Refine
Year of publication
- 2015 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Pharmazie (1)
Life-saving pig-to-human xenotransplantation is a promising technology with the potential to balance the shortage of human organs in allotransplantation. Before this approach is applied on solid vascularized organs, several barriers must be overcome. Patient safety is menaced by infectious porcine endogenous retroviruses (PERV) which are able to infect human cell lines in vitro. Successful infection with PERV is associated with diverse life-threatening consequences including gene disruption, tumorigenicity, immune suppression as well as PERV proliferation throughout the whole human body. This could cause a catastrophic xenozonoosis leading to the emergence of new forms of pathogens and pandemic diseases similar to AIDS. However, in vivo, there is hitherto no incidence of any infection with PERV in preclinical xenotransplantations performed in the past.
PERV infection of human peripheral blood mononuclear cells (huPBMC) is a critical issue discussed controversially in several studies. It is essential to address the sensitivity of huPBMC to infection by PERV since it is generally one of the first retroviral targets upon viral invasion and infection of the human body. To assess definitely if huPBMC are infected productively by PERV, target cells were challenged with the highest infectious PERV class, recombinant PERV-A/C, in different assays. Modern and standard methods to detect PERV at different stages of viral cycles were used to monitor PERV development upon contact with host cells. Indeed, PERV-A/C in supernatants of producer cell lines failed to infect mitogen-activated huPBMC. Neither retroviral reverse transcriptase (RT) nor viral RNA packaged in virus particles were observed in supernatants of cells exposed to viral supernatants. In addition, provirus was not detected in huPBMC until 56 days p. i. with PERV-A/C. Independently of the virus load applied, culture conditions of huPBMC or administration of polybrene as enhancer, PERV was unable to infect huPBMC. Results suggest that PERV in supernatants lack sufficient infectious potential to be productively generated in huPBMC.
In order to approximate xenotransplantation scenarios, different PERV producing cells including PHA-activated porcine PBMC (poPBMC) were adopted as virus source in co-cultivation studies with huPBMC. In this case, expression of viral RNA was successfully measured. However, RT activity did not increase until 28 days p. e. with PERV producer cells which indicates that viral particles devoid of infectious capacity were released from non-productively infected cells.
On the other hand, co-cultivation of both virus producer and virus recipients increases the contact pressure between PERV and target cells. Consequently, PERV was able to be detected at least as provirus in huPBMC. Although virions produced were not functional, presence of provirus in infected cells will sooner or later provoke expression of provirus. This could lead to chromosomal rearrangements as well as virus reinfection and insertional mutagenesis.
Ecotropic PERV-C displays a restricted host range to porcine cells. Given its ability to serve as template to form recombinant xenotropic PERV-A/C, PERV-C represents a potent hazard in the course of xenotransplantation. Thus, isolation and functional characterization of PERV-C in the genome of pigs in use and intended for xenotransplantation is necessary to analyze the genetics of these virions as well as to select animals lacking proviral PERV-C or to generate transgenic PERV-C negative donors.
PERV-C was isolated from the genome of a female SLAd/d haplotype pig via screening of a bacteriophage library which was constructed from the genomic DNA of poPBMC extracted from this PERV non-transmitting sow. Upon genetic complementation of provirus using a PCR fragment infectious ability of full-length PERV-C clones was investigated in cell culture. PERV-C clones were successfully reproduced in susceptible porcine cells as RT activity as well as viral RNA were detected in supernatants of infected cells 56 days p. i. Furthermore, presence of proviruses in challenged cells was confirmed by nested PCR.
PERV-C clones were also isolated from a bacteriophage library generated on genomic DNA of an Auckland island pig of the DPF colony, whose individuals display a PERV-null phenotype and are already in use for xenotransplantation, and of a Göttingen minipig, whose relatives serve as animal models to study human diseases. In contrast to PERV clones isolated from the female SLAd/d haplotype sow PERV-C clones of the Auckland island pig as well as of the Göttingen minipig were not functional and therefore unable to infect target cells. This confirms the PERV-null phenotype which renders these animals putative candidates as donors in xenotransplantation. On the other hand, presence of functional PERV-C in SLAd/d haplotype pigs exerts a negative impact on patient safety in xenotransplantation. The suitability of these animals as potent organ donors should be intensively investigated.
In conclusion, PERV of all classes pose a virological risk in xenotransplantation which should not be ignored. Since exclusion of all PERV from donor herds is impossible, generation of transgenic humanized animals lacking genomic infectious PERV represents the best strategy to guarantee patient safety in future life-saving pig-to-human xenotransplantation.