosons and we are able to evaluate it with the full momentum dependence. For small momenta it approaches a scaling form and as the momentum is gradually increased we observe a crossover to the perturbative regime. As a test for the reliability of our expression for the selfenergy we investigate the interaction induced shift of the critical. Our results compare quite satisfactory to the best available estimates for this shift. For the anomalous dimension our approach predicts the correct order of magnitude however with a considerable error. As an improvement we include more vertices into our calculations. Here we observe that our fixed point estimates indeed approach the best known results but this convergence is quite weak. We turn toward systems of interacting fermions. The formulation of the functional renormalization group implicitly requires knowledge of the true Fermi surface of the full interacting system. In general however we can just calculate it a-posteriori from the self-energy. The requirement to flow into a fixed point can be translated into a fine-tuning of the frequency/momentum independent part r_0 of the rescaled 2-point function. We show how this bare value is related to the momentum dependent effective interaction along the complete trajectory of the RG. On the other hand r_0 expresses the difference between the bare and the true Fermi surface. Putting both equations together results into an exact selfconsistency equation for the Fermi surface. We apply our self-consistency equation above to tackle the problem of finding the true Fermi surface of interacting fermions in low dimensions. The most simple non-trivial model with an inhomogeneous Fermi surface is a system of two coupled metallic chains. The process of interband backward scattering leads to a smoothing of the Fermi surface. Of special interest is if the Fermi momenta of the two bands collapse into just one value. We propose the term confinement transition for this behaviour. We bosonize the interband backward scattering by means of a Hubbard-Stratonovich transformation and treat our system as a single channel problem. This bosonization together with the adiabatic approximation allows us to investigate the system even at strong coupling. Within a simple one-loop treatment our method predicts a confinement transition at strong coupling. However taken vertex renormalizations into account we observe that this confinement is destroyed by fluctuations beyond one-loop. Actually we observe how the confined phase can be stabilized by the inclusion of interband umklapp scattering. Thereafter we consider the physically more relevant case of a two-dimensional system of infinitely many coupled metallic chains. Here the Fermi surface consists of two disconnected weakly curved sheets. We are able to repeat the calculations we have performed for our toy model. Within a self-consistent 2-loop calculation indeed signs for a confinement transition at finite coupling strength emerge.
This thesis has two main parts.
The first part is based on our publication [1], where we use perturbation theory to calculate decay rates of magnons in the Kitaev-Heisenberg-Γ (KHΓ) model. This model describes the magnetic properties of the material α-RuCl 3 , which is a candidate for a Kitaev spin liquid. Our motivation is to validate a previous calculation from Ref. [2]. In this thesis, we map out the classical phase diagram of the KHΓ model. We use the Holstein-Primakoff
transformation and the 1/S expansion to describe the low temperature dynamics of the Kitaev-Heisenberg-Γ model in the experimentally relevant zigzag phase by spin waves. By parametrizing the spin waves in terms of hermitian fields, we find a special parameter region within the KHΓ model where the analytical expressions simplify. This enables us to construct the Bogoliubov transformation analytically. For a representative point in the special parameter region, we use these results to numerically calculate the magnon damping, which is to leading order caused by the decay of single magnons into two. We also calculate the dynamical structure factor of the magnons.
The second part of this thesis is based on our publication [3], where we use the functional renormalization group to analyze a discontinuous quantum phase transition towards a non-Fermi liquid phase in the Sachdev-Ye-Kitaev (SYK) model. In this thesis, we perform a disorder average over the random interactions in the SYK model. We argue that in the thermodynamic limit, the average renormalization group (RG) flow of the SYK model is identical to the RG flow of an effective disorder averaged model. Using the functional RG, we find a fixed point describing the discontinuous phase transition to the non-Fermi liquid phase at zero temperature. Surprisingly, we find a finite anomalous dimension of the fermions, which indicates critical fluctuations and is unusual for a discontinuous transition. We also determine the RG flow at zero temperature, and relate it to the phase diagram known from the literature.
In this thesis we investigate the thermodynamic and dynamic properties of the D-dimensional quantum Heisenberg ferromagnet within the spin functional renormalization group (FRG); a
formalism describing the evolution of the system’s observables as the magnetic exchange inter-action is artificially deformed. Following an introduction providing a self contained summary of the conceptual and mathematical background, we present the spin FRG as developed by Krieg and Kopietz in references [1] and [2] in chapter two. Thereto, the generating functional of the imaginary time-spin correlation functions and its exact flow equation describing the deformation process of the exchange interaction are introduced. In addition, it is highlighted that - in contrast to conventional field-theoretic FRG approaches - the related Legendre trans-formed functional cannot be defined if the exchange interaction is initially switched off. Next, we show that this limitation can be circumvented within an alternativ hybrid approach, which treats transverse and longitudinal spin fluctuations differently. The relevant functionals are introduced and the relations of the corresponding functional Taylor coefficients with the spin correlation functions are discussed. Lastly, the associated flow equations are derived and the possibility of explicit or spontaneous symmetry breaking is taken into account.
In chapter three, we benchmark the hybrid formalism against a calculation of the thermo-dynamic properties of the one and two-dimensional Heisenberg model at low temperatures T and finite magnetic field H. For this purpose, we devise an anisotropic deformation scheme of the exchange interaction which allows for a controlled truncation of the infinite hierarchy of FRG flow equations. Thereby, contact with mean-field and spin-wave theory is made and the violation of the Mermin-Wagner theorem is discussed. To fulfill the latter, the truncation scheme is then complemented by a Ward identity relating the transverse self-energy and the magnetization. The resulting magnetization M (H, T ) and isothermal susceptibility χ(H, T ) are in quantitative agreement with the literature and the established behavior of the transverse correlation length and the zero-field susceptibility close to the critical point is qualitatively reproduced in the limit H → 0.
Finally, we investigate the longitudinal dynamics at low temperatures. To this end, the hierarchy of flow equations is solved within the same anisotropic deformation scheme complemented by an expansion in the inverse interaction range, and the resulting longitudinal dynamic structure factor is calculated within a low-momentum expansion. In D = 3, the large phase space accessible for the decay into transverse magnons yields only a broad hump centered at zero frequency whose width scales linearly in momentum. In contrast, at low temperatures and in a certain range of magnetic fields, a well-defined quasiparticle peak with linear dispersion emerges in D ≤ 2, which we identify as zero-magnon sound. Sound velocity and damping are discussed as a function of temperature and magnetic field, and the relevant momentum-frequency window is estimated and compared to the hydrodynamic
second-magnon regime.
The present thesis is primarily concerned with the application of the functional renormalization group (FRG) to spin systems. In the first part, we study the critical regime close to the Berezinskii-Kosterlitz-Thouless (BKT) transition in several systems. Our starting point is the dual-vortex representation of the two-dimensional XY model, which is obtained by applying a dual transformation to the Villain model. In order to deal with the integer-valued field corresponding to the dual vortices, we apply the lattice FRG formalism developed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010)]. Using a Litim regulator in momentum space with the initial condition of isolated lattice sites, we then recover the Kosterlitz-Thouless renormalization group equations for the rescaled vortex fugacity and the dimensionless temperature. In addition to our previously published approach based on the vertex expansion [Phys. Rev. E 96, 042107 (2017)], we also present an alternative derivation within the derivative expansion. We then generalize our approach to the O(2) model and to the strongly anisotropic XXZ model, which enables us to show that weak amplitude fluctuations as well as weak out-of-plane fluctuations do not change the universal properties of the BKT transition.
In the second part of this thesis, we develop a new FRG approach to quantum spin systems. In contrast to previous works, our spin functional renormalization group (SFRG) does not rely on a mapping to bosonic or fermionic fields, but instead deals directly with the spin operators. Most importantly, we show that the generating functional of the irreducible vertices obeys an exact renormalization group equation, which resembles the Wetterich equation of a bosonic system. As a consequence, the non-trivial structure of the su(2) algebra is fully taken into account by the initial condition of the renormalization group flow. Our method is motivated by the spin-diagrammatic approach to quantum spin system that was developed more than half a century ago in a seminal work by Vaks, Larkin, and Pikin (VLP) [Sov. Phys. JETP 26, 188 (1968)]. By embedding their ideas in the language of the modern renormalization group, we avoid the complicated diagrammatic rules while at the same time allowing for novel approximation schemes. As a demonstration, we explicitly show how VLP's results for the leading corrections to the free energy and to the longitudinal polarization function of a ferromagnetic Heisenberg model can be recovered within the SFRG. Furthermore, we apply our method to the spin-S Ising model as well as to the spin-S quantum Heisenberg model, which allows us to calculate the critical temperature for both a ferromagnetic and an antiferromagnetic exchange interaction. Finally, we present a new hybrid formulation of the SFRG, which combines features of both the pure and the Hubbard-Stratonovich SFRG that were published recently [Phys. Rev. B 99, 060403(R) (2019)].
In this thesis, we have investigated strongly correlated bosonic gases in an optical lattice, mostly based on a bosonic version of dynamical mean field theory and its real-space extension. Emphasis is put on possible novel quantum phenomena of these many-body systems and their corresponding underlying physics, including quantum magnetism, pair-superfluidity, thermodynamics, many-body cooling, new quantum phases in the presence of long-range interactions, and excitational properties. Our motivation is to simulate manybody phenomena relevant to strongly correlated materials with ultracold lattice gases, which provide an excellent playground for investigating quantum systems with an unprecedented level of precision and controllability. Due to their high controllability, ultracold gases can be regarded as a quantum simulator of many-body systems in solid-state physics, high energy astrophysics, and quantum optics. In this thesis, specifically, we have explored possible novel quantum phases, thermodynamic properties, many-body cooling schemes, and the spectroscopy of strongly correlated many-body quantum systems. The results presented in this thesis provide theoretical benchmarks for exploring quantum magnetism in upcoming experiments, and an important step towards studying quantum phenomena of ultracold gases in the presence of long-range interactions.
Seit langem gibt es ein großes Interesse daran, den zeitlichen Ablauf von chemischen Reaktionen zu untersuchen. Ein wichtiges Instrument hierfür ist die Kurzzeitspektroskopie, die in jüngerer Vergangenheit parallel zum rasanten technischen Fortschritt mit immer kürzeren Laserpulsen bis hinein in den Femtosekunden-Bereich einen neuen Boom erlebt hat. Durch die extrem hohe Zeitauflösung ist es heutzutage möglich geworden, die Reaktionsdynamik eines Moleküls quasi in Echtzeit zu verfolgen, weil man durch die Femtosekunden-Pulse die Bewegung der Atomkerne wie mit einer schnellen Kamera beobachten kann. Mit wachsender Anzahl der Experimente gibt es gleichzeitig einen steigenden Bedarf, die Vielzahl der gemessenen und in vielen Aspekten noch unverstandenen Signale auf mikroskopischer Ebene theoretisch zu beschreiben und zu erklären. Besonders interessant dabei ist, dass dies u.a. für komplexe Systeme möglich wird, weil auf den extrem kurzen Zeitskalen auch in sehr großen Molekülen nur einige wenige Freiheitsgrade eine Rolle spielen. Thema dieser Arbeit war die überwiegend klassische Modellierung von nicht-adiabatischer Kurzzeitdynamik in molekularen Quantensystemen, deren Beschreibung über die Born-Oppenheimer-Näherung hinausgeht. Dabei wurden im Rahmen der vorliegenden Arbeit neue Methoden und Rechenverfahren entwickelt, die einerseits eine verbesserte. physikalisch intuitive Anschauung vermitteln und andererseits aufgrund geeigneter Näherungen deutlich Rechenzeit einsparen und dadurch den Zugang zu Modellen größerer Moleküle ermöglichen können. Zunächst wurde die Simulation von zeitaufgelösten Pump-Probe-Spektren mit Hilfe der Franck-Condon-Approximation durchgeführt, bei der die nukleare. Dynamik während des Laserpulses vernachlässigt wird. Diese bekannte Näherung konnte im Rahmen der Arbeit erstmals auf nichtadiabatisch gekoppelte Potentialflächen angewandt werden. Anschließend wurde für das interessierende Quantensystem mit Hilfe des Mapping-Formalismus ein klassisches Analogon eingeführt und dessen Dynamik eingehend studiert. Dies ist deshalb bemerkenswert, weil dadurch erstmals eine Anwendung von klassischen Methoden aus dem Bereich der nichtlinearen Dvnamik auf nichtadiabatische Quantensvsteme möglich wurde. Schließlich konnten klassische periodische Bahnen des Systems identifiziert werden. Dabei handelte es sich im hier betrachteten Fall nichtadiabatisch gekoppelter Potentiale um eine völlig neue Art von vibronischen periodischen Orbits, die sowohl aus einem nuklearen als auch einem elektronischen Freiheitsgrad bestehen. Dadurch konnte in einem nächsten Schritt mit Hilfe einiger weniger Orbits die Kurzzeitdynamik des Systems modelliert werden. Den Schlusspunkt dieser Untersuchungen bildete die klassische Simulation von zeitaufgelösten Pump-Probe-Spektren. Nachdem diese neue Methode mit periodischen Orbits an einem einfachen, stark idealisierten Modell erfolgreich getestet werden konnte, stellte sich jedoch schnell heraus, dass es in mehrdimensionalen Modellen mit einer Torsionsmode zur Beschreibung von Photoisomerisierungs-Prozessen nicht mehr so leicht möglich ist, solche einfachen periodischen Bahnen zu finden, weil die Zeitskalen von nuklearer und elektronischer Bewegung in diesen Systemen sehr unterschiedlich sind. Es ist deshalb in diesem Fall sinnvoll, das Konzept periodischer Orbits dahingehend zu erweitern, die klassische Dynamik in unterschiedliche allgemeine Bewegungstypen einzuteilen, die dann zur Interpretation von quantenmechanischen Ergebnissen herangezogen werden können. Dies stellt eine neue Möglichkeit dar, die komplizierte Wellenpaketdynamik auf physikalisch intuitive Weise zu veranschaulichen. Zusammenfassend kann man sagen, dass diese Arbeit Beiträge für das Verständnis nichtadiabatischer Quantendynamik liefert: Zum einen werden Fragestellungen von prinzipiellem Interesse diskutiert, wie z.B. der klassische Limes von Quantensystemen insbesondere bei chaotischem Verhalten, zum anderen werden durch die Anwendung von Analyseverfahren der klassischen nichtlinearen Dynamik auf vibronisch gekoppelte Molekülmodelle neue Gebiete erschlossen, die ein verbessertes theoretisches Verständnis experimenteller Ergebnisse im Bereich der Kurzzeitspektroskopie ermöglichen.
The miniaturization of electronics is reaching its limits. Structures necessary to build integrated circuits from semiconductors are shrinking and could reach the size of only a few atoms within the next few years. It will be at the latest at this point in time that the physics of nanostructures gains importance in our every day life. This thesis deals with the physics of quantum impurity models. All models of this class exhibit an identical structure: the simple and small impurity only has few degrees of freedom. It can be built out of a small number of atoms or a single molecule, for example. In the simplest case it can be described by a single spin degree of freedom, in many quantum impurity models, it can be treated exactly. The complexity of the description arises from its coupling to a large number of fermionic or bosonic degrees of freedom (large meaning that we have to deal with particle numbers of the order of 10^{23}). An exact treatment thus remains impossible. At the same time, physical effects which arise in quantum impurity systems often cannot be described within a perturbative theory, since multiple energy scales may play an important role. One example for such an effect is the Kondo effect, where the free magnetic moment of the impurity is screened by a "cloud" of fermionic particles of the quantum bath.
The Kondo effect is only one example for the rich physics stemming from correlation effects in many body systems. Quantum impurity models, and the oftentimes related Kondo effect, have regained the attention of experimental and theoretical physicists since the advent of quantum dots, which are sometimes also referred to as as artificial atoms. Quantum dots offer a unprecedented control and tunability of many system parameters. Hence, they constitute a nice "playground" for fundamental research, while being promising candidates for building blocks of future technological devices as well.
Recently Loss' and DiVincenzo's p roposal of a quantum computing scheme based on spins in quantum dots, increased the efforts of experimentalists to coherently manipulate and read out the spins of quantum dots one by one. In this context two topics are of paramount importance for future quantum information processing: since decoherence times have to be large enough to allow for good error correction schemes, understanding the loss of phase coherence in quantum impurity systems is a prerequisite for quantum computation in these systems. Nonequilibrium phenomena in quantum impurity systems also have to be understood, before one may gain control of manipulating quantum bits.
As a first step towards more complicated nonequilibrium situations, the reaction of a system to a quantum quench, i.e. a sudden change of external fields or other parameters of the system can be investigated. We give an introduction to a powerful numerical method used in this field of research, the numerical renormalization group method, and apply this method and its recent enhancements to various quantum impurity systems.
The main part of this thesis may be structured in the following way:
- Ferromagnetic Kondo Model,
- Spin-Dynamics in the Anisotropic Kondo and the Spin-Boson Model,
- Two Ising-coupled Spins in a Bosonic Bath,
- Decoherence in an Aharanov-Bohm Interferometer.
Die Entwicklung der Renormierungsgruppen-Technik, die in ihrer feldtheoretischen Version auf Ideen von Stückelberg und Petermann und in der Festkörperphysik auf K.G. Wilson zurückgeht, hat wesentliche Einsichten in die Natur physikalischer Systeme geliefert. Insbesondere das Konzept der so genannten Universalitätsklassen erhellt, warum Systeme, die durch scheinbar sehr verschiedene Hamilton-Operatoren beschrieben werden, doch im Wesentlichen die selbe (Niederenergie-)Physik zeigen. Ein weiterer Grund für den Erfolg dieser Methode liegt darin begründet, dass sie in systematischer Weise unendlich viele Feynman-Diagramme aufsummiert und somit über konventionelle Störungstheorie hinaus geht. Dies spielt in der Festkörperphysik vor allem dann eine wichtige Rolle, wenn das vorliegende physikalische System stark korreliert ist. Entsprechend der Vielzahl von Anwendungsmöglichkeiten hat sich in den vergangenen Jahrzehnten eine große Bandbreite verschiedener Formulierungen der Renormierungsgruppen-Technik ergeben. Eine davon ist die sogenannte funktionale Renormierungsgruppe, die auf Wegner und Houghton zurück geht und die auch in der vorliegenden Arbeit benutzt und weiter entwickelt wurde. Wir haben hier insbesondere auf die Einbeziehung der wichtigen Reskalierungsschritte wertgelegt. Als erstes Anwendungsgebiet des neu entwickelten Formalismus wurden stark korrelierte Elektronen in einer Raumdimension ausgewählt und hier insbesondere ein Modell, das als Tomonaga-Luttinger-Modell (TLM) bezeichnet wird. Im TLM wechselwirken Elektronen mit einer strikt linearen Energiedispersion ausschließlich über so genannte Vorwärtsstreu-Prozesse. Aufgrund der Linearisierung der Energiedispersion nahe der Fermipunkte ergibt sich ein Modell, das z.B. mit Hilfe der so genannten Bosonisierungs-Technik exakt gelöst werden kann. Hauptziel der vorliegenden Arbeit ist es, die bekannte Spektralfunktion dieses Modells unter Verwendung des Renormierungsgruppen-Formalismus zu reproduzieren. Gegenüber der bisherigen Implementierung der Renormierungsgruppe, bei der lediglich der Fluss einer endlichen Anzahl von Kopplungskonstanten betrachtet wird, stellt die Berechnung des Flusses ganzer Korrelationsfunktionen eine enorme Erweiterung dar. Der Erfolg dieser Herangehensweise im TLM bestärkt die Hoffnung, dass es in Zukunft auch möglich sein wird, die Spektralfunktionen anderer Modelle mit dieser Methode zu berechnen, bei denen herkömmliche Techniken versagen.
The challenging intricacies of strongly correlated electronic systems necessitate the use of a variety of complementary theoretical approaches. In this thesis, we analyze two distinct aspects of strong correlations and develop further or adapt suitable techniques. First, we discuss magnetization transport in insulating one-dimensional spin rings described by a Heisenberg model in an inhomogeneous magnetic field. Due to quantum mechanical interference of magnon wave functions, persistent magnetization currents are shown to exist in such a geometry in analogy to persistent charge currents in mesoscopic normal metal rings. The second, longer part is dedicated to a new aspect of the functional renormalization group technique for fermions. By decoupling the interaction via a Hubbard-Stratonovich transformation, we introduce collective bosonic variables from the beginning and analyze the hierarchy of flow equations for the coupled field theory. The possibility of a cutoff in the momentum transfer of the interaction leads to a new flow scheme, which we will refer to as the interaction cutoff scheme. Within this approach, Ward identities for forward scattering problems are conserved at every instant of the flow leading to an exact solution of a whole hierarchy of flow equations. This way the known exact result for the single-particle Green's function of the Tomonaga-Luttinger model is recovered.