Refine
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Genexpression (1)
- Hemicellulose (1)
- Nukleotidzucker (1)
- UDP-Glucose-Dehydrogenase (1)
- UDP-glucose dehydrogenase (1)
- Zellwand (1)
- cell wall precursor (1)
- gene expression (1)
- hemicellulose (1)
- nucleotid-sugars (1)
Institute
Die Zellwand von Arabidopsis thaliana enthält große Menge an Hemicellulosen und Pektinen, deren Bestandteile sich hauptsächlich von UDP-Glucuronsäure ableiten. Die Bildung von UDP-Glucuronsäure wird in Pflanzen überwiegend durch die UDP-Glucose Dehydrogenase (UGD) katalysiert, die UDP-Glucose unter der Bildung von NADH in UDP-Glucuronsäure umwandelt. Arabidopsis thaliana besitzt vier UGD-Gene und ein Pseudogen, welche starke Homologien zu Genen anderer bekannter pflanzlicher UDP-Glucose Dehydrogenasen zeigen. Mit Hilfe von Promotor::GUS-Reportergenpflanzen und real time-PCR-Analysen konnte in dieser Arbeit gezeigt werden, dass die vier UGD-Gene nicht nur in verschiedenen Geweben und zu unterschiedlichen Zeitpunkten der Morphogenese exprimiert werden, sondern auch in unterschiedlicher Stärke. Dabei scheint jedoch zu jedem Zeitpunkt der Morphogenese, bis auf die Samenentwicklung, eine der vier UGD-Isoformen in Arabidopsis thaliana exprimiert zu werden. Eine biochemische Charakterisierung der verschiedenen Isoformen zeigte einen sehr ähnlichen Km-Wert von ca. 43 µM für NAD+, während sich die Km-Werte für UDP-Glucose deutlich voneinander unterschieden (123 - 335µM). Alle Isoformen unterlagen einer feedback-Hemmung durch UDP-Xylose. Dabei war eine starke Hemmung durch UDP-Xylose korreliert mit einer hohen Affinität zu UDP-Glucose. Neben NAD+ konnten alle untersuchten Isoformen in geringem Maße auch NADP+ als Cofaktor verwenden. Allerdings verringerte sich die Enzymaktivität dadurch um etwa 80%. Alternative Zuckersubstrate konnten dagegen nicht umgesetzt werden. Die biochemischen Unterschiede zwischen den UGD-Isoformen und die differentielle Expression ihrer entsprechenden Genekönnten eine wichtige Rolle bei der Regulation der Zellwandbiosynthese spielen. Denn die irreversible Oxidation von UDP-Glucose zu UDP-Glucuronsäure durch UGD fungiert als eine der Schaltstellen, an welcher der Kohlenstofffluss derpflanzlichen Zelle in Richtung Zellwandbiosynthese gesteuert werden kann. Die im Rahmen dieser Arbeit durchgeführten Analysen von Einfach-oder Doppel-knock out-Mutanten, bei denen durch eine T-DNA-Insertion ein oder zwei UGD-Gene ausgeschaltet waren, zeigte dementsprechend auch eine veränderte Zellwandzusammensetzung bei den Mutanten deltaUGD2, deltaUGD3 und deltaUGD1x deltaUGD4 und eine veränderte Funktion der Stomata bei deltaUGD1x deltaUGD4. Insgesamt waren die Phänotypänderungen gegenüber dem Wildtyp bei der Doppelmutante deltaUGD1x deltaUGD4 wesentlich ausgeprägter als bei den Einfachmutanten, was daran liegen könnte, dass der Ausfall eines UGD-Gens durch ein anderes kompensiert wird. Dafür sprechen auch die Ergebnisse der real time-PCR-Analyse, in der die Expression von UGD1, 2, 3 und 4 in sechs Tage alten Keimlingen des Wildtyps und der knock out-Mutanten untersucht wurde. Dort konnte nachgewiesen werden, dass sich das Ausschalten eines oder mehrerer UGD-Gene auf die Expression der übrigen UGD-Gene auswirkt.
Molekulare Regulation der UDP-Zucker-Biosynthese Untersuchungen anhand der myo-Inositoxygenase
(2006)
Der Nukleotidzucker UDP-Glucuronsäure ist die prinzipielle Zuckervorstufe für UDP-Galacturonsäure, -Xylose, -Arabinose und –Apiose, welche alle in die Zellwandpolymere der pflanzlichen Zellwand einfließen. UDP-Glucuronsäure kann in Arabidopsis über zwei alternative, funktionelle Synthesewege gebildet werden, wobei entweder die UDP-Glucose-Dehydrogenase oder die myo-Inositoxygenase als Schlüsselenzym, welche den Kohlehydratfluss in Richtung Zellwandbiosynthese katalysiert, involviert ist. In dieser Arbeit wurden die Gene für die Enzymisoformen der Inositoxygenase (MIOX) aus Arabidopsis thaliana analysiert. Sie repräsentieren eine kleine Genfamilie bestehend aus vier Isoformen. Studien mittels Promotor::GUS-Konstrukten und RT-PCR zeigten, dass die Transkription der MIOX-Gene eine sehr transiente und organspezifische Genexpression ist. Die Isoformen MIOX1 und MIOX2 ließen sich in nahezu allen Geweben nachweisen wogegen die Isoformen MIOX4/5 nur in den generativen Geweben aufzufinden waren. Es konnte eine deutliche Präsenz aller vier MIOX-Isoformen in den generativen Geweben nachgewiesen werden und die Nukleotidzucker, die während der Samenentwicklung benötigt werden, scheinen überwiegend über die MIOX zur Verfügung gestellt zu werden. So zeigen T-DNA-Insertionslinien von ΔMIOX1 & 2 eine reduzierte Schleimhülle um die Samen und eine erhöhte Ausfallrate bei der Samenentwicklung auf. Ansonsten zeigen die untersuchten T-DNA-Insertionslinien einen ähnlichen Wuchs wie der Wildtyp auf. Auch konnten keine Unterschiede über die durchgeführten Zellwandanalysen, mittels GC-MS, MALDI und Dionex-HPLC verifiziert werden, was durch die Redundanz der MIOX- und UGD-Isoformen erklärt werden könnte. Nichtsdestotrotz konnte bei den Isoformen ΔMIOX1 & 2 eine dramatische Reduktion beim Einbau von 3H-Inosit in Zellwandpolymere von Keimlingen verzeichnet werden, was einen klaren Beweis für eine funktionelle MIOX liefert, da in diesem Gewebe diese beiden Isoformen die einzig aktiven sind. Außerdem konnten über Promotor-Deletions-Analysen potentielle cis-Elemente für die Promotoren von MIOX2 und MIOX4 aufgedeckt werden.