Refine
Year of publication
Document Type
- Doctoral Thesis (41)
- Bachelor Thesis (4)
- diplomthesis (4)
- Master's Thesis (1)
Has Fulltext
- yes (50)
Is part of the Bibliography
- no (50)
Keywords
- Dimere (2)
- Laser (2)
- Photoionisation (2)
- Rückstoßimpulsspektroskopie (2)
- 3-atomic-heteronuclear molecule (1)
- Absolute Phase (1)
- Absolutkonfiguration (1)
- Alignment parameter (1)
- Alignmentparameter (1)
- Anisotropie (1)
Institute
- Physik (50)
Mit der vorliegenden Arbeit ist der eindeutige experimentelle Nachweis für die Existenz eines 1997 [Ced97] vorhergesagten, neuartigen Zerfallskanals für Van-der-Waals-gebundene Systeme erbracht worden. Die Untersuchungen wurden an einem Neondimer durchgeführt. Erzeugt man in einem Atom dieses Dimers durch Synchrotronstrahlung eine 2s-Vakanz, so wird diese durch ein 2p-Elektron aufgefüllt. Die hierbei freiwerdende Energie wird an das zweite Atom des Dimers in Form eines virtuellen Photons übertragen und löst dort ein Elektron aus einer äußeren Schale. Untersucht wurde dieser Zerfall namens „Interatomic Coulombic Decay” (ICD) durch Koinzidenzimpulsspektroskopie (COLTRIMS) [Doe00, Ull03, Jah04b]. Der Nachweis der Existenz des Effekts erfolgte dadurch, dass die Summe der Energien der Photofragmente - und im Speziellen des ICD-Elektrons und der beiden im Zerfall entstehenden Ne+-Ionen - eine Konstante ist. Durch die koinzidente Messung der Impulse, der im Zerfall entstehenden Teilchen, konnte hierdurch ICD eindeutig identifiziert werden. Die Übereinstimmung der gemessenen Energiespektren mit aktuellen theoretischen Vorhersagen [Sche04b, Jah04c] ist exzellent. Dadurch, dass das Dimer nach dem IC-Zerfall in einer Coulomb-Explosion fragmentiert, konnten des Weiteren Untersuchungen, wie sie in den letzten Jahren an einfachen Molekülen durchgeführt wurden [Web01, Lan02, Jah02, Web03b, Osi03b, Jah04a], auch am Neondimer erfolgen: Durch die Messung der Ausbreitungsrichtung der ionischen Fragmente des Dimers nach der Coulomb-Explosion wird die räumliche Ausrichtung des Dimers zum Zeitpunkt der Photoionisation bestimmt. Die gemessenen Impulse der emittierten Elektronen können dadurch im Bezug zur Dimerachse dargestellt werden. In dieser Arbeit wurden somit Messungen der Winkelverteilung der 2s-Photoelektronen und des ICD-Elektrons im laborfesten und auch dimerfesten Bezugssystem vorgestellt und mit vorhandenen theoretischen Vorhersagen verglichen. Die Winkelverteilung des Photoelektrons ähnelt stark der Verteilung, die man nach der Photoionisation eines einzelnen Neonatoms erhält und hat somit fast reinen Dipolcharakter. Die Präsenz des zweiten Atoms des Dimers verursacht nur leichte Modulationen, so dass auch die Änderung der Ausrichtung der Dimerachse im Bezug zur Polarisationsrichtung des linear polarisierten Lichtes nur geringe Auswirkungen hat. Durch die koinzidente Messung aller vier nach der Photoionisation entstehenden Teilchen konnte außerdem ein weiterer Doppelionisationsmechanismus des Dimers nachgewiesen werden: Ähnlich wie in einzelnen Atomen [Sam90] gibt es auch in Clustern den TS1-Prozess. Hierbei wird ein 2p-Elektron aus dem einen Atom des Dimers herausgelöst. Es streut dann an einem 2p-Elektron des anderen Atoms, das hierdurch ionisiert wird. Diese etwas andere Form des TS1 im Cluster ist also genau wie ICD ein interatomarer Vorgang. Die Summe der Energien der beiden, in diesem Prozess entstehenden Elektronen hat einen festen Wert von h... − 2 · IP(2p) − KER = 12 eV, so dass dieser Prozess hierdurch im Experiment gefunden werden konnte. Die gemessenen Zwischenwinkel zwischen den beiden Elektronen zeigen des Weiteren genau die für zwei sich abstoßende Teilchen typische Verteilung einer Gauss-Kurve mit einem Maximum bei 180 Grad. Da im Falle von interatomarem TS1 die Potentialkurve der Coulomb-Explosion direkt aus dem Grundzustand populiert wird, konnte im Rahmen der „Reflexion Approximation” die Wahrscheinlichkeitsverteilung der Abstände der beiden Dimeratome experimentell visualisiert werden. Das Betragsquadrat des Kernanteils der Dimergrundzustandswellenfunktion wurde somit direkt vermessen. Die Messungen wurden bei drei verschiedenen Photonenenergien durchgeführt, um die Ergebnisse weiter abzusichern und robuster gegen eventuelle systematische Fehler zu machen. Da kein isotopenreines Neongas im Experiment eingesetzt wurde, konnten genauso Ionisations- und ICD-Ereignisse von isotopischen Dimeren (20Ne22Ne) beobachtet und ausgewertet werden. Die gemessenen Spektren sind innerhalb der Messtoleranzen identisch zu denen für 20Ne2.
In the present work, the Heidelberg electron beam ion trap (EBIT) at the Max-Planck-Institute für Kernphysik (MPIK) has been used to produce, trap highly charged argon ions and study their magnetic dipole (M1) forbidden transitions. These transitions are of relativistic origin and, hence, provide unique possibilities to perform precise studies of relativistic effects in many electron systems. In this way, the transitions energies of the 1s22s22p for the 2P3/2 - 2P1/2 transition in Ar13+ and the 1s22s2p for the 3P1 - 3P2 transition in Ar14+, for 36Ar and 40Ar isotopes were compared. The observed isotopic effect has confirmed the relativistic nuclear recoil effect corrections due to the finite nuclear mass in a recent calculation made by Tupitsyn [TSC03], in which major inconsistencies of earlier theoretical methods have been corrected for the first time. The finite mass, or recoil effect, composed of the normal mass shift (NMS), and the specific mass shift (SMS) were corrected for relativistic contributions, RNMS and RSMS. The present experimental results have shown that the recoil effects on the Breit level are indeed very important, as well as the effects of the correlated relativistic dynamics in a many electron ion.
Ziel dieser Arbeit war die Entwicklung eines Mess-Systems zur energie- und winkelaufgelösten Spektroskopie von koinzidenten Elektronenpaaren, die in Reaktionen an einer Oberfläche emittiert wurden. Das Hauptinteresse galt hierbei dem Zwei-Elektronen-Photoemissionsprozess an Oberflächen. Das Prinzip des Spektrometers stellt eine Erweiterung der existierenden COLTRIMS-Spektrometer (COld Target Recoil Ion Momentum Spectroscopy) für Gasphasen-Experimente auf den Themenkreis der Oberflächenphysik dar. Anders als bei den in der Photoelektronen-Spektroskopie häufig eingesetzten elektrostatischen Analysatoren, wird hier eine Flugzeittechnik verwendet. Die Elektronen, die in der Reaktion erzeugt wurden, werden h ierzu mit einem schwachen homogenen elektrostatischen Feld vom Target abgesaugt und in Richtung eines orts- und zeitauflösenden Detektors beschleunigt. Zusätzlich wird ein homogenes Magnetfeld überlagert, das einen Einschluss der Elektronen bis zu einem maximalen Transversal-Impuls gewährleistet. Durch Messung der Flugzeiten und Auftrefforte auf dem Detektor können - unter Kenntnis d er elektrischen und magnetischen Feldstärken - die Startimpulse der Elektronen rekonstruiert werden. Auf diese Weise konnten Elektronen von 0 eV bis zu 50 eV mit einem Raumwinkel von nahezu 2p gleichzeitig abgebildet werden. Durch diesen sehr großen Aktzeptanzbereich, konnte eine wesentliche Erhöhung der Koinzidenzeffizienz der Anordnung gegenüber anderen Systemen erreicht werden (> 10 hoch 2 - 10 hoch 6 je nach Mess-System). Wesentlich hierfür ist des weiteren die Fähigkeit des Detektors mehrere Treffer mit verschwindender Totzeit zu verarbeiten. Mit dem beschriebenen System wurde die Zwei-Elektronen-Photoemission an Oberflächen untersucht. Die Experimente hierzu wurden im wesentlichen am Hamburger Synchrotron Strahlungslabor (HASYLAB) durchgeführt. Als Target wurde die (111)-Oberfläche eines einkristallines Kupfer-Targets verwendet. Mehrere Messreihen mit Photonenenergien im Bereich h? = 40 eV bis h? = 100 eV wurden aufgezeichnet. Durch die vollständige Vermessung des gesamten Impulsraumes der beiden Elektronen, stellt dies die erste kinematisch vollständige Untersuchung (bis auf die Spin-Freiheitsgrade) der Zwei-Elektronen-Photoemission an Oberflächen dar. Im Anschluss an vorangegangene Experimente [HER98], konnte auch hier in den Zwei-Elektronen-Energieverteilungen (innerhalb der experimentellen Auflösung) als Maximal-Energie des Paares der Wert E1 + E2 = h? - 2W0 festgestellt werden, der auf eine Selbst-Faltung der Bänder für die Zwei-Elektronen-Photoemission hindeutet. Die Form der Spektren wird wesentlich durch das Transmissionsverhalten der Elektronen beim Durchgang durch die Oberfläche bestimmt. Die auftretende energieabhängige Brechung der Trajektorie führt dabei zu einer starken Unterdrückung niederenergetischer Elektronen. In der Betrachtung der Kinematik der Emission konnten deutliche Analogien des Effektes zum analogen Prozess der Doppel-Photoionisation an freien Atomen bzw. Molekülen gefunden werden. Die Bewegung des Schwerpunktsimpulses des Paares ist daher durch die Richtung des Polarisationsvektor des Lichtes bestimmt. Im Gegensatz zur Emission am freien System, tritt hier allerdings - je nach Orientierung des Polarisationsvektors - ein Symmetriebruch auf, da Elektronen entweder auf die Oberfläche zu oder von ihr weg emittiert werden. Ein Bruchteil der in den Festkörper emittierten Intensität kann schließlich wieder am Gitter reflektiert werden und die Oberflächenbarriere noch überwinden. Die Energie- und Winkelverteilungen der Elektronen zeigen, dass, je nach Energieaufteilung des Paares, zwischen den Beiträgen durch einen "shake-off"-Mechanismus und einem "knock-out"-Mechanismus unterschieden werden kann. Auch hierin zeigt sich eine Ähnlichkeit des Zwei-Elektronen-Photoemissionsprozesses an Oberflächen mit der Doppel-Ionisation von Helium-Atomen. Während bei der Doppel-Ionisation von Helium diese Unterscheidung allerdings erst bei höheren Photonenenergien (> 100 eV) möglich ist, kann hier schon bei ca. 60 eV zwischen beiden Prozessen getrennt werden. Der Grund hierfür liegt sehr wahrscheinlich in der Abschirmung der Elektronen im Festkörper begründet, die die direkte Coulomb-Wechselwirkung der Elektronen im Endzustand reduziert. Insbesondere der starke Beitrag des "shake-off"-artigen Prozesses ist ein deutlicher Hinweis darauf, dass die gegenwärtigen theoretischen Modelle zur Beschreibung der Zwei-Elektronen-Photoemission nicht ausreichend sein können, da nur die Wechselwirkung im End-Zustand berücksichtigt wird. Vielmehr ist die Einbeziehung von Grundzustandswellenfunktionen jenseits des Bildes unabhängiger Teilchen nötig.
Rückblick Die Motivation für diese Arbeit ergibt sich aus den immer neuen Fragestellungen der modernen Wissenschaft. Deren Beantwortung hängt wesentlich von den geeigneten Messapparaturen ab, die Einblicke in physikalische Prozesse erlauben. Durch effektivere und höher auflösende Detektoren werden präzisere, schnellere und schonendere Messungen möglich. Die Zielsetzung dieser Arbeit über den Hochdruck-Gas-Szintillations-Proportionalzähler ist es, einen Detektor zu entwickeln, mit dem hochenergetische Photonen praktisch vollständig vermessen werden können. Dazu gehören: - die Photonenenergie im Bereich von 5 bis 500 keV, - die Richtung der einfallenden Strahlung (bzw. der Auftreffort auf dem Detektor), - der Absorptionszeitpunkt und - die Diskriminierung von Gamma-induziertem Untergrund. Potenzielle Einsatzgebiete des Detektors sind im wesentlichen medizinische, atom- und astrophysikalische Anwendungen. Die vielversprechenden Eigenschaften dieses Detektorkonzeptes, gegenüber herkömmlichen Gasdetektoren, ergeben sich aus den Mechanismen der primären und der sekundären Gasszintillation. Daraus folgen der überlegene Verstärkungsprozess und das schnelle Zeitsignal. Als Grundlage für die in dieser Arbeit diskutierten Ergebnisse dienen die zuvor von Dangendorf und Bräuning entwickelten Konzepte und die von ihnen gebauten Prototypen. Sie sind geeignet für kleine und mittlere Photonenenergien und liefern eine gute Energie- und Zeitauflösung. Die Tests der Ortsauslese mit abbildenden, optischen Systemen zeigten erste Resultate. Ausgehend von diesen bestehenden Entwicklungen war die Motivation der Arbeit, den Aufbau an die gewünschten Anforderungen anzupassen. Für die höheren Photonenenergien werden ein dichterer Absorber, also ein höherer Gasdruck und damit verbunden neue Auslesekonzepte benötigt. Problem Ein zentrales Problem, das aufgrund dieser neuen Anforderungen auftritt, ist der Druckunterschied zwischen dem Hochdruck-Szintillator und der bei Niederdruck oder im Vakuum betriebenen UV-Auslese. Die dadurch bedingten Kräfte machen entweder besondere Stützstrukturen oder stabile - und dadurch dicke - Fenster erforderlich. In beiden Fällen geht ein Teil des Signals verloren und die Detektorauflösung nimmt ab. Es handelt sich dabei jedoch nicht um prinzipielle Probleme. Die Schwierigkeiten sind rein technischer Natur. Deshalb wurde intensiv weiter nach neuen Konzepten und Lösungsansätzen gesucht, die die Vorteile dieser überlegenen physikalischen Prozesse ausnutzen können. Lösungsansatz Das konkrete Ziel - bzw. die Aufgabenstellung - dieser Arbeit war, mit neuen Technologien, und dabei vor allem mit einem neuen Mikrostruktur-Elektroden-System, bislang bestehende technische Hürden zu überwinden (Kapitel 3). Durch die Möglichkeit, einen in das Hochdruckvolumen integrierten Photonendetektor zu bauen, werden viele der Stabilitätsprobleme gelöst. Mit der großflächigen Auslese des Szintillationslichts direkt dort, wo es entsteht, werden die Transmissionsverluste in Fenstern vermieden. Es gibt damit nur kleine raumwinkelabhängige Effekte und es wird nur ein Gasvolumen und damit kein zusätzliches System zum Evakuieren, Zirkulieren und Reinigen benötigt. Durch die Trennung der Energie- und der Ortsinformation und deren separate Auslese wird zwar die Komplexität des Detektors erhöht, die Teilsysteme können jedoch unabhängig für die jeweiligen Anforderungen optimiert werden. Grundlagen Im Rahmen dieser Arbeit wurden bereits existierende Erfahrungen aufgegriffen und in deren logischer Fortsetzung, ein, in das Szintillatorvolumen integrierter, UV-Photonendetektor entwickelt. Zunächst musste mit einer umfangreichen Recherche ermittelt werden, welche Anforderungen an einen integrierten Photonendetektor bestehen und wie ein solches System in den Aufbau eingebunden werden kann. Mit dem GEM, der sich schon in diversen anderen Gasdetektoranwendungen als universell einsetzbarer Verstärker bewährt hatte, war ein potenzielles Mikrostuktur-Elektroden-System für unsere Anwendung gefunden. Um die Einsatztauglichkeit dieser Mikrostrukturen für die neuen Applikationen zu analysieren, wurden sie im Standard-Design, unter vielen verschiedenen Betriebsparametern getestet. Dabei wurden wertvolle Erfahrungen im Umgang mit den Mikrostrukturen gesammelt. Die GEMs wurden in den typischen Detektorgasen, bei verschieden Drücken, elektrischen Spannungen und Feld-stärken studiert. Dabei wurden die Chancen, aber auch - vor allem aufgrund elektrischer Überschläge und Instabilitäten - die Grenzen des damit Erreichbaren, aufgezeigt. Mit der Herstellung der speziell für diese Anwendung entwickelten GEMs wurde die Grundlage für den stabilen Betrieb des Detektors geschaffen. Simulationsrechnungen In Kooperation mit einer italienischen Gruppe vom INFN in Cagliari haben wir, mit dem Detektor-Simulations-Programm Garfield, Berechnungen durchgeführt (Kapitel 4). Damit konnte schon vor der technischen Realisierung ein Überblick über die Betriebsbedingungen eines mehrstufigen und komplexen Systems gewonnen werden. Dazu zählen die messtechnisch erfassbaren Größen, wie z.B. die mittlere Gasverstärkung und Diffusion. Daneben konnten aber auch die Prozesse im Kleinen studiert werden. Von besonderem Interesse für die Funktion des Detektors ist dabei der Verlauf der Feldstärke in den Poren der Mikrostrukturen und den umliegenden Regionen. Dessen räumlicher Verlauf in Kombination mit den jeweiligen Gasdaten bestimmen die Elektronentransportparameter, die Gasverstärkung, die Diffusion und die Effizienz. In den Xenon-Szintillator integrierter UV-Photonen-Detektor Der UV-Photonendetektor konnte in zwei Varianten erfolgreich in ein Volumen mit dem Xenon-Gas-Szintillator integriert werden. Die Verbindung der CsI-Photokathode mit dem Elektronenverstärker wurde dabei zum einen als semitransparente dünne Schicht auf einer Quarzglasplatte vor der GEM-Folie und zum anderen als opake Variante auf der Frontseite des GEM realisiert. Bei der Auslese des Xenon-Szintillationslichts mit einer in reinem Xenon und bei hohem Druck betriebenen CsI-Photokathode, wurde Neuland betreten. Es wurde erfolgreich gezeigt, dass der integrierte Photonendetektor auf GEM Basis für die hier diskutierten Einsatzbereiche und Anforderungen funktioniert. Die Ankopplung der Photokathode an die Verstärkerstruktur und dabei vor allem der Elektronentransport von der CsI-Schicht in die Verstärkungszone, wurden im Detail untersucht. Dass die Gasverstärkung in reinem Xenon bei den beschriebe-nen Betriebsparameter überhaupt funktioniert, liegt zum einen daran, dass die optische Rückkopplung mit diesem neuen Design effektiv unterdrückt werden kann. Zum anderen konnten die Einflussparameter auf die Gasverstärkung, für den mehrstufigen GEM-Verstärkungsprozess in reinem Xenon, im Detail untersucht werden. Die gekoppelten Gas-Verstärker-Elemente wurden mit einer eigens für diese Anwendung entwickelten Versorgungsspannungsquelle betrieben, die die Folgen von elektrischen Überschlägen minimiert (Kapitel 5.1.3). Gegenüber den herkömmlichen Gasdetektoren ist es mit diesem neuartigen Aufbau möglich, den UV-Photonen-Detektor bei diesen Betriebsparametern stabil zu betreiben. Abbildende Optiken - optische und mechanische Eigenschaften Parallel zur Entwicklung dieses großflächigen Detektors zur Messung des Energiesignals und der Registrierung des primären Lichts, wurde das Konzept zur Ortsauslese via abbildender Optik weiterverfolgt. Die optischen Abbildungseigenschaften der Linsen wurde im Wellenlängenbereich des Xenon-Szintillationslichtes untersucht. In ersten Tests konnte bei kleinen Gasdrücken und somit geringen mechanischen Beanspruchungen die Ebene der Sekundär-lichterzeugung auf einen gekapselten Mikro-Kanal-Platten-Detektor abgebildet werden. Die Festigkeit der Quarzglaslinse für die Druckbeanspruchungen im hier diskutierten Detektor konnte in Zusammenarbeit mit der Fachhochschule Heilbronn - mittels Finite-Elemente-Berechnung - als ausreichend verifiziert werden. Ausblick Die beiden getrennten Systeme für Orts- und Energiemessung funktionieren unabhängig voneinander. Die Vorraussetzungen für die Kombination der Komponenten in einem gemeinsamen Aufbau sind damit geschaffen. Damit ist der Weg für die folgenden Schritte in diesem Projekt aufgezeigt. Als logische Fortsetzung dieser Arbeiten ist geplant, den integrierten Photonendetektor mit der Photokathode auf der GEM-Frontseite, zusammen mit der Ortsauslese gemeinsam aufzubauen. Von dieser Kombination profitiert das Auflösungsvermögen beider Messungen. Die Korrektur der ortsabhängigen Schwankungen in der Effizienz der Photokathode verbessert die Energieauflösung signifikant. Auf der anderen Seite kann durch das geschickte Setzen von geeigneten Bedingungen auf das Energiesignal die Ortsmessung optimiert werden. Als weiterer naheliegender Schritt auf dem Weg zum effizienten Nachweis der hochenergetischen Photonen, bietet sich der Einbau einer zusätzlichen Verstärkungsstufe zum Aufbau eines dreifach-GEM-Detektors an. Damit kann bei höheren Gasdrücken, trotz kleiner werdender maximaler Verstärkung pro GEM, eine ausreichende Gesamtverstärkung erreicht werden. Der Einsatz des Detektors in einem größeren Experiment, in Kombination mit anderen Messapparaturen, rückt somit in greifbare Nähe.
Die vorliegende Arbeit bietet zunächst einen weiteren Beweis für die Existenz des neutralen Heliumdimers. Darüber hinaus konnten zwei verschiedene Prozesse identifiziert werden, über die die Absorbtion eines Photons zur Ionisation beider Atome des Dimers über sehr große Abstände führen kann. Oberhalb einer Photonenenergie von 65,4 eV konnte ein ICD Prozess beobachtet werden, der über Photoionisation mit gleichzeitiger Anregung von einem der beiden Atome realisiert wird. Bei 77,86 eV konnte ICD über elektronisch angeregte Zustände bis n=6 nachgewiesen werden. In der KER-Verteilung konnten zudem Strukturen gefunden werden, die auf Vibrationsanregungen im Zwischenzustand des Dimer-Ions schließen lassen. Eine vollständig quantenmechanische Rechnung von Sisourat et al. konnte dies schließlich hervorragend bestätigen. Es konnte also ein direkter Blick auf die Vibrationswellenfunktionen des Systems erlangt werden. In anderen Systemen ist dies in der Regel nicht möglich, da sich alle Zustände üblicherweise zu einer strukturlosen Verteilung überlagern. Weiterhin konnte gezeigt werden, dass sich die Winkelverteilungen von ICD- und Photoelektronen in verschiedenen Bereichen des KER mitunter stark voneinander unterscheiden. Dies konnte auf die unterschiedliche Besetzung von verschiedenen Potentialkurven zurückgeführt werden. Unterhalb der Photonenenergieschwelle zur Anregung und Ionisation eines Heliumatoms konnte ein weiterer, zweistufiger Ionisationsmechanismus gefunden werden. Hier wird zunächst durch Photoionisation ein Elektron aus einem der beiden Atome im Dimer freigesetzt. Dieses Photoelektron kann nun am neutralen Atom gestreut werden und dabei ausreichend viel Energie übertragen, um dieses ebenfalls zu ionisieren. Es konnte gezeigt werden, dass der Prozess einer Abhängigkeit von der Polarisation der Synchrotronstrahlung unterliegt, die man für Photoionisation erwarten würde. Die Energie- und Winkelverteilungen der Elektronen konnten daher mit vorangegangenen Elektronenstoß-Experimenten verglichen werden. Die gute Übereinstimmung mit diesen Daten rechtfertigt eine anschauliche Sichtweise des Prozesses als Analogon zum klassischen Billiard-Stoß. Der Two-Step-Prozess wurde bisher zwar schon in vielen Systemen als theoretisches Modell zur Doppelionisation beschrieben, allerdings konnten die einzelnen Unterprozesse bisher nicht gesondert gemessen werden. Die großen Abstände im Heliumdimer ermöglichen erstmals eine deutliche Trennung in Photoionisation an einem Atom und Elektronenstoß (e,2e) am Nachbaratom. Der Two-Step-Prozess konnte außerdem dazu verwendet werden, die ungewöhnliche Grundzustandswellenfunktion des Heliumdimers zu experimentell zu bestätigen. Eine Analyse des gemessenen KER konnte dabei deutliche Abweichungen zu einer klassischen Theorie aufzeigen. Erst eine vollständig quantenmechanische Rechnung des Übergangs von Sisourat et al. konnte die Messdaten beschreiben.
Die vorliegende Arbeit ist der Fragestellung nachgegangen, ob sich die Gedächtnisleistung, insbesondere die von älteren Menschen, durch Gedächtnistraining verbessern lässt. Dabei sollen Verhaltensdaten und EEG-Daten, die simultan mit der Bewältigung einer Gedächtnisaufgabe erhoben wurden, korreliert werden. Untersucht wurden zwei verschiedene Gruppen. Zum einen Mild Cognitive Impairment Patienten und zum anderen eine altersähnliche Kontrollgruppe. Unter Mild Cognitive Impairment (MCI) versteht man eine leichte kognitive Beeinträchtigung des Gedächtnisses, welche aber die Kriterien einer Demenzmanifestation noch nicht erfüllt. Die Diagnosekriterien für MCI sind nicht einheitlich. Ein häufiges Kriterium wurde von Petersen (1999) definiert und ist die objektive Beeinträchtigung des Gedächtnisses ohne weitere kognitive Einbußen. Die Leistungsfähigkeit des Gedächtnisses/Gedächtnissubsystems muss dabei mindestens 1,5 Standardabweichungen schlechter sein, als die einer alters- und ausbildungsgleichen Population. Etwa 16-34 % aller 65 jährigen leiden unter dieser Form der kognitiven Beeinträchtigung. Schätzungen ergeben, dass 70 % der demenziellen Erkrankungen innerhalb von 2-3 Jahren aus einer MCI hervorgehen. Veränderungen des EEGs bei Patienten mit der Alzheimer'schen Demenz (AD) und MCI-Patienten wurden in den letzten Jahren untersucht, insbesondere Untersuchungen der EEG-Spontanaktivität, da diese vor allem bei den AD-Patienten leichter zu realisieren sind. Auffällig ist ein allgemein „langsamer“ werdendes EEG bei den Demenz-Patienten. Vor allem im okzipitalen Bereich ist ein Verlust des Alpha-Blocks beim Öffnen der Augen zu registrieren. In einem sehr frühen Stadium der AD ist meist noch kein verändertes EEG zu verzeichnen, ebenso bei MCI-Patienten. Eine beobachtbare Veränderung der EEG-Oszillationen könnte aber für eine frühe Diagnose der Krankheit und somit auch für eine frühe Behandlungsmöglichkeit von Bedeutung sein. Das Elektroenzephalogramm misst elektrische Potentiale, die im Gehirn durch „Neuronenaktivität“ verursacht werden und hat eine besonders gute zeitliche Auflösung (in ms Bereich) dafür aber eine schlechte räumliche. Die schlechte räumliche Auflösung ist dadurch zu begründen, dass man beim EEG „nur“ Oberflächenpotentialänderungen registrieren kann und dadurch nicht die Quelle der Potentiale lokalisieren kann. Die hohe zeitliche Auflösung des EEGs ermöglicht es aber die neuronale Aktivität während und auch nach der Kodierung sensorischer Informationen (z.B. visuelle Stimulation, wie in dieser Arbeit) zu beobachten. In vorliegender Arbeit wurde untersucht, ob gesunde, ältere Menschen im Vergleich zu Patienten mit leichter Gedächtnisstörung, beim Bewältigen einer Gedächtnisaufgabe, unterschiedliche Hirn-Aktivitäten aufweisen und inwieweit ein Gedächtnistraining von vier Wochen die Gedächtnisleistung der Probanden/Patienten aber auch das EEG-Aktivitätsmuster verändern kann; ob das Gedächtnis also auch im Alter oder sogar bei Dysfunktionen durch Training verbessert werden kann. Dabei galt gerade dem frontalen Bereich besonderes Interesse, da diesem Bereich für das Gedächtnissystem eine besondere Relevanz zugeschrieben wird. Eine delayed matching to sample Aufgabe wurde für visuelle Stimulation, Testung des Arbeitsgedächtnisses und für das kognitive Training durchgeführt. Die neuropsychologischen Daten wurden hierfür mit den EEG-Daten korreliert.
In der vorliegenden Diplomarbeit wird die Auger-Ionisation des Kohlenstoffmonooxidmoleküls CO in linear und zirkular polarisierter Röntgenstrahlung untersucht. Die Strahlung liegt im Bereich des Vakuumultraviolett (VUV) bei 305eV und wird durch ein Elektronensynchrotron, die Advanced Light Source des Lawrence Berkeley National Laboratory, erzeugt. Die Energie eines Photons führt zur Photoionisation eines Elektrons aus dem 1s-Orbital des Kohlenstoffs. Das im darauf folgenden Augerzerfall ausgesandte Elektron und die jeweils einfach positiv geladenen Fragmente aus der Coulombexplosion des CO++-Molekülions werden hinsichtlich ihrer Impulse vermessen. Zur Impulsmessung wurde die in unserer Arbeitsgruppe laufend weiter entwickelte Methode COLTRIMS (COld Target Recoil Ion Momentum Spectroscopy) eingesetzt. Der experimentelle Aufbau gestattet prinzipiell die Messung aller bei der Ionisation freigesetzten geladenen Teilchen. Um die hochenergetischen Auger-Elektronen mit hinreichender Auflösung zu erfassen, wurde erstmals bei einer solchen Apparatur ein Abbremsfeld eingebaut. Dadurch werden allerdings die niederenergetischen Photoelektronen unterdrückt. Die Meßmethode erlaubt eine Rekonstruktion der Impulse der Fragmente zum Zeitpunkt der Ionisation und läßt Rückschlüsse auf die Dynamik der Ionisation zu. Die Winkelverteilung der Augerelektronen wird in Abhängigkeit von der Polarisation beobachtet. Die Verteilungen sowohl des Polar- als auch des Azimutwinkels zur rekonstruierten Molekülachse zeigen keine ausgeprägte Abhängigkeit von der Polarisation. Dies rehabilitiert das von Guillemin et al. in Frage gestellte Zweistufenmodell des Augerzerfalls. Durch Selektion der kinetischen Energie der Augerelektronen und der bei der Coulombexplosion freigesetzten kinetischen Energie (KER) gelingt es, kurzlebige Molekülionen nach Drehimpulszuständen zu trennen und deutlich anisotrope Emissionsmuster zu beobachten. Die Muster lassen sich qualitativ erklären. Langlebigere Molekülionen zeigen ein scharfe Vibrationlinien im KER-Spektrum. Das Vibrationsspektrum wird analysiert und in Bezug zu vorangehenden Messungen gesetzt. Durch die koinzidente Meßmethode ist es möglich, bislang nicht beobachtbare Vibrationslinien zu identifizieren.
A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail.
Die ionenstrahlinduzierte Desorption ist eine Beeinträchtigung der Leistungsfähigkeit moderner Hochstrom-Schwerionensynchrotrons. Umgeladene Projektilionen folgen in den Ablenkmagneten nicht der Sollbahn des Strahls und kollidieren mit der Strahlrohrwand. Dies führt zu einer stimulierten Gasabgabe an das Beschleunigervakuum. Der resultierende erhöhte Druck hat eine deutliche Einschränkung der Strahllebensdauer zur Folge. Um die Menge des abgegebenen Gases zu minimieren wurden zahlreiche Experimente durchgeführt, die der Bestimmung der Desorptionsausbeute (desorbierte Gasmoleküle pro auftretendem Ion) unterschiedlicher Materialien unter Bestrahlung mit verschiedenen Ionen dienten. Die vorliegende Arbeit ist ein Beitrag zum Verständnis der physikalischen Prozesse der ionenstrahlinduzierten Desorption. Die Messung der Desorptionsausbeuten mittels der Druckanstiegsmethode wurde erstmals mit Materialanalytiken wie ERDA und RBS kombiniert. Mit diesem einzigartigen experimentellen Aufbau kann das Desorptionsverhalten mit den Oberflächen- und Festkörpereigenschaften der Proben korreliert werden. Anhand der durchgeführten Experimente mit 1,4 MeV/u Xenon-Ionen konnte gezeigt werden, dass die ionenstrahlinduzierte Desorption im Wesentlichen ein Oberflächeneffekt ist. Zerstäubte Verunreinigungen oder abgetragene Oxidschichten von Metallen liefern keinen nennenswerten Beitrag zum desorbierten Gas. Dennoch ist die Desorptionsausbeute stark von den Festkörpereigenschaften der Probe abhängig. Rein metallische Proben desorbieren unter Bestrahlung mit schnellen Schwerionen weniger stark als Isolatoren. Durch die experimentellen Ergebnisse wurde es möglich, Desorptionsausbeuten unter Ionenbestrahlung anhand eines modiffizierten inelastischen Thermal-Spike-Modells vorauszusagen. Die Erweiterung des Modells ist die Kombination des Temperaturprofils mit der thermischen Desorption. Damit kann die ionenstrahlinduzierte Desorption als die Abgabe von Oberflächenadsorbaten, ausgelöst durch eine kurzzeitige Erhöhung der Oberflächentemperatur um den Ioneneinschlag herum, betrachtet werden.
Die Coltrims-Methode hat sich seit den 1990er Jahren als gutes experimentelles Instrument in der Atomphysik und darüberhinaus etabliert. Sie beruht darauf, dass die bei einer Reaktion entstehenden Fragmente mit ortssensitiven Detektoren nachgewiesen werden. Die Signale der Detektoren wurden bisher mit einem analogen Vorverstärker verstärkt und dann mit Hilfe eines Constant Fraction Discriminators in digitale Signale umgewandelt. Die Zeitinformation der digitalen Signale wurden von Time to Digital Convertern aufgenommen und im Computer gespeichert. Mit dieser Form der Auslese und Analyse der von den Detektoren stammenden Signale können nur einige wenige Fragmente nachgewiesen werden. Die Lösung dieses Problems besteht also darin, eine neue Variante für die Auslese und Analyse der Signale zu finden. Diese wurde in der Verwendung eines Transientenrekorders gefunden. Anstatt nur die Zeitinformation zu speichern, nimmt dieser die gesamte Signalform der Detektoren auf. Die Aufgabe, die in dieser Arbeit bearbeitet werden sollte, bestand darin, eine Software zu entwickeln, mit deren Hilfe der Transientenrekorder gesteuert werden kann. Auch sollte ein Weg gefunden werden nur die für das Experiment notwendigen Informationen des aufgenommenen Zeitfensters zu speichern. Des Weiteren sollten Methoden aufgezeigt werden, wie die aufgenommen Signale untersucht und deren Parameter extrahiert werden können. Diese Methoden wurden dann an realen Signalen getestet. Nachdem im ersten Kapitel die Motivation zu dieser Arbeit und einige theoretische Hintergründe vorgestellt werden, wird im zweiten Kapitel auf verschiedene Methoden der Signalanalyse eingegangen. Der Augenmerk liegt dabei sowohl auf Einzel- sowie Doppelsignalanalyse. Die Güte der vorgestellten Algorithmen wird mit Hilfe von künstlichen Signalen ermittelt. Es zeigt sich, dass die beste Methode die zeitliche Position der Einzelsignale zu finden, der Pulsfit ist. Mit dieser Methode kann eine Auflösung von etwa 50 ps erzielt werden. Bei der Betrachtung der Doppelsignale stellt sich heraus, dass der minimale Abstand zwischen den Signalen 5 ns bis 7 ns betragen muss. Das dritte Kapitel zeigt eine Anwendung des neuen Aufnahmesystems. Dort werden die physikalischen Ergebnisse, die mit Hilfe des neuen Systems gewonnen werden konnten, mit einem herkömmlichen Aufnahmesystem verglichen. Aufgrund der geringeren Totzeit des neuen Aufnahmesystems konnte mehr Statistik gewonnen werden. Der dadurch gewonnene Vorteil zeigt sich deutlich in den Ergebnissen, bei denen eine vierfach Koinzidenz verlangt wird. Bei dem nächsten Kapitel beschriebenen Experiment mussten sehr viele Fragmente nachgewiesen werden. Hierzu wird ein weiteres Kriterium neben der Zeitsumme vorgestellt mit dem die Anodensignale einander zugewiesen werden können. Die in diesem Kapitel gezeigten physikalischen Ergebnisse zeigen die Impulsverteilungen für Neon und Helium für unterschiedliche Lichtintensitäten bzw. Ionisationsprozesse. Im darauf folgenden Kapitel wird beschrieben, wie die neue Aufnahmemethode dazu verwendet werden kann, die von den Detektoren kommenden Signale genauer zu analysieren. Die physikalische Reaktion führte dazu, dass von dem Detektor hauptsächlich Doppelsignale aufgenommen wurden. Dies erlaubt die Untersuchung der Doppelsignalalgorithmen an realen Signalen. Hierbei zeigte sich, dass die Totzeit bei realen Signalen vergleichbar mit der Totzeit bei künstlichen Signalen ist. Die Algorithmen können bei Abständen der Einzelsignale von weniger als 10 ns die Position der Signale nicht mehr genau bestimmen. Anhand der Pulshöhenverteilung kann gezeigt werden, dass der verwendete Detektor in der Mitte eine geringere Nachweiseffizienz hatte. Im letzten Kapitel wird die Güte der verschiedenen Methoden der Einzelsignalanalyse anhand von realen Signalen überprüft. Dabei wurden Signale desselben Detektors mit unterschiedlichen Vorverstärkern verstärkt. Die beiden Vorverstärker unterschieden sich in ihrer Bandbreitenbegrenzung. Die Daten wurden mit einem Transientenrekorder mit 2 GS aufgenommen. Es wird gezeigt wie diese Daten umgewandelt werden können, so dass sie einem System mit nur 1 GS entsprechen. Dies erlaubt es die Güte der Methoden für Signale eines Systems mit 2 GS mit denen eines Systems mit 1 GS zu vergleichen. Es zeigt sich in der Pulshöhenverteilung, dass die Signale des stärker bandbreitenbegrenzten Vorverstärkers vergleichbar mit den künstlichen Signalen sind. Die Signale des weniger stark bandbreitenbegrenzten Vorverstärkers weisen eine zu starke Abhängigkeit ihrer Breite von der Pulshöhe auf. Aus diesem Grund sind die Ergebnisse des letzt genannten Vorverstärkers abweichend von den Ergebnissen mit den künstlichen Signalen. Bei diesem Vorverstärker zeigte der einfache Constant Fraction Algorithmus die beste Auflösung.