Refine
Year of publication
Document Type
- Doctoral Thesis (44)
- Bachelor Thesis (4)
- Diploma Thesis (2)
- diplomthesis (2)
- Master's Thesis (1)
Has Fulltext
- yes (53)
Is part of the Bibliography
- no (53)
Keywords
- Dimere (2)
- Laser (2)
- Photoionisation (2)
- Rückstoßimpulsspektroskopie (2)
- 3-atomic-heteronuclear molecule (1)
- Absolute Phase (1)
- Absolutkonfiguration (1)
- Alignment parameter (1)
- Alignmentparameter (1)
- Anisotropie (1)
Institute
- Physik (53)
Ziel dieser Arbeit war die Entwicklung eines Mess-Systems zur energie- und winkelaufgelösten Spektroskopie von koinzidenten Elektronenpaaren, die in Reaktionen an einer Oberfläche emittiert wurden. Das Hauptinteresse galt hierbei dem Zwei-Elektronen-Photoemissionsprozess an Oberflächen. Das Prinzip des Spektrometers stellt eine Erweiterung der existierenden COLTRIMS-Spektrometer (COld Target Recoil Ion Momentum Spectroscopy) für Gasphasen-Experimente auf den Themenkreis der Oberflächenphysik dar. Anders als bei den in der Photoelektronen-Spektroskopie häufig eingesetzten elektrostatischen Analysatoren, wird hier eine Flugzeittechnik verwendet. Die Elektronen, die in der Reaktion erzeugt wurden, werden h ierzu mit einem schwachen homogenen elektrostatischen Feld vom Target abgesaugt und in Richtung eines orts- und zeitauflösenden Detektors beschleunigt. Zusätzlich wird ein homogenes Magnetfeld überlagert, das einen Einschluss der Elektronen bis zu einem maximalen Transversal-Impuls gewährleistet. Durch Messung der Flugzeiten und Auftrefforte auf dem Detektor können - unter Kenntnis d er elektrischen und magnetischen Feldstärken - die Startimpulse der Elektronen rekonstruiert werden. Auf diese Weise konnten Elektronen von 0 eV bis zu 50 eV mit einem Raumwinkel von nahezu 2p gleichzeitig abgebildet werden. Durch diesen sehr großen Aktzeptanzbereich, konnte eine wesentliche Erhöhung der Koinzidenzeffizienz der Anordnung gegenüber anderen Systemen erreicht werden (> 10 hoch 2 - 10 hoch 6 je nach Mess-System). Wesentlich hierfür ist des weiteren die Fähigkeit des Detektors mehrere Treffer mit verschwindender Totzeit zu verarbeiten. Mit dem beschriebenen System wurde die Zwei-Elektronen-Photoemission an Oberflächen untersucht. Die Experimente hierzu wurden im wesentlichen am Hamburger Synchrotron Strahlungslabor (HASYLAB) durchgeführt. Als Target wurde die (111)-Oberfläche eines einkristallines Kupfer-Targets verwendet. Mehrere Messreihen mit Photonenenergien im Bereich h? = 40 eV bis h? = 100 eV wurden aufgezeichnet. Durch die vollständige Vermessung des gesamten Impulsraumes der beiden Elektronen, stellt dies die erste kinematisch vollständige Untersuchung (bis auf die Spin-Freiheitsgrade) der Zwei-Elektronen-Photoemission an Oberflächen dar. Im Anschluss an vorangegangene Experimente [HER98], konnte auch hier in den Zwei-Elektronen-Energieverteilungen (innerhalb der experimentellen Auflösung) als Maximal-Energie des Paares der Wert E1 + E2 = h? - 2W0 festgestellt werden, der auf eine Selbst-Faltung der Bänder für die Zwei-Elektronen-Photoemission hindeutet. Die Form der Spektren wird wesentlich durch das Transmissionsverhalten der Elektronen beim Durchgang durch die Oberfläche bestimmt. Die auftretende energieabhängige Brechung der Trajektorie führt dabei zu einer starken Unterdrückung niederenergetischer Elektronen. In der Betrachtung der Kinematik der Emission konnten deutliche Analogien des Effektes zum analogen Prozess der Doppel-Photoionisation an freien Atomen bzw. Molekülen gefunden werden. Die Bewegung des Schwerpunktsimpulses des Paares ist daher durch die Richtung des Polarisationsvektor des Lichtes bestimmt. Im Gegensatz zur Emission am freien System, tritt hier allerdings - je nach Orientierung des Polarisationsvektors - ein Symmetriebruch auf, da Elektronen entweder auf die Oberfläche zu oder von ihr weg emittiert werden. Ein Bruchteil der in den Festkörper emittierten Intensität kann schließlich wieder am Gitter reflektiert werden und die Oberflächenbarriere noch überwinden. Die Energie- und Winkelverteilungen der Elektronen zeigen, dass, je nach Energieaufteilung des Paares, zwischen den Beiträgen durch einen "shake-off"-Mechanismus und einem "knock-out"-Mechanismus unterschieden werden kann. Auch hierin zeigt sich eine Ähnlichkeit des Zwei-Elektronen-Photoemissionsprozesses an Oberflächen mit der Doppel-Ionisation von Helium-Atomen. Während bei der Doppel-Ionisation von Helium diese Unterscheidung allerdings erst bei höheren Photonenenergien (> 100 eV) möglich ist, kann hier schon bei ca. 60 eV zwischen beiden Prozessen getrennt werden. Der Grund hierfür liegt sehr wahrscheinlich in der Abschirmung der Elektronen im Festkörper begründet, die die direkte Coulomb-Wechselwirkung der Elektronen im Endzustand reduziert. Insbesondere der starke Beitrag des "shake-off"-artigen Prozesses ist ein deutlicher Hinweis darauf, dass die gegenwärtigen theoretischen Modelle zur Beschreibung der Zwei-Elektronen-Photoemission nicht ausreichend sein können, da nur die Wechselwirkung im End-Zustand berücksichtigt wird. Vielmehr ist die Einbeziehung von Grundzustandswellenfunktionen jenseits des Bildes unabhängiger Teilchen nötig.
Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalische Prozesse erlauben. Durch effektivere und höher auflösende Detektoren werden präzisere, schnellere und schonendere Messungen möglich. Die Zielsetzung dieser Arbeit über den Hochdruck-Gas-Szintillations-Proportionalzähler ist es, einen Detektor zu entwickeln, mit dem hochenergetische Photonen praktisch vollständig vermessen werden können. Dazu gehören: - die Photonenenergie im Bereich von 5 bis 500 keV, - die Richtung der einfallenden Strahlung (bzw. der Auftreffort auf dem Detektor), - der Absorptionszeitpunkt und - die Diskriminierung von Gamma-induziertem Untergrund. Potenzielle Einsatzgebiete des Detektors sind im wesentlichen medizinische, atom- und astrophysikalische Anwendungen. Die vielversprechenden Eigenschaften dieses Detektorkonzeptes, gegenüber herkömmlichen Gasdetektoren, ergeben sich aus den Mechanismen der primären und der sekundären Gasszintillation. Daraus folgen der überlegene Verstärkungsprozess und das schnelle Zeitsignal. Als Grundlage für die in dieser Arbeit diskutierten Ergebnisse dienen die zuvor von Dangendorf und Bräuning entwickelten Konzepte und die von ihnen gebauten Prototypen. Sie sind geeignet für kleine und mittlere Photonenenergien und liefern eine gute Energie- und Zeitauflösung. Die Tests der Ortsauslese mit abbildenden, optischen Systemen zeigten erste Resultate. Ausgehend von diesen bestehenden Entwicklungen war die Motivation der Arbeit, den Aufbau an die gewünschten Anforderungen anzupassen. Für die höheren Photonenenergien werden ein dichterer Absorber, also ein höherer Gasdruck und damit verbunden neue Auslesekonzepte benötigt. Problem Ein zentrales Problem, das aufgrund dieser neuen Anforderungen auftritt, ist der Druckunterschied zwischen dem Hochdruck-Szintillator und der bei Niederdruck oder im Vakuum betriebenen UV-Auslese. Die dadurch bedingten Kräfte machen entweder besondere Stützstrukturen oder stabile - und dadurch dicke - Fenster erforderlich. In beiden Fällen geht ein Teil des Signals verloren und die Detektorauflösung nimmt ab. Es handelt sich dabei jedoch nicht um prinzipielle Probleme. Die Schwierigkeiten sind rein technischer Natur. Deshalb wurde intensiv weiter nach neuen Konzepten und Lösungsansätzen gesucht, die die Vorteile dieser überlegenen physikalischen Prozesse ausnutzen können. Lösungsansatz Das konkrete Ziel - bzw. die Aufgabenstellung - dieser Arbeit war, mit neuen Technologien, und dabei vor allem mit einem neuen Mikrostruktur-Elektroden-System, bislang bestehende technische Hürden zu überwinden (Kapitel 3). Durch die Möglichkeit, einen in das Hochdruckvolumen integrierten Photonendetektor zu bauen, werden viele der Stabilitätsprobleme gelöst. Mit der großflächigen Auslese des Szintillationslichts direkt dort, wo es entsteht, werden die Transmissionsverluste in Fenstern vermieden. Es gibt damit nur kleine raumwinkelabhängige Effekte und es wird nur ein Gasvolumen und damit kein zusätzliches System zum Evakuieren, Zirkulieren und Reinigen benötigt. Durch die Trennung der Energie- und der Ortsinformation und deren separate Auslese wird zwar die Komplexität des Detektors erhöht, die Teilsysteme können jedoch unabhängig für die jeweiligen Anforderungen optimiert werden. Grundlagen Im Rahmen dieser Arbeit wurden bereits existierende Erfahrungen aufgegriffen und in deren logischer Fortsetzung, ein, in das Szintillatorvolumen integrierter, UV-Photonendetektor entwickelt. Zunächst musste mit einer umfangreichen Recherche ermittelt werden, welche Anforderungen an einen integrierten Photonendetektor bestehen und wie ein solches System in den Aufbau eingebunden werden kann. Mit dem GEM, der sich schon in diversen anderen Gasdetektoranwendungen als universell einsetzbarer Verstärker bewährt hatte, war ein potenzielles Mikrostuktur-Elektroden-System für unsere Anwendung gefunden. Um die Einsatztauglichkeit dieser Mikrostrukturen für die neuen Applikationen zu analysieren, wurden sie im Standard-Design, unter vielen verschiedenen Betriebsparametern getestet. Dabei wurden wertvolle Erfahrungen im Umgang mit den Mikrostrukturen gesammelt. Die GEMs wurden in den typischen Detektorgasen, bei verschieden Drücken, elektrischen Spannungen und Feld-stärken studiert. Dabei wurden die Chancen, aber auch - vor allem aufgrund elektrischer Überschläge und Instabilitäten - die Grenzen des damit Erreichbaren, aufgezeigt. Mit der Herstellung der speziell für diese Anwendung entwickelten GEMs wurde die Grundlage für den stabilen Betrieb des Detektors geschaffen. Simulationsrechnungen In Kooperation mit einer italienischen Gruppe vom INFN in Cagliari haben wir, mit dem Detektor-Simulations-Programm Garfield, Berechnungen durchgeführt (Kapitel 4). Damit konnte schon vor der technischen Realisierung ein Überblick über die Betriebsbedingungen eines mehrstufigen und komplexen Systems gewonnen werden. Dazu zählen die messtechnisch erfassbaren Größen, wie z.B. die mittlere Gasverstärkung und Diffusion. Daneben konnten aber auch die Prozesse im Kleinen studiert werden. Von besonderem Interesse für die Funktion des Detektors ist dabei der Verlauf der Feldstärke in den Poren der Mikrostrukturen und den umliegenden Regionen. Dessen räumlicher Verlauf in Kombination mit den jeweiligen Gasdaten bestimmen die Elektronentransportparameter, die Gasverstärkung, die Diffusion und die Effizienz. In den Xenon-Szintillator integrierter UV-Photonen-Detektor Der UV-Photonendetektor konnte in zwei Varianten erfolgreich in ein Volumen mit dem Xenon-Gas-Szintillator integriert werden. Die Verbindung der CsI-Photokathode mit dem Elektronenverstärker wurde dabei zum einen als semitransparente dünne Schicht auf einer Quarzglasplatte vor der GEM-Folie und zum anderen als opake Variante auf der Frontseite des GEM realisiert. Bei der Auslese des Xenon-Szintillationslichts mit einer in reinem Xenon und bei hohem Druck betriebenen CsI-Photokathode, wurde Neuland betreten. Es wurde erfolgreich gezeigt, dass der integrierte Photonendetektor auf GEM Basis für die hier diskutierten Einsatzbereiche und Anforderungen funktioniert. Die Ankopplung der Photokathode an die Verstärkerstruktur und dabei vor allem der Elektronentransport von der CsI-Schicht in die Verstärkungszone, wurden im Detail untersucht. Dass die Gasverstärkung in reinem Xenon bei den beschriebe-nen Betriebsparameter überhaupt funktioniert, liegt zum einen daran, dass die optische Rückkopplung mit diesem neuen Design effektiv unterdrückt werden kann. Zum anderen konnten die Einflussparameter auf die Gasverstärkung, für den mehrstufigen GEM-Verstärkungsprozess in reinem Xenon, im Detail untersucht werden. Die gekoppelten Gas-Verstärker-Elemente wurden mit einer eigens für diese Anwendung entwickelten Versorgungsspannungsquelle betrieben, die die Folgen von elektrischen Überschlägen minimiert (Kapitel 5.1.3). Gegenüber den herkömmlichen Gasdetektoren ist es mit diesem neuartigen Aufbau möglich, den UV-Photonen-Detektor bei diesen Betriebsparametern stabil zu betreiben. Abbildende Optiken - optische und mechanische Eigenschaften Parallel zur Entwicklung dieses großflächigen Detektors zur Messung des Energiesignals und der Registrierung des primären Lichts, wurde das Konzept zur Ortsauslese via abbildender Optik weiterverfolgt. Die optischen Abbildungseigenschaften der Linsen wurde im Wellenlängenbereich des Xenon-Szintillationslichtes untersucht. In ersten Tests konnte bei kleinen Gasdrücken und somit geringen mechanischen Beanspruchungen die Ebene der Sekundär-lichterzeugung auf einen gekapselten Mikro-Kanal-Platten-Detektor abgebildet werden. Die Festigkeit der Quarzglaslinse für die Druckbeanspruchungen im hier diskutierten Detektor konnte in Zusammenarbeit mit der Fachhochschule Heilbronn - mittels Finite-Elemente-Berechnung - als ausreichend verifiziert werden. Ausblick Die beiden getrennten Systeme für Orts- und Energiemessung funktionieren unabhängig voneinander. Die Vorraussetzungen für die Kombination der Komponenten in einem gemeinsamen Aufbau sind damit geschaffen. Damit ist der Weg für die folgenden Schritte in diesem Projekt aufgezeigt. Als logische Fortsetzung dieser Arbeiten ist geplant, den integrierten Photonendetektor mit der Photokathode auf der GEM-Frontseite, zusammen mit der Ortsauslese gemeinsam aufzubauen. Von dieser Kombination profitiert das Auflösungsvermögen beider Messungen. Die Korrektur der ortsabhängigen Schwankungen in der Effizienz der Photokathode verbessert die Energieauflösung signifikant. Auf der anderen Seite kann durch das geschickte Setzen von geeigneten Bedingungen auf das Energiesignal die Ortsmessung optimiert werden. Als weiterer naheliegender Schritt auf dem Weg zum effizienten Nachweis der hochenergetischen Photonen, bietet sich der Einbau einer zusätzlichen Verstärkungsstufe zum Aufbau eines dreifach-GEM-Detektors an. Damit kann bei höheren Gasdrücken, trotz kleiner werdender maximaler Verstärkung pro GEM, eine ausreichende Gesamtverstärkung erreicht werden. Der Einsatz des Detektors in einem größeren Experiment, in Kombination mit anderen Messapparaturen, rückt somit in greifbare Nähe.
Die vorliegende Arbeit bietet zunächst einen weiteren Beweis für die Existenz des neutralen Heliumdimers. Darüber hinaus konnten zwei verschiedene Prozesse identifiziert werden, über die die Absorbtion eines Photons zur Ionisation beider Atome des Dimers über sehr große Abstände führen kann. Oberhalb einer Photonenenergie von 65,4 eV konnte ein ICD Prozess beobachtet werden, der über Photoionisation mit gleichzeitiger Anregung von einem der beiden Atome realisiert wird. Bei 77,86 eV konnte ICD über elektronisch angeregte Zustände bis n=6 nachgewiesen werden. In der KER-Verteilung konnten zudem Strukturen gefunden werden, die auf Vibrationsanregungen im Zwischenzustand des Dimer-Ions schließen lassen. Eine vollständig quantenmechanische Rechnung von Sisourat et al. konnte dies schließlich hervorragend bestätigen. Es konnte also ein direkter Blick auf die Vibrationswellenfunktionen des Systems erlangt werden. In anderen Systemen ist dies in der Regel nicht möglich, da sich alle Zustände üblicherweise zu einer strukturlosen Verteilung überlagern. Weiterhin konnte gezeigt werden, dass sich die Winkelverteilungen von ICD- und Photoelektronen in verschiedenen Bereichen des KER mitunter stark voneinander unterscheiden. Dies konnte auf die unterschiedliche Besetzung von verschiedenen Potentialkurven zurückgeführt werden. Unterhalb der Photonenenergieschwelle zur Anregung und Ionisation eines Heliumatoms konnte ein weiterer, zweistufiger Ionisationsmechanismus gefunden werden. Hier wird zunächst durch Photoionisation ein Elektron aus einem der beiden Atome im Dimer freigesetzt. Dieses Photoelektron kann nun am neutralen Atom gestreut werden und dabei ausreichend viel Energie übertragen, um dieses ebenfalls zu ionisieren. Es konnte gezeigt werden, dass der Prozess einer Abhängigkeit von der Polarisation der Synchrotronstrahlung unterliegt, die man für Photoionisation erwarten würde. Die Energie- und Winkelverteilungen der Elektronen konnten daher mit vorangegangenen Elektronenstoß-Experimenten verglichen werden. Die gute Übereinstimmung mit diesen Daten rechtfertigt eine anschauliche Sichtweise des Prozesses als Analogon zum klassischen Billiard-Stoß. Der Two-Step-Prozess wurde bisher zwar schon in vielen Systemen als theoretisches Modell zur Doppelionisation beschrieben, allerdings konnten die einzelnen Unterprozesse bisher nicht gesondert gemessen werden. Die großen Abstände im Heliumdimer ermöglichen erstmals eine deutliche Trennung in Photoionisation an einem Atom und Elektronenstoß (e,2e) am Nachbaratom. Der Two-Step-Prozess konnte außerdem dazu verwendet werden, die ungewöhnliche Grundzustandswellenfunktion des Heliumdimers zu experimentell zu bestätigen. Eine Analyse des gemessenen KER konnte dabei deutliche Abweichungen zu einer klassischen Theorie aufzeigen. Erst eine vollständig quantenmechanische Rechnung des Übergangs von Sisourat et al. konnte die Messdaten beschreiben.
Die ionenstrahlinduzierte Desorption ist eine Beeinträchtigung der Leistungsfähigkeit moderner Hochstrom-Schwerionensynchrotrons. Umgeladene Projektilionen folgen in den Ablenkmagneten nicht der Sollbahn des Strahls und kollidieren mit der Strahlrohrwand. Dies führt zu einer stimulierten Gasabgabe an das Beschleunigervakuum. Der resultierende erhöhte Druck hat eine deutliche Einschränkung der Strahllebensdauer zur Folge. Um die Menge des abgegebenen Gases zu minimieren wurden zahlreiche Experimente durchgeführt, die der Bestimmung der Desorptionsausbeute (desorbierte Gasmoleküle pro auftretendem Ion) unterschiedlicher Materialien unter Bestrahlung mit verschiedenen Ionen dienten. Die vorliegende Arbeit ist ein Beitrag zum Verständnis der physikalischen Prozesse der ionenstrahlinduzierten Desorption. Die Messung der Desorptionsausbeuten mittels der Druckanstiegsmethode wurde erstmals mit Materialanalytiken wie ERDA und RBS kombiniert. Mit diesem einzigartigen experimentellen Aufbau kann das Desorptionsverhalten mit den Oberflächen- und Festkörpereigenschaften der Proben korreliert werden. Anhand der durchgeführten Experimente mit 1,4 MeV/u Xenon-Ionen konnte gezeigt werden, dass die ionenstrahlinduzierte Desorption im Wesentlichen ein Oberflächeneffekt ist. Zerstäubte Verunreinigungen oder abgetragene Oxidschichten von Metallen liefern keinen nennenswerten Beitrag zum desorbierten Gas. Dennoch ist die Desorptionsausbeute stark von den Festkörpereigenschaften der Probe abhängig. Rein metallische Proben desorbieren unter Bestrahlung mit schnellen Schwerionen weniger stark als Isolatoren. Durch die experimentellen Ergebnisse wurde es möglich, Desorptionsausbeuten unter Ionenbestrahlung anhand eines modiffizierten inelastischen Thermal-Spike-Modells vorauszusagen. Die Erweiterung des Modells ist die Kombination des Temperaturprofils mit der thermischen Desorption. Damit kann die ionenstrahlinduzierte Desorption als die Abgabe von Oberflächenadsorbaten, ausgelöst durch eine kurzzeitige Erhöhung der Oberflächentemperatur um den Ioneneinschlag herum, betrachtet werden.
In der vorliegenden Arbeit wurde die 1s Photoionisation von Neondimeren mit einer Photonenenergie von 10 eV über der 1s Schwelle von Neon durchgeführt. Das Ziel dieser Messung war die Beantwortung der seit vielen Jahren diskutierten Frage nach der Lokalisierung oder Delokalisierung von Vakanzen in homonuklearen diatomaren Systemen am Beispiel des Neondimers. Können die Vakanzen also einem Atom des Dimers zugeordnet werden oder sind sie über beide Atome verteilt? Bezüglich dieser Frage wurden sowohl die in der Photoionisation direkt entstandenen 1s Vakanzen als auch die aus der Relaxation durch einen interatomic Coulombic decay (ICD) resultierenden Vakanzen in der Valenzschale des Neondimers untersucht. Als Observable dienten dabei die Elektronen-Winkelverteilungen im dimerfesten Koordinatensystem, wobei eine bezüglich der ‘rechten’ und der ‘linken’ Seite des homonuklearen diatomaren Moleküls auftretende Asymmetrie in der Winkelverteilung eindeutig eine Lokalisierung der Vakanz indiziert. Dies lässt sich damit begründen, dass die Elektronenwellen im Fall einer delokalisierten Vakanz durch die symmetrisierten Wellenfunktionen beschrieben werden, welche sich aus der kohärenten Überlagerung der lokalisierten Wellenfunktionen ergeben. Die resultierende Winkelverteilung der Elektronen um die Dimerachse ist somit symmetrisch. Im Fall einer lokalisierten Vakanz wird die Elektronenwelle dagegen durch die ‘rechts’ oder ‘links’ lokalisierten Wellenfunktionen, welche aus der kohärenten Überlagerung der symmetrisierten Wellenfunktionen gebildet werden, beschrieben, so dass abhängig von der Elektronenwellenlänge Asymmetrien in der Elektronen-Winkelverteilung auftreten können. Die Möglichkeit, eine eventuelle Asymmetrie in der Winkelverteilung um die Dimerachse zu beobachten ist allerdings nur dann gegeben, wenn die beiden Seiten des Dimers im Anschluss an die Reaktion unterscheidbar sind, d.h. der Ursprung des emittierten Elektrons feststellbar ist, da sich sonst der Fall einer ‘links’ lokalisierten Vakanz mit dem Fall einer ‘rechts’ lokalisierten Vakanz kohärent überlagert. Die Unterscheidung konnte in der vorliegenden Messung anhand der aus einigen Relaxationen hervorgehenden unterschiedlichen Ladungen der ionischen Fragmente des Neondimers durchgeführt werden. Insgesamt wurden im Anschluss an die 1s Photoionisation von Ne2 mit einer Rate von 3:1 der symmetrische Ladungsaufbruch Ne1+ + Ne1+ und der für die Untersuchung der Winkelverteilungen relevante asymmetrische Ladungsaufbruch Ne2+ + Ne1+ des Neondimers beobachtet. Alle in diesen beiden Ladungsaufbrüchen resultierenden intra- und interatomaren Relaxationsprozesse sowie ihre Raten wurden im Rahmen dieser Arbeit identifiziert und analysiert. Der dominante Zerfallskanal des symmetrischen Ladungsaufbruchs resultierte dabei aus dem im Anschluss an einen KL2,3L2,3 stattfindenden Radiative Charge Transfer, bei welchem unter Aussendung eines Photons ein Ladungsaustausch zwischen den Neonionen des Dimers stattfindet. Der dominante Zerfallskanal des asymmetrischen Ladungsaufbruchs wurde durch den im Anschluss an einen KL1L2,3 stattfindenden ICD bestimmt. Bei diesem in Clustern auftretenden Relaxationsprozess wird die Innerschalenvakanz aus Atom 1 durch ein Valenzelektron aus Atom 1 aufgefüllt. Sobald die Relaxationsenergie dabei nicht ausreicht, um, wie beim Augerzerfall, ein weiteres Valenzelektron aus Atom 1 zu ionisieren, wird die Energie mittels eines virtuellen Photons zum neutralen Nachbaratom des Dimers transferiert, und aus diesem wird ein Elektron, das ICD-Elektron, emittiert. Zur experimentellen Untersuchung der verschiedenen Zerfälle wurde die COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy)-Technik verwendet. Bei dieser Impulsspektroskopie werden die Fragmente mit einer Raumwinkelakzeptanz von 4pi mit Hilfe eines elektrischen und eines magnetischen Feldes auf die ortsauflösenden Detektoren geführt, und ihre Flugzeiten und Auftrefforte werden gemessen. Die COLTRIMS-Technik zeichnet sich dabei dadurch aus, dass eine koinzidente Messung der Elektronen und Ionen möglich ist, wodurch die Fragmente eines Reaktionsereignisses einander zugeordnet werden können. Innerhalb der Reaktionsereignisse fragmentierte das Neondimer im Anschluss an die Relaxation in beiden Ladungsaufbrüchen Ne1+ + Ne1+ und Ne2+ + Ne1+ unter 180° in einer Coulombexplosion. Somit spiegelten die Richtungen der Relativimpulse der Ionen im Rahmen der ‘Axial-Recoil-Approximation’ die Position der Dimerachse zum Zeitpunkt der Reaktion wider, und aus den Impulsen der Elektronen konnten die Emissionsrichtungen der Elektronen bezüglich der Dimerachse abgeleitet werden. In dieser Arbeit wurde mit der beschriebenen Messtechnik eine deutliche Asymmetrie in der Winkelverteilung der 1s Photoelektronen sowie der 2p ICD-Elektronen um die Dimerachse beobachtet. Die gemessene Winkelverteilung der 1s Photoelektronen wies dabei eine qualitativ sehr gute Übereinstimmung mit einer innerhalb einer Hartree-Fock-Rechnung erhaltenen Winkelverteilung für eine vollständig lokalisierte 1s Vakanz im Neondimer auf. Für die Winkelverteilungen der ICD-Elektronen existieren bis heute noch keine theoretischen Vorhersagen. Mit den Ergebnissen der vorliegenden Arbeit konnte somit gezeigt werden, dass entgegen den heute gängigen Theorien zur Beschreibung des Neondimers sowohl die Vakanzen der innersten Schale als auch die Vakanzen der Valenzschale des Neondimers als lokalisiert beschrieben werden müssen.
Mit der vorliegenden Arbeit wurden zu ersten Mal die seit mehreren Jahren vorhergesagten dynamischen Aufbruchsmechanismen - der direkte, der sequentielle und der asynchrone Zerfall - in mehratomigen Molekülen kinematisch vollständig untersucht. Experimentell wurde hierfür ein Kohlenstoffdioxid-(CO2)-Molekül in langsamen Ion-Molekül Stößen dreifach ionisiert, indem die Elektronen des Targets von den langsamen, hochgeladenen Projektilionen (Ar8+-Ionen) eingefangen wurden. Die Untersuchung des Zerfalls des CO2-Ions in die einfach geladenen ionischen Fragmente C+ + O+ + O+ zeigte, dass bei diesem Zerfall das Projektilion vornehmlich einen positiven Ladungszustand von q = 6 und nicht den zunächst erwarteten Ladungszustand q = 5 aufweist. Dies ist darauf zurückzuführen, dass die eingefangenen Elektronen oftmals elektronisch hoch angeregte Zustände im Projektil populieren und demnach im weiteren Verlauf über Autoionisationsprozesse dieses auch wieder verlassen können. Ähnliche Autoionisationsprozesse können auch im Target ablaufen, treten dort jedoch mit einer geringeren Wahrscheinlichkeit auf, da der Wirkungsquerschnitt für Autoionisationsprozesse im Target um einen Faktor 1,3 kleiner ist als für Autoionisationen im Projektil. Zusätzlich zeigte die Untersuchung der Stoßdynamik, dass der dreifache Elektroneneinfang primär bei einer parallelen Orientierung der Molekülachse zur Projektilstrahlachse auftritt. Eine weitere Abhängigkeit der Stoßdynamik zum Beispiel vom Stoßparameter beziehungsweise vom Streuwinkel konnte nicht beobachtet werden. Durch die koinzidente Messung aller vier Reaktionsteilchen konnte der Kanal Ar8+ + CO2 --> Ar6+ + C+ + O+ + O+ eindeutig bestimmt werden und die Reaktionsdynamik des CO2-Ions nach dem Stoß analysiert werden. Dabei tritt deutlich der direkte Aufbruch hervor, bei welchem die drei einfach geladenen Ionen sich rein aufgrund ihrer Coulombkräfte voneinander abstoßen. Bei einer solchen Coulombexplosion bleibt dem Molekülion kaum Zeit, um eine molekulare Schwingung zu vollführen. Neben diesem schnellen Zerfall konnten aber auch jene Zerfälle beobachtet werden, bei denen das Molekülion zuerst molekular schwingt und dann zu einem späteren Zeitpunkt in die ionischen Fragmente zerfällt. Dieser letztere Zerfallsprozess gehört zu den sogenannten asynchronen Zerfallsmechanismen. Er stellt einen Zwischenprozess zwischen dem reinen 1-Stufen-Prozess wie dem direkten Aufbruch und dem reinen 2-Stufen-Prozess dar. Bei solchen sequentiellen 2-Stufen Prozessen fragmentiert das CO2-Molekül im ersten Schritt in ein O+- und ein CO2+-Ion. Im zweiten Schritt dissoziiert dann das CO2+-Fragment, nachdem es nahezu keine Wirkung der Coulombkräfte des ersten Sauerstoffions mehr spürt, in ein C+- und ein O+-Ion. Durch die Darstellung der Schwerpunktsimpulse der Fragmente in Dalitz- und Newton-Diagrammen ist es mit dieser Arbeit erstmals gelungen diesen sequentiellen Prozess experimentell eindeutig nachzuweisen. In der weiteren Analyse konnte gezeigt werden, dass über die im System deponierte Energie, welche über die kinetische Energie der Fragmente bestimmt wird, die verschiedenen Reaktionsmechanismen direkt kontrolliert werden können. Speziell bei Energien unterhalb von 20 eV wurde gezeigt, dass es keine Potentialflächen gibt, die über einen direkten bzw. simultanen Aufbruch zu dem Endzustand C+ + O+ + O+ führen. Bei mehratomigen Molekülen erweist sich das Treffen detaillierter Aussagen über mögliche Dissoziationskanäle ohne die genaue Kenntnis der Lage der Potentialflächen und den Übergängen zwischen diesen als äußerst schwierig. Selbst bei genauer Kenntnis der Lage und Form der Potentialflächen, ist es aufgrund der hohen Dichten innerhalb der Übergangsbereiche der Potentialflächen nahezu unmöglich, den Verlauf der Dissoziationskanäle zu verfolgen. Mit dieser Arbeit ist es gelungen, die verschiedenen Reaktionskanäle ohne die Existenz von Energiepotentialflächen eindeutig zu identifizieren. Außerdem konnte gezeigt werden, dass die Energie, die während des Stoßes im Molekül deponiert wird, eine Schlüsselgröße darstellt, mit welcher die Fragmentationskanäle direkt kontrolliert werden können.
This work reports on the study of the projectile x-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. Information about the population of the excited states for the H- and He-like uranium ions, can be obtained by measuring the angular distribution of the decay radiation. Since the Ly_alpha2 transition is isotropic, the intensities of the Ly_alpha1 and K_alpha transitions were normalized to the Ly_alpha2 line. For the K_alpha1 and K_alpha2 transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly_alpha1 radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. It is shown that the alignment of Ly_alpha1 was obtained by the Alignment parameter A_20. The experimental value leads to the inclusion of a magnetic term in the interaction potential. It is interesting to note that in the case of the Ly_alpha1 emission the small M2 contribution added coherently to the E1 transition amplitudes enhances the anisotropy. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N2 gas-target. It was shown that, the strongly aligned electrons captured in 2p3/2 level will couple with the available 1s1/2 electron which shows no initial directional preference. The magnetic sub-state population of the 2p3/2 electron will be redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. Consequently, the 1^P1 and 3^P2 states are corresponding to the the strongly aligned 2p3/2 state. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K_alpha1 emission. Due to the fact that the 1^P1 --> 1^S0 and 3^P2 --> 1^S0 transitions are experimentally not resolved, a more detailed analysis of the angular dependence of the K_alpha1 radiation is required. From the K_alpha1/K_alpha2 ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K_alpha1. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the 1^P1 level contributes to the K_alpha1 transition. For this case, the anisotropy parameter beta_20 was found to be -0.20 + 0.03 which is similar to that one calculated for pure E1 transition. This work also reports on the study of a two-electron process: the simultaneous ionization and excitation occurring in relativistic collisions of heavy highly-charged ions with gaseous targets. The investigation was performed on He-like uranium ions impinging upon xenon gas-target at an incident energy of 220 MeV/u. The measurements have been performed at the ESR gas-target using atomic xenon with a typical area density of 10^12 particles/cm^2. In contrast to the solid state target, the use of gas target offers the advantage of clear separation of the one step two-electron process due to the fact that the probability of two consecutive collision in such thin targets is negligible and the double step processes can be excluded. During the process of simultaneous ionization and excitation in He-like uranium ions, one of the ground-state electrons is promoted into the continuum and the other into the L-subshell states of the projectile. To select this process, the Lyman-series radiation has been measured at various observation angles in coincidence with up-charged projectiles (U^91+). From the yields of the Ly_alpha1 and Ly_alpha2 projectile radiation, the relative cross section for the process of simultaneous ionization and excitation was directly determined. The angle dependent measurement of the radiation yields provide information about the angular distributions of the emitted radiation and permits the determination of the alignment parameter A_{20}. This parameter gives information on the level population and the collision impact parameter. The present results (b^exp = 810 fm) show that the simultaneous ionization and excitation is a process which occurs at small impact parameter.
Ziel der durchgeführten Experimente dieser Arbeit war es, den Versuch zu unternehmen, Cooper-Paare als Träger des supraleitenden Stroms direkt mit Hilfe des Photoelektrischen Effektes nachzuweisen. Die Methode der koinzidenten Photoelektronenspektroskopie zielt dabei auf den Nachweis von zwei kohärent emittierten Elektronen durch die Wechselwirkung mit einem Photon ab. Da elektrostatische Analysatoren typischerweise nur einen sehr kleinen Raumwinkel erfassen, was mit sehr geringen Koinzidenzraten einhergeht, ist im Zusammenhang mit dieser Arbeit ein Flugzeitprojektionssystem entwickelt worden, welches nahezu den gesamten Raumwinkel auf einem ortsauflösenden Detektor abbildet. Die zur Messung erforderliche gepulste Lichtquelle in Form von spezieller Synchrotronstrahlung ist so schwach eingestellt worden, daß nur vereinzelt Photonen auf die Probe gelangen konnten. Spektroskopiert wurde neben Testmessungen an Silberschichten sowohl ein Blei-Einkristall als Vertreter der klassischen BCS-Supraleiter als auch einkristallines Bi2Sr2CaCu2O8 aus der Gattung der Hochtemperatursupraleiter. Mit Anregungsenergien bis 40 eV konnte gezeigt werden, daß hinreichend glatte und saubere Oberflächen in der supraleitenden Phase innerhalb des Auflösevermögens von ungefähr 0.5 eV keine erkennbaren, signifikanten Unterschiede im Vergleich zur normalleitenden Phase aufweisen. Neben diesen Untersuchungen ist weiterhin ausführlich die einfache Photoemission an den verschiedenen Proben und insbesondere im Falle des Bleikristalls behandelt, da hier keine vergleichbaren Resultate bekannt sind. Dabei wird der gesamte Impulsraum besprochen und die Fermi-Fläche als dreidimensionales Modell erstellt, mit dessen Hilfe die Meßergebnisse diskutiert werden. In den theoretischen Beschreibungen sind verschiedene Modelle zur Cooper-Paar-Emission vorgestellt, wobei beispielsweise dem Impulsaustausch mit dem Kristall eine besondere Rolle beigemessen wird, da dieser bei direkten Anregungen nur über diskrete Gittervektoren erfolgen kann.
Within this thesis, an experimental study of the photo double ionization (PDI) and the simultaneous ionization-excitation is performed for lithium in different initial states Li (1s22l) (l = s, p). The excess energy of the linearly polarized VUV-light is between 4 and 12 eV above the PDI-threshold. Three forefront technologies are combined: a magneto-optical trap (MOT) for lithium generating an ultra-cold and, by means of optical pumping, a state-prepared target; a reaction microscope (ReMi), enabling the momentum resolved detection of all reaction fragments with high-resolution and the free-electron laser in Hamburg (FLASH), providing an unprecedented brilliant photon beam at favourable time structure to access small cross sections. Close to threshold the total as well as differential PDI cross sections are observed to critically depend on the excitation level and the symmetry of the initial state. For the excited state Li (1s22p) the PDI dynamics strongly depends on the alignment of the 2p-orbital with respect to the VUV-light polarization and, thus, from the population of the magnetic substates (mp = 0, ±1). This alignment sensitivity decreases for increasing excess energy and is completely absent for ionization-excitation. Time-dependent close-coupling calculations are able to reproduce the experimental total cross sections with deviations of at most 30%. All the experimental observations can be consistently understood in terms of the long range electron correlation among the continuum electrons which gives rise to their preferential back-to-back emission. This alignment effect, which is observed here for the first time, allows controlling the PDI dynamics through a purely geometrical modification of the target initial state without changing its internal energy.
Im Rahmen dieser Arbeit wird ein Experiment vorgestellt, mit dem es möglich ist, die Wechselwirkungen zwischen Elektronen in der Gegenwart eines extrem starken Laserfeldes zu untersuchen. Diese resultieren aus der nichtsequentiellen Multiphoton- Doppelionisation von Neon in einem starken elektrischen Feld, das durch einen Hochleistungslaser erzeugt wird. Mit Hilfe der COLTRIMS-Technologie ist es möglich die entstandenen Teilchen nachzuweisen und die Impulskomponenten zu bestimmen. Bei dieser Technologie handelt es sich um ein „Mikroskop“, das atomphysikalische Prozesse vollständig differntiell beobachtet. Die bei der Doppelionisation entstandenen Elektronen und das Rückstossion werden mittels eines schwachen elektrischen Feldes auf orts- und zeitaufgelöste Multichannelplate-Detektoren mit Delaylineauslese geleitet. Zusätzlich wird noch ein magnetisches Feld überlagert. Aus dem Auftreffort und der Flugzeit der Teilchen können die Impulse bestimmt werden. Es ist erstmals möglich die Impulskomponenten der drei Raumrichtungen für alle an der Ionisation beteiligten Teilchen mit hinreichend guter Auflösung zu bestimmen. Es können vollständige differentielle Winkelverteilungen erzielt werden. Damit gelingt es, ein kinematisch vollständiges Experiment zu realisieren. Die Elektronen werden bevorzugt in Richtung des Polarisationsvektors des Laserlichtes emittiert. Aufgrund der guten Impulsauflösung ist es jetzt möglich, die Richtung senkrecht zur Polarisation zu untersuchen und die Erkenntnisse in Bezug zueinander zu bringen. Das der nichtsequentiellen Doppelionisation zu grunde liegende sehr anschauliche Modell ist der „Rescattering-Prozess“: Das Laserfeld koppelt an das Coulombpotential des Atoms und verformt es derart, dass ein Elektron die effektive Potentialbarriere überqueren oder durch diese durchtunneln kann. Dieses zuerst befreite Elektron wird durch das oszillierende elektromagnetische Feld zunächst vom Ursprungsion fortgetrieben. Kehrt aber die Phase des Laserfeldes um, wird es zurück zum Ion beschleunigt, nimmt dabei Energie aus dem Feld auf und kann durch Elektron-Elektron-Stossionisation ein zweites Elektron aus dem Atom ionisieren oder es können kurzzeitige Anregungszustände erzeugt werden, die später feldionisiert werden. Dieses Modell wurde schon durch ein Vielzahl von Experimenten verifiziert. Gleichzeitig wirft es aber auch Fragen auf: Wie sind die Elektron-Elektron-Korrelationen zu erklären? Wie hängt der Longitudinal- mit dem Transversalimpuls zusammen? Welche Ionisationsmechanismen treten wann auf? Zusammenfassend kann man sagen, dass ein Experiment präsentiert wird, das zur Erfoschung von Korrelationseffekten bei Multiphoton-Ionisation beiträgt und sehr detaillierte Einblicke in die Welt der Laseratomphysik gewährt. Die Daten belegen eindeutig, dass eine Messung der korrelierten Impulse mehrerer Teilchen in einem Laserfeld eine Zeitmessung mit einer Auflösung weit unter einer Femtosekunde ermöglicht. Das beobachtete Ein- und Ausschalten der Elektronenabstossung, je nach der über die Longitudinal-Impulskorrelation gemessenen Verzögerungszeit, zeigt die Möglichkeit „Attosekunden Physik ohne Attosekunden-Pulse“ zu betreiben.