Refine
Document Type
- Doctoral Thesis (5)
Language
- German (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Compton-Effekt (1)
- Helium (1)
- Heliumatom (1)
- Ion-Atom-Stoß (1)
- Photoionisation (1)
- Rückstoßimpulsspektroskopie (1)
Institute
- Physik (5)
In dieser Arbeit wird die Elektronenemission aus langsamen He 2 HeStößen, d.h. bei Stoßenergien unterhalb von 25 keV/u, experimentell untersucht. Dabei wird auf den Vergleich der Einfachionisation (He 2 He ! He 2 He e \Gamma ) mit der Transferionisation (He 2 He ! He He 2 e \Gamma ) besonderes Gewicht gelegt. Die hier verwendete Meßtechnik ist von verschiedenen Arbeitsgruppen in den letzten Jahren entwickelt worden und unter dem Schlagwort COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) [1, 2, 3] in der Literatur zu finden. Bei COLTRIMS werden die bei einer Reaktion in einem kalten Gastarget gebildeten Ionen in einem schwachen elektrischen Feld abgesaugt. Durch den ortsaufgelösten Nachweis und die Messung der Flugzeit von der Targetzone bis zum Detektor kann die Anfangsbedingung der Bewegung im Feld, d.h. der Vektor des auf das Targetatom übertragenen Impulses, berechnet werden. Diese Methode kommt ohne Blenden aus, so daß im relevanten Teil des Phasenraumes 4ß Raumwinkel erreicht werden. Der Nachweis des Elektrons erfolgt nach demselben Prinzip, jedoch stößt man dabei an die Grenzen der Flugzeitauflösung. Deshalb wurden in allen früheren Experimenten zu ähnlichen Reaktionen [4, 5, 6, 7, 8, 9] nur zwei der drei Impulskomponenten des Elektrons bestimmt. Die Konzipierung eines Spektrometers, welches in der Lage ist, den relevanten Phasenraum lückenlos zu erfassen und dabei alle drei Impulskomponenten der Elektronen zu bestimmen, war der wesentliche Teil der apparativen Entwicklung. Das durchgeführte Experiment ist nicht nur kinematisch vollständig, sondern erlaubt durch Anwendung des Energieerhaltungssatzes auch die Bestimmung der Schale, in der das Elektron im Endzustand gebunden ist. Die beiden oben genannten Reaktionen können somit getrennt nach Ereignissen mit und ohne Anregung untersucht werden, d.h., es wurden gleichzeitig vier verschiedene Ionisationskanäle vermessen. Für den Ionisationsmechanismus bei Stößen mit einer Projektilgeschwindigkeit unterhalb der klassischen Bahngeschwindigkeit der Elektronen hat sich in den letzten Jahren der Begriff ''Sattelpunkt''Prozeß durchgesetzt [10]. Quantenmechanische Beschreibungen für Einelektronensysteme, wie das Stoßsystem p H, wurden u.a. mit der semiklassischen GekoppelteKanäleMethode [11] in einem speziellen Basissatz [12, 13] und der ''HiddenCrossings''Theorie [14, 15] gegeben. Beide Modelle beschreiben das System aus Projektil und Target als Quasimolekül. Si sind lediglich in der Lage, die groben Strukturen in den Spektren zu erklären. Das gewählte Stoßsystem He 2 He, welches zwei Elektronen besitzt, erlaubt die Untersuchung von Korrelationseffekten. Die Messungen haben ergeben, daß die Impulsverteilung des emittierten Elektrons stark davon abhängt, wo und in welchem Bindungszustand das zweite Elektron nachgewiesen wird. Die gleiche Kernladung von Projektil und Target bedingt, da alle Eigenzustände des gebildeten Quasimoleküls die Symmetrie des Hamiltonoperators gegenüber Raumspiegelung besitzen, und durch diese Spiegeloperation gehen die Endzustände der Transferionisation und der Einfachionisation ineinander über. Durch die gleichzeitige Messung der differentiellen Wirkungsquerschnitte der verschiedenen Reaktionskanäle und deren Vergleich erhält man Einblick in die zugrundeliegenden Prozesse.
In dieser Arbeit wurden zum ersten Mal explizite Ausdrücke für Strahlungskorrekturen zur Grundzustandsenergie der relativistischen Dichtefunktionaltheorie hergeleitet und im Rahmen einer Langwellennäherung ausgewertet. Dazu wurde, ausgehend von einer angemessenen Zerlegung des Wechselwirkungs-Hamiltonians (2.23), ein DFT-Analogon zu Sucher's Level-Shift Formel abgeleitet, G1. (3.54). Mit Hilfe der Ausdrücke für die Gesamtenergie Etd (3.17), die Hartree-Energie EH (3.21) sowie die korrespondierenden Potentiale (3.29), (3.30) und der Grundzustandsenergie des nichtwechselwirkenden KS-Systems, (3.41), kann diese DFT Level-Shift Formel dann mit dem Austauschkorrelationsenergiefunktional in Verbindung gebracht werden. Der resultierende Ausdruck für den Level-Shift, G1. (3.55), liefert eine exakte Darstellung des Austauschkorrelationsenergiefunktionals der RDFT. Dieses Funktional ist ein implizites Dichtefunktional, da es von den KS-Orbitalen und Eigenwerten abhängt. Der Vergleich mit dem Ausdruck für Exc aus Kapitel 6.1, der das Ergebnis des in der DFT weit verbreiteten Kopplungskonstantenintegrations-Schemas ist, zeigt, dass beide Zugänge vollkommen äquivalent sind. Allerdings wurde die in dieser Dissertation erarbeitete DFT Level-Shift Formel analog zur Standard QED-Störungsreihe abgeleitet und stellt damit einen idealen Zugang für , die Untersuchung von QED-Effekten im Rahmen relativistischer DFT dar. Insbesondere beinhaltet unser Zugang das bekannte QED-Schema, wenn man im Störanteil des Hamiltonoperators (3.32) das KS-Potential ... (3.29) durch das Potential eines wasserstoffartigen Systems ersetzt. Eine selbstkonsistente Anwendung dieses Zugangs verlangt jedoch die Lösung der relativistischen OPM-Integralgleichung. Während in Kapitel 4 gezeigt wurde, dass dies für den transversalen Austausch relativ direkt möglich ist, ist bisher noch nicht explizit überprüft worden, wie Vakuumkorrekturen im Zusammenspiel mit der OPM-Integralgleichung zu berücksichtigen sind. Da eine solche Untersuchung den Rahmen der vorliegenden Arbeit gesprengt hätte, haben wir uns auf eine perturbative Auswertung der Ausdrücke für Vakuumpolarisation und Vertexkorrektur beschränkt. .....
Gegenstand der vorliegenden Arbeit ist die Untersuchung einer Transferionisation am Beispiel des Stoßsystems (H + ; He), bei der ein Elektron des Targets eingefangen und ein Elektron ins Kontinuum emittiert wird. Ausgangspunkt für die theoretische Untersuchung der Transferionisation sind Experimente für das (H + ; He) Stoßsystem (1) . Unter anderem wurden beobachtet, dass die Elektronen bevorzugt in entgegengesetzter Richtung zum auslaufenden Projektil emittiert werden, dass hohe Emissionsenergien auftreten und alle Ejektile, (He 2+ , H 0 , e ), in die durch Einschuss- und Streurichtung des Projektils definierte Ebene emittiert werden. Unter der Annahme, dass zur Transferionisation hauptsächlich unabhängige Ein-Teilchen-Prozesse beitragen, wurde mit der vorliegenden Arbeit das Ziel verfolgt, das beobachtete markante Emissionsverhalten einer Transferionisation am Proton-Helium-Stoßsystem im Rahmen einer theoretischen Untersuchung zu verstehen. Dazu wurde ein Modellkonzept entwickelt, bei dem das Stoßgeschehen in einem semiklassischen nichtrelativistischen perturbativen Rahmen im Bild unabhängiger Ereignisse beschrieben wird. Das zentrale Anliegen der Modellierung war es, die Bedeutung der Targetstruktur für die Emissionseigenschaften zu klären. Hierbei interessierte der Einfluss der Struktur der Wellenfunktion auf dem Niveau des Modells unabhängiger Teilchen als auch die Rolle der interelektronischen Korrelation im Grundzustand des Targets. Der Einfluss der Targetstruktur auf das Emissionsverhalten wurde durch Einbau dreier verschiedener Wellenfunktionen für den Helium-Grundzustand untersucht: Um die Sensitivität der Rechnungen auf die strukturellen Eigenschaften der Targetbeschreibung zu untersuchen, wurden eine wasserstoffähnliche und eine Hartree-Fock-Beschreibung in das Modell implementiert. Beide bilden die Targetstruktur auf der Basis des Modells unabhängiger Teilchen (IPM) ab und enthalten per Definiton keine interelektronische Korrelation. Um den Einfluss zu klären, den die interelektronische Korrelation auf die Emissionseigenschaften hat, wurde der Eckart-Ansatz in das Modell eingebaut. Dieser Ansatz schließt radiale Anteile von Korrelation mit ein. Anhand eines systematischen Vergleichs der Ergebnisse konnte gezeigt werden, dass die strukturellen Eigenschaften der Wellenfunktion zwar eine Rolle spielen, aber die Qualität der Beschreibung ohne Berücksichtigung der interelektronischen Korrelation unbefriedigend bleibt, während die Berücksichtigung der radialen Anteile elektronischer Korrelation mit dem Eckart-Ansatz verglichen mit den IPM-Ansätzen sich im Hinblick auf das Emissionsverhalten als effizient erwiesen hat. Dieser Befund legt den Schluss nahe, dass die interelektronische Korrelation im Grundzustand des Heliumatoms zum Verständnis der Emissionseigenschaften äußerst wichtig ist. Trotzem werden auch mit dem Eckart-Ansatz nicht alle Züge des Emissionsverhaltens richtig wiedergegeben. Da die Bewegungen der Komponenten eines Vielteilchenproblems voneinander abhängen, besteht Grund zu der Annahme, dass ein radialsymmetrischer Ansatz zur Beschreibung des Systems Helium nicht in der Lage ist, die experimentell beobachtete Emission von Elektronen in einer Vorzugsrichtung zutreffend zu beschreiben: Neben der Radialkorrelation ist auch die Winkelkorrelation zu berücksichtigen. Die logische Erweiterung des Modells in dieser Richtung ist die Implementation eines Konfigurationsmischungs-Ansatzes. Eine zukünftige Rechnung unter Verwendung eines Konfigurationsmischungs-Ansatzes erscheint daher im Hinblick auf eine Erklärung des Emissionsverhaltens im Bild unabhängiger Ereignisse interessant. (1) V.Mergel, Dissertation, Frankfurt am Main 1996
Die hier vorliegende Arbeit stellt die experimentelle Bestimmung des Verhältnisses R der totalen Wirkungsquerschnitte von Doppel- zu Einfachionisation von Helium vor. Die Ionisation wurde durch Photonen der Energie von etwa 8 keV und 58 keV induziert. In diesem Energiebereich ist die Ionisation sowohl durch die Absorption eines Photons wie auch durch die Compton-Streuung möglich. Die genutzten Photonenenergien erlaubten, den asymptotischen Hochenergiebereich beider Prozesse zu untersuchen. Mit Hilfe der verwandten Methode der Rückstoßionen-Impulsspektroskopie (hier in der neuesten Generation COLTRIMS, nach COLd Target Recoil Ion Momentum Spectroscopy) konnten Photoabsorption und Compton-Streuung erstmals experimentell voneinander getrennt werden. Sie ermöglichte ebenfalls eine gegenüber anderen Meßmethoden deutlich gesteigerte Genauigkeit der Werte R. Die Kinematik der auslaufenden Teilchen unterscheidet sich in beiden Prozessen: In der Absorption überträgt das Photon seine volle Energie auf die Targetelektronen. Deren Impuls im auslaufenden Kanal ist groß gegenüber dem des einlaufenden Photons und muß vom Ion kompensiert werden. Dagegen findet die Streuung des Photons am Elektron statt, das Ion nimmt dabei die Rolle eines Zuschauers ein. Es besitzt im auslaufenden Kanal nur einen geringen Impuls. Die so wohlseparierten Strukturen in der Rückstoßionen-Impulsverteilung erlauben die Trennung beider Prozesse durch COLTRIMS. Das Resultat zur Photoabsorption im Hochenergielimit von Rph = (1.72 ± 0.12) % konnte erstmalig die theoretischen Vorhersagen dieses Wertes verifizieren. Der Wert von Rc = (1.22 ± 0.06) % bei etwa 8.8 keV bestätigt die Rechnung von Andersson und Burgdörfer (Phys. Rev. A50, R2810 (1994)). Das Ergebnis von Rc = (0.84 +0.08-0.11) % bei 58 keV stimmt mit dem für die Compton-Streuung vorhergesagten asymptotischen Grenzwert überein.