Refine
Year of publication
Document Type
- Doctoral Thesis (14)
- Diploma Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
Institute
- Physik (15)
The study of the electromagnetic structure of hadrons plays an important role in understanding the nature of matter. In particular the emission of lepton pairs out of the hot and dense collision zone in heavy-ion reactions is a promising probe to investigate in-medium properties of hadrons and in general the properties of matter under such extreme conditions. The first experimental observation of an enhanced di-electron yield in the invariant-mass region 0:3 - 0:7 GeV/c2 in p+Be collisions at 4:9 GeV/u beam energy [2] was announced by the DLS collaboration [1]. Recent results of the HADES collaboration show a moderate enhancement above n Dalitz decay contributions for 12C+12C at 1 and 2 GeV/u [3, 4] confirming the DLS results. There are several theoretical explanations of this observation, most of them focusing on possible in-medium modifications of the properties of vector mesons. At low beam energies the question whether the observed excess is related to any in-medium effects remains open because of uncertainties in the description of elementary di-electron sources. In this work the di-electron production in p+p and d+p reactions at a kinetic beam energy of 1:25 GeV/u measured by the HADES spectrometer is discussed. At Ekin = 1:25 GeV/u, i.e. below the n meson production threshold in proton-proton reactions, the delta Dalitz decay is expected to be the most abundant source above the pi 0 Dalitz decay region. The observed large difference in di-electron production in p+p and d+p collisions suggests that di-electron production in the d+p system is dominated by the n+p interaction. In order to separate delta Dalitz decays and np bremsstrahlung the di-electron yield observed in p+p and n+p reactions, both measured at the same beam energy, has been compared. The main interest here is the investigation of iso-spin effects in baryonic resonance excitations and the off-shell production of vector mesons [5]. We indeed observe a large difference in di-electron production in p+p and n+p reactions. Results of these studies will be compared to recent calculations. We will also present our experimentally defined cocktail for heavy-ion data. At much higher beam energies experimental results of the CERES [6] and NA60 [7] collaborations also show an enhancement in the invariant mass region 0:3 - 0:7 GeV/c2, in principle similar to the situation in DLS. A strong excess of lepton pairs observed by recent high energy heavy-ion dilepton experiments hint to a strong influence of baryons, however no data exist at highly compressed baryonic matter, achievable in heavy-ion collisions from 8 - 45 GeV/u beam energy. These conditions would allow to study the expected restoration of chiral symmetry by measuring in-medium modifications of hadronic properties, an experimental program which is foreseen by the future CBM experiment at FAIR. The experimental challenge is to suppress the large physical background on the one hand and to provide a clean identification of electrons on the other hand. In this work, strategies to reduce the combinatorial background in electron pair measurements with the CBM detector are discussed. The main goal is to study the feasibility of effectively reducing combinatorial background with the currently foreseen experimental setup, which does not provide electron identification in front of the magnetic field.
The Compressed Baryonic Matter experiment (CBM) at FAIR and the NA61/SHINE experiment at CERN SPS aim to study the area of the QCD phase diagram at high net baryon densities and moderate temperatures using heavy-ion collisions. The FAIR and SPS accelerators cover energy ranges 2-11 and 13-150 GeV per nucleon respectively in laboratory frame for heavy ions up to Au and Pb. One of the key observables to study the properties of a matter created in such collisions is an anisotropic transverse flow of particles.
In this work, the performance of the CBM experiment for anisotropic flow measurements is studied with Monte-Carlo simulations using gold ions at SIS-100 energies employing different heavy-ion event generators. Also, procedures for centrality estimation and charged hadron identification are described and corresponding frameworks are developed.
The measurement of the reaction plane angle is performed with Projectile Spectator Detector (PSD), which is a hadron calorimeter located at a very forward angle. To prevent radiation damage by the high-intensity ion beam, the PSD has a hole in the center to let the beam pass through. Various combinations of CBM detector subsystems are used to investigate the possible systematic biases in flow and centrality measurements. Effects of detector azimuthal non uniformity and the PSD beam hole size on physics performance are studied. The resulting performance of CBM for flow measurements is demonstrated for identified charged hadron anisotropic flow as a function of rapidity and transverse momentum in different centrality classes.
The measurement techniques developed for CBM were also validated with the experimental data recently collected by the NA61/SHINE experiment at CERN SPS for Pb+Pb collisions at the beam momenta 30A GeV/c. Compared to the existing data from the NA49 experiment at the CERN SPS, the new data allows for a more precise measurement of anisotropic flow harmonics. The fixed target setup of NA61/SHINE also allows extending flow measurements available from the STAR at the RHIC beam energy scan (BES) program to a wide rapidity range up to the forward region where the projectile nucleon spectators appear. In this thesis, an analysis of the anisotropic flow harmonics in Pb+Pb collisions at beam momenta 30A GeV/c collected by the NA61/SHINE experiment in the year 2016 is presented. Flow coefficients are measured relative to the spectator plane estimated with the Projectile Spectators Detector (PSD). The flow coefficients are obtained as a function of rapidity and transverse momentum in different classes of collision centrality. The results are compared with the corresponding NA49 data and the measurements from the RHIC BES program.
The PhD addresses the feasibility of reconstructing open charm mesons with the Compressed Baryonic Matter experiment, which will be installed at the FAIR accelerator complex at Darmstadt/Germany. The measurements will be carried out by means of a dedicated Micro Vertex Detector (MVD), which will be equipped with CMOS Monolithic Active Pixel Sensors (MAPS). The feasibility of reconstructing the particles with a proposed detector setup was studied.
To obtain conclusive results, the properties of a MAPS prototype were measured in a beam test at the CERN-SPS accelerator. Based on the results achieved, a dedicated simulation software for the sensors was developed and implemented into the software framework of CBM (CBMRoot). Simulations on the reconstruction of D0-mesons were carried out. It is concluded that the reconstruction of those particles is possible.
The PhD introduces the physics motivation of doing open charm measurements, represents the results of the measurements of MAPS and introduces the innovative simulation model for those sensors as much as the concept and results of simulations of the D0 reconstruction.
Event-by-event fluctuations of the particle yield ratios in heavy-ion collisions at 20 - 158 AGeV
(2010)
Non-statistical event-by-event fluctuations are considered as an important signal for the critical endpoint of the QCD phase diagram. Event-by-event fluctuations of different observables are thus investigated in detail in current experiments but are also an important observable to be studied at the future CBM experiment at FAIR. In this work we present the energy and centrality dependence of event-by-event fluctuations of particle yield ratios measured by the NA49 experiment in Pb+Pb collisions at 20 - 158 AGeV. Systematic studies of the influence of the dE/dx resolution on the particle identification and the centrality bin size were performed. Results can be compared to event-by-event fluctuations measured by NA49 for different observables such as <pt> or the mean charged particle multiplicity. Main results of these studies are an increase of absolute value of the dynamical particle ratio fluctuations with decreasing centrality for all considered ratios, saturation of the K/Pi and K/p ratio fluctuations for peripheral Pb + Pb collisions at 158A GeV and scaling of the energy and centrality dependences of the p/Pi ratio fluctuations with NpNPi. The measured energy and centrality dependences of the K/Pi and K/p ratio fluctuations scale with NK in a different way. The saturation of the mentioned ratios fluctuations was attributed to the development of pronounced spike at zero in the eventwise ratio distributions, which, as was shown by Monte Carlo simulations, influence the measured fluctuations in the very peripheral Pb + Pb collisions at 158A GeV. In future, the CBM experiment at FAIR will investigate the intermediate region of the QCD phase diagram in great detail searching for the first order phase transition line and the expected critical endpoint. It is therefore important to closely investigate its sensitivity towards particle ratio fluctuations in Au+Au collisions at 10-45 AGeV beam energy. Detailed simulation studies will be presented. As an outcome of these feasibility studies we conclude that the CBM experiment will be able to provide high quality data on the subject of the event-by-event flucutations of particle yield ratios with sensitivity in the order of 1%.
The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at these extreme conditions will be produced and studied in heavy-ion collisions with a fixed target set-up.
The present work is dedicated to the main component of the CBM experiment - the Silicon Tracking System (STS). The STS comprises of 8 tracking stations with 1292 double sided silicon microstrip sensors. The STS has to enable the reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution of Δp/p =1%, and withstand the radiation load of up to 1 x 1014 neq/cm2 (neq — radiation dose of 1 MeV neutron equivalent). Self-triggering read-out electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass micro-cables.
During the R&D phase, as well as in the pre-series and series production phase, the characterization of the sensors, of the front-end electronics and of the complete detector modules has to be performed. It is evident that characterization of more than 1000 silicon microstrip sensors and later of complete detector modules is very time-consuming, and may even damage the objects if not performed carefully. One of the goals of this work was to develop a systematic procedure for the quality assurance for the double-sided silicon microstrip sensors. This includes static optical inspection and visual tests, passive electrical test (such as leakage current, bulk capacitance, inter-strip capacitance & resistances, bias resistance and coupling capacitance), radiation hardness and long-term stability. A strategy for the quality assurance of these sensors is presented, defining the various tests to be performed and the documentation of the results. The techniques and quality assurance criteria will be applied for the pre-series and series production.
With decreasing feature size and increase in functionality and structures, the classical mechanical probe approach for internal fault detection and functional testing faces increasing challenges. In the field of silicon based chips and sensors there is rarely any analysis on the topic of non-invasive or contact-less probing and characterization, despite the fact that the contact-less probing is becoming more and more important as the fabrication technologies become smaller and more susceptible to the parasitic impact of mechanical probes. The silicon micro-strip double sided sensors used in STS have a complex structure, such as 1024 metal electrodes, 2048 bias resistors, 2048 DC pads and 4098 AC pads for probing, several guard rings, and even more in the 6.2 cm x 6.2 cm prototype sensor. Photo-intrusive technique is the best solution for the characterization and investigation of crucial parameters related to the detector operation and its functionality. A photo-intrusive probing is a method in which a non-invasive pulsed laser of a desired wavelength is used to inject the photon into the bulk and resulting in electron-hole pairs (e-h). In a completely depleted silicon sensor the charge injected (or generated) by the pulsed laser beam could be detected as current and shall be used for characterization.
A non-invasive contact-less Laser Test System (LTS) was developed based on a pulsed laser to investigate properties of the silicon sensors. The set-up is able to inject charge locally and scan sensors(or detector modules) with a pulsed infra-red laser driven by a step motor. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-
red laser light (spot size = 12 μm , wavelength = 1060 nm). The duration (10 ns) and power (5 mW) of the laser pulses are selected such that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by the minimum ionizing particles (MIP) in these sensors. The set-up was used to developed characterization procedures to determine the charge sharing between strips, and to measure a qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the set-up are small prototype sensors (256 strips, pitch = 50 μm on each side) and full-size detector modules (1024 strips/side and pitch = 58 μm). They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. Laser scans for amplitude response, charge sharing in the inter-strip region, and spot-size determination technique are reported. For the verification of the some design parameters, unique methods of determining coupling capacitance, and inter-strip capacitance have been developed. The modules were also tested with proton beams, and the charge sharing in the inter-strip region has been compared to the laser test results.
Development of prototype components for the Silicon Tracking System of the CBM experiment at FAIR
(2013)
The CBM experiment at future accelerator facility FAIR will investigate the properties of nuclear matter under extreme conditions. The experimental programm is different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that create nuclear matter at high temperatures. In contrast, the study of the QCD phase diagram in the region of the highest net baryon densities and moderate temperatures that is weakly explored will be performed with high precision. For this, collisions of different heavy-ion beams at the energies of 10–45GeV/nucleon with nuclear target will be measured.
The physics programme of the CBM experiment includes measurement of both rare probes and bulk observables that originate from various phases of a nucleus-nucleus collision. In particular, decay of particles with charm quarks can be registered by reconstructing the decay vertex detached from the primary interaction point by several hundreds of micrometers (e.g., decay length c Tau = 123 µm for D0 meson). For this, precise tracking and full event reconstruction with up to 600 charged particle tracks per event within acceptance are required. Other rare probes require operation at interaction rate of up to 10MHz. The detector system that performs tracking has to provide high position resolution on the order of 10 µm, operate at high rates and have radiation tolerant design with low material budget.
The Silicon Tracking System (STS) is being designed for charged-particle tracking in a magnetic field. The system consists of eight tracking station located in the aperture of a dipole magnet with 1T field. For tracks with momentum above 1GeV, momentum resolution of such a system is expected to be about 1%. In order to fulfill this task, thorough optimization of the detector design is required. In particular, minimal material budget has to be achieved.
Production of a detector module requires research and development activities with respect to the module components and their integration. A detector module is a basic functional unit that includes a sensor, an analogue microcable and frontend electronics mounted on a support structure. The objective of the thesis is to perform quality assurance tests of the prototype module components in order to validate the concept of the detector module and to demonstrate its operation using radioactive sources and particle beams.
Double-sided silicon microstrip detectors have been chosen as sensor technology for the STS because of the combination of a good spatial resolution, two-dimensional coordinate measurement achieved within low material budget (0.3%X0), high readout speed and sufficient radiation tolerance. Several generations of double-sided silicon microstrip sensors have been manufactured in order to explore the radiation hard design features and the concept of a large-area sensor compatible with ladder-type structure of the detector module. In particular, sensors with double metal layer on both sides and active area of 62×62mm2 have been produced. Electrical characterization of the sensors has been performed in order to establish the overall operability as well as to extract the device parameters. Current-voltage, capacitance-voltage characteristics and interstrip parameters have been measured.
Readout of the sensors has been done using self-triggering front-end electronics. A front-end board has been developed based on the n-XYTER readout chip with data driven architecture and capable of operating at 32MHz readout rate. The front-end board included an external analog-to-digital converter (ADC). Calibration of the ADC has been performed using both 241Am X-ray source and external pulse generator. Threshold calibration and investigation of temperature dependence of chip parameters has been carried out.
Low-mass support structures have been developed using carbon fibre that has the rigidity to hold the detector modules and introduce minimal Coulomb scattering of the particle tracks. Analogue microcables have been produced with aluminium traces on a polyimide substrate, thus combining good electrical connection with low material budget. Microcable structure includes several layers optimized for low trace capacitance and thus low-noise performance.
A demonstrator tracking telescope has been constructed and operated in several beam tests including 2.5GeV proton beam at COSY synchrotron (Jülich). Three tracking stations have been complemented with several beam hodoscopes. Analysis of the beam data has yielded information on analogue and timing response, beam profile. Tracking and alignment information has been obtained. Beam stability has been evaluated using specially developed monitoring tools.
As a result of conducted studies, performance of the module components have been evaluated and requirements to the detector module have been formulated. Practical suggestions have been made with respect to the structure of the detector module, whereas precise definition of the final detector module design was outside of the scope of this thesis.
The upcoming CBM Experiment at FAIR aims at exploring the region of highest net baryonic densities reproducible in energetic heavy ion collisions. Due to the very high beam intensities expected at FAIR, unprecedented data regarding rare observables such as charm quarks and hyperons will be accessible. Open charm mesons are particularly interesting, since they support the reconstruction of the total charm cross-section in order to search for exotic phenomena, e.g. a phase transition towards the quark-gluon plasma which is predicted by several theoretical models. Open charm studies will be performed via secondary vertex reconstruction with a suitable Micro-Vertex Detector (MVD). The CBM-MVD is currently in the development and prototyping phase with primary design goals concentrating on spatial resolution, radiation hardness, material budget, and readout performance. CMOS Monolithic Active Pixel Sensors (MAPS) provide an excellent spatial resolution for the MVD in the order of few um in combination with a low material budget (50 um thickness) and high radiation hardness. The active volume of the devices is formed from the epitaxial layer of standard CMOS wafers. This allows for integration of pixels together with analogue and digital data processing circuits on one single chip. This option was explored with the MIMOSA-26 prototype, which integrates functionalities like pedestal correction, correlated double sampling, discrimination and data sparsification based on zero suppression combined with a small and dense pixel matrix. The pixel array composed of 576 lines of 1152 pixels is read out in a column-parallel rolling shutter mode. One discriminator per column and the digital data processing circuits are located on the same chip in a 3 mm wide area beneath the pixel matrix allowing for binary hit encoding. This area also contains the circuits for pedestal correction and the configuration memory, which is programmed via JTAG. The preprocessed digital data is read out via two 80 Mbit/s LVDS links per sensor, which stream their data continuously based on a low-level protocol.
Within the scope of this thesis, a readout concept of the CBM-MVD is proposed and studied based on the current MIMOSA sensor generation. The backbone of the system is formed by the Readout Controller boards (ROCs) featuring FPGA microchips and optical links. Several ROC prototypes are considered using the synergy with the HADES Experiment. Finally, the TRB3 board is selected as a possible candidate for the initial FAIR experiments. Furthermore, a highly scalable, hardware independent FPGA firmware is implemented in order to steer and read out multiple MIMOSA-26 sensors. The reconfigurable firmware is also designed with the support for future MIMOSA sensor generations. The free-streaming sensor data is deserialized and error-checked, prior to its transmission over a suitable network interface. In order to demonstrate the validity of the concept, a readout network similar to the HADES Data Acquisition (DAQ) system is developed. The ROC is tested on the HADES TRB2 boards and data is acquired using suitable MAPS add-on boards and the TrbNet protocol.
In the context of the CBM-MVD prototype project, a readout network with 12 MIMOSA-26 sensors has been prepared for an in-beam test at the CERN SPS facility. A comprehensive control system is designed comprising customized software tools. The subsequent in-beam test is used to validate the design choices. As a result, the system could be operated synchronously and dead-time free for several days. The readout network behavior in a realistic operating environment has been carefully studied with the outcome the the TrbNet based approach handles the MVD prototype setup without any difficulties. A procedure to keep the sensors synchronous even in case of a data overflow has been pioneered as well. After the beam test, improvements and conceptual changes to the readout systems are being addressed which allow an integration into the global CBM DAQ system.
In this thesis, different physical and electrical aspects of silicon microstrip sensors and low-mass multi-line readout cables have been investigated. These silicon microstrip sensors and readout cables will be used in the Silicon Tracking System (STS) of the fixed-target heavy-ion Compressed Baryonic Matter (CBM) experiment which is under development at the upcoming Facility for Antiproton and ion Research (FAIR) in Darmstadt, Germany. The highly segmented low-mass tracking system is a central CBM detector system to resolve the high tracking densities of charged particles originating from beam-target interactions. Considering the low material budget requirement the double-sided silicon microstrip detectors have been used in several planar tracking stations. The readout electronics is planned to be installed at the periphery of the tracking stations along with the cooling system. Low-mass multi-line readout cables shall bridge the distance between the microstrip sensors and the readout electronics. The CBM running operational scenario suggests that some parts of the tracking stations are expected to be exposed to a total integrated particle fluence of the order of 1e14 neq/cm2. After 1e14 neq/cm2 the damaged modules in the tracking stations will be replaced. Thus radiation hard sensor is an important requirement for the sensors. Moreover, to cope with the high reaction rates, free-streaming (triggerless) readout electronics with online event reconstruction must be used which require high signal-to-noise (SNR) ratio (i.e., high signal efficiency, low noise contributions). Therefore, reduction in noise is a major goal of the sensor and cable development.
For better insight into the different aspects of the silicon microstrip sensors and multi-line readout cables, the simulation study has been performed using SYNOPSYS TCAD tools. 3D models of the silicon microstrip sensors and the readout cables were implemented which is motivated by the stereoscopic construction of the silicon microstrip sensors. For the evaluation of the performance of the silicon microstrip sensors in the harsh radiation environment during experimental operation, a radiation damage model has been included. It reproduces the behavior of the irradiated CBM prototype sensors. In addition to the static characteristics, the interstrip parameters relevant to understand strip isolation and cross-talk issues have been extracted. The transient simulations have been performed to estimate the charge collection performance of the irradiated sensors. The signal transmission in the readout cables has been evaluated with the finite element simulation tool RAPHAEL. Based on the performance of the front-end electronics used for early prototyping in the CBM experiment, capacitive and resistive noise contributions from the silicon microstrip sensors and multi-line readout cables have been extracted.
To validate the aforementioned simulations, numerous tests have been performed both on the multi-line readout cables and silicon microstrip sensors. Characterizations of multi-line readout cables and silicon microstrip sensors in laboratory conditions have been found to agree reasonably well with the simulations. Considering the expected radiation environment the behavior of silicon microstrip sensors have been studied especially in terms of noise and charge collection efficiency. Source-scan of the silicon microstrip sensors using 241Am is presented. In order to test a first system of detector stations including the data acquisition system, slow control and online monitoring software and for track reconstruction, in-beam tests have been performed at the COSY synchrotron of the Research Center Juelich, Germany. Further, different design parameters have been suggested to improve the sensor and readout cable design on the basis of the simulations and the measurements. Many of these parameters have been implemented in the new prototypes under production. These new prototypes will be tested in-beam by the end of 2013.
High-energetic heavy-ion collisions offer the unique opportunity to produce and to study dense nuclear matter in the laboratory. The future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, will provide beams of heavy nuclei up to kinetic energies of 11 GeV/nucleon. At these energies, the nuclear matter in the collision zone of two nuclei will be compressed to densities of up to 5 − 10 times the saturation density of atomic nuclei, similar to matter densities existing in the core of massive neutron stars. Under those conditions, nucleons are expected to melt and form a new state of matter, which consists of quarks and gluons, the so called Quark-Gluon Plasma (QGP). The search for such a phase transition from hadronic to partonic matter, and the exploration of the nuclear matter equation-of-state at high densities are the major goals of heavy ion experiments worldwide.
The observables, which are proposed to probe the properties of dense nuclear matter and possible phase transitions, include multi-strange hyperons, antibaryons, lepton pairs, collective flow of identified particles, fluctuations and correlations of various particles, particles containing charm quarks, and hypernuclei. These observables have to be measured in multi-dimensions, i.e. as function of collision centrality, rapidity, transverse momentum, energy, emission angle, etc., which requires extremely high statistics. Moreover, some of these particles are produced very rarely.
Therefore, the Compressed Baryonic Matter (CBM) experiment at FAIR is designed to run at collision rates of up to 10 MHz, in order to perform measurements with unprecedented precision. Due to the complicated decay topology of many observables, no hardware trigger can be applied, and the data have to be analysed online in order to filter out the interesting events.
This strategy requires free-streaming read-out electronics, which provides time stamps to all detector signals, a high performance computer center, and high-speed reconstruction algorithms, which provide an online track and event reconstruction based on time and position information of the detector hits (”4-D“ reconstruction).
The core detector of the CBM experiment is the Silicon Tracking System (STS). The main task of the STS is to provide track reconstruction and momentum de- termination of charged particles originating from beam-target interactions. To fulfil the whole tasks the STS is located in the large gap of a superconducting dipole magnet with a bending power of 1 Tm providing momentum measurements for charged particles. The STS comprises 8 detector stations, which are positioned from 30 cm to 100 cm downstream the target. The corresponding active area of the stations grows up from 40×50 cm 2 up to 100×100 cm 2 with a totalarea of 4 m2. The silicon double-sided sensors exhibit 1024 strips on each side with a stereo angle at p-side of 7.5 ◦ and a strip pitch of 58 μm. The strip length ranges from 2 cm for sensors located in a close vicinity to the beam axis, up to 12 cm for other sensors where the flux of the reaction products drops down substantially. In total, the STS consist of 896 sensors mounted on 106 detector ladders. The detector readout electronics dissipates 40 kW and will be equipped with a CO 2 bi-phase cooling system. The detector including electronics will be mounted in a thermal enclosure to allow for sensor operation at below −5 ◦ C which minimizes radiation induced leakage currents.
The task of the STS is to measure the trajectories of up to 800 charged particles per collision with an efficiency of more than 95% and a momentum resolution of 1 − 2%. In order to guarantee the required performance over the full lifetime of the CBM experiment, the detector system has to have a low material budget, a high granularity, a high signal-to-noise (SNR) ratio, and a high radiation tolerance. As a result of optimisation studies, the STS consists of double-sided silicon microstrip sensors, about 300 μm thick, which have to provide a SNR ratio of more than 10, even after radiation with the expected equivalent lifetime fluence of 10 14 1 MeV n eq cm −2.
This thesis is devoted to the characterization of double-sided silicon microstrip sensors with an emphasis on investigation of their radiation hardness. Different prototypes of double sided silicon sensors produced by two vendors have been irradiated by 23 MeV protons up to the double life time fluence for the CBM experiment (2 × 10 14 1 MeV n eq cm −2 ).
The sensor properties have been characterised before and after irradiation. It was found, that after irradiation with a double lifetime fluence the leakage current increased 1000 times, which results in an increased shot noise. Moreover, the relative charge collection efficiency of irradiated with respect to non-irradiated sensors drops down to 85% for the lifetime equivalent fluence, and down to 73% for the double lifetime fluence, both for the p-side and n-side. For non-irradiated sensors the SNR was found to be in the range of 20 − 25, whereas for irradiated sensors it dropped down to 12 − 17.
In addition to the sensor characterization, a part of this thesis was devoted to the optimisation of the sensor readout scheme. In order to investigate the possible increase of SNR, and to reduce the number of readout channels in the outer aperture of STS, three versions of routing lines have been realized for the p-side readout of the sensor prototype, and have been tested in the laboratory and under beam conditions.
The tests have been performed with different inclination angles between beam direction and sensor surface, corresponding to the polar angle acceptance of the CBM experiment, which is from 2.5 ◦ to 25 ◦.
As a result of the studies carried out in this thesis work, the radiation hardness of the double-sided silicon microstrip sensors developed for the CBM STS detector was confirmed. Also the advantage of individual read-out of sensor channels in the lateral regions of the detector was verified. This allowed to start the tendering process for sensor series production in industry, an important step towards the construction of the detector in the coming years.
The mission of the Compressed Baryonic Matter (CBM) experiment is to investigate the phase diagram of strongly interacting matter in the region of high net-baryon densities and moderate temperatures. According to various transport models, matter densities of more than 5 times saturation density can be reached in collisions between gold nuclei at beam energies between 5 and 11 GeV per nucleon, which will be available at FAIR. The core detector of the CBM experiment is the Silicon Tracking System (STS), which is used to measure the tracks of up to 700 particles per collision with high efficiency (>95%) and good momentum resolution (<1.5%). The technological and experimental challenge is to realize a detector system with very low material budget, in order to reduce multiple scattering of the particles, and a free-streaming data readout chain, in order to achieve reaction rates up to 10 MHz together with an online event reconstruction and selection.
The STS comprises 8 tracking stations positioned between 30 cm and 100 cm downstream the target inside a magnetic field, covering polar emission angles up to 25 degrees. A station consists of vertical structures with increasing number (between 8 and 16, depending on station number), each structure carrying between 2 and 10 double-sided microstrip silicon sensors, which are connected through low-mass microcables to the readout electronics placed at the detector periphery outside the active detector area.
The work presented in this thesis focuses on the detector performance simulation and local hit pattern reconstruction in the STS. For efficient detector design and reconstruction performance, a reliable detector response model is of utmost importance. Within this work, a realistic detector response model was designed and implemented in the CBM software framework. The model includes non-uniform energy loss of an incident particle within a sensor, electric field of a planar p-n junction, Lorentz shift of the charge carriers, their diffusion, and the influence of parasitic capacitances. The developed model has been verified with experimental data from detector tests in a relativistic proton beam. Cluster size distributions at different beam incident angles are sensitive to charge sharing effects and were chosen as an observable for the verification. Taking into account parasitic capacitances further improves the agreement with measured data.
Using the developed detector response model, the cluster position finding algorithm was improved. For two-strip clusters, a new, unbiased algorithm has been developed, which gives smaller residuals than the Centre-Of-Gravity algorithm. For larger clusters, the head-tail algorithm is used as the default one. For an estimate of the track parameters, the Kalman Filter based track fit requires not only hit positions but their uncertainties as an input. A new analytic method to estimate the hit position errors has been designed in this work. It requires as input neither measured spatial resolution nor information about an incident particle track. The method includes all the sources of uncertainties independently, namely: the cluster position finding algorithm itself, the non-uniform energy loss of incident particles, the electronics noise, and the discretisation of charge in the readout chip.
The verification with simulations shows improvements in hit and track pull distributions as well as x²-distributions in comparison to the previous simple approach. The analytic method improves the track parameters reconstruction by 5-10%.
Several STS module prototypes have been tested in a relativistic proton beam. A signal to-noise ratio was obtained at the level of 10-15 for modules made of 30 cm long microcable and of either one or two 6.2 x 6.2 cm² CiS sensors.
First simulations have shown that this signal-to-noise ratio is sufficient to reach the required efficiency and momentum resolution. The high-radiation environment of CBM operation will deteriorate the sensor performance. Radiation hardness of sensors has been studied in the beam with sensors irradiated to 2 x 10[hoch 14] 1MeV [neq/cm²], twice the lifetime dose expected for CBM operation. Charge collection efficiency drops by 17-25%, and simultaneously noise levels increase 1.5-1.75 times. The simulations show that if all sensors in the STS setup are exposed to such a fluence uniformly, the track reconstruction efficiency drops from 95.5% to 93.2% and the momentum resolution degrades from 1.6% to 1.7%.