Refine
Year of publication
Document Type
- Doctoral Thesis (21)
- diplomthesis (2)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Photon (2)
- Ultrarelativistischer Bereich (2)
- Zeitprojektionskammer (2)
- ALICE (1)
- ALTRO (1)
- Antiproton (1)
- Blei (1)
- Blei-208-Reaktion (1)
- Blei-208-Target (1)
- Blei-Reaktion (1)
Institute
- Physik (23)
Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10 high 7 and 10 high 12 omega cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1 ns up to a flux of several kHz/cm high 2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650 m high 2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50 ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176 m high 2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in streamer mode providing large signals which simplifies readout electronics and gap uniformity requirements. However, high rate applications and detector aging issues made the operation in avalanche mode popular. This was also facilitated by the development of new highly quenching C2F4H2-based gas mixtures with small contents of SF6. While the physics of streamers is difficult to study, the avalanche mode opened the possibility for a detailed simulation of the detector physics processes in RPCs. Even though RPCs were introduced in the early eighties and have been (will be) used in experiments, there are still disagreements about the explanation of several aspects of the RPC performance. The high efficiency of single gap RPCs would require a large ionization density of the used gases, which according to some authors contradicts measurements. Even in the case of a large ionization density the gas gain has to be extremely large, in order to arrive at the observed RPC efficiency. This raises other questions: A very strong space charge effect is required to explain the observed small avalanche charges around 1 pC. Doubts have been raised whether an avalanche can progress under such extreme conditions without developing into a streamer. To overcome these difficulties, other processes, like the emission of an electron from the cathode, were suggested. Moreover, the shape of measured charge spectra of single gap RPCs differs largely from what is expected from the statistics of the primary ionization and the avalanche multiplication. In this thesis we discuss the detector physics processes of RPCs, from the primary ionization and the avalanche statistics to the signal induction and the read out electronics. We present Monte-Carlo simulation procedures that implement the described processes. While the fundament of the described model and some results were already published elsewhere [1], the subject of this thesis is the implementation of the space charge effect. We present analytic formulas for the electrostatic potential of a point charge in the gas gap of an RPC. These formulas were developed in collaboration with the University of Graz [2] and were published in [3, 4]. The simulation model presented in [1] is completed by the dynamic calculation of the space charge field using these formulas. Since the gas parameters like drift velocity and the Townsend and attachment coefficients depend on the electric field, they are calculated dynamically as well. The functional dependence of these parameters on the field is obtained with the simulation programs MAGBOLTZ and IMONTE. For the primary ionization parameters, we use the values that are predicted by the program HEED. While the described procedure only simulates the longitudinal avalanche development towards the anode of the RPC, we also present more dimensional models that allow a careful study of the transverse repulsive and attractive forces of the space charge fields, and of the consequences for the avalanche propagation. We shall show that the efficiencies of single gap Timing RPCs is indeed explained by the high primary ionization density (about 9.5 /cm as predicted by HEED) and a large effective Townsend coefficient (around 113 /mm as predicted by IMONTE). We show that the space charge field reaches the same magnitude as the applied electric field in avalanches at large gas gain. This strong space charge effect effectively suppresses large values for the avalanche charges. The shape of the simulated charge spectra is very similar to the measurements. Also the simulated average charges are close to the experimental results. RPCs are operated in a strong space charge regime over a large range of applied voltage, contrary to wire chambers. We apply only standard detector physics simulations to RPCs. The performance of Timing and Trigger RPCs is well reproduced by our simulations. The results concerning the space charge effect were presented and discussed at the 'RPC 2001' workshop [5] and on the '2002 NSS/MIC' conference [6].
This thesis presented the measurement of antideuteron and antihelium-3 production in central AuAu collisions at V SNN = 200 GeV center-of-mass energy at RHIC. The analysis is based on STAR data, about 3 x 10 high 6 events at top 10% centrality. Within the data sample a total number of about 5000 antideuterons and 193 antihelium-3 were observed in the STARTPC at mid-rapidity. The specific energy loss measurement in the TPC provides antideuteron identification only in a small momentum window, antihelium-3 however can be identified nearly background free with almost complete momentum range coverage. Following the statistical analysis of the hadronic composition at chemical freeze-out of the fireball, the antinuclei abundances were analyzed in terms of the same statistical description. Now applied to the clusterization of the fireball, the statistical analysis yields a fireball temperature of (135+-10) MeV and chemical potential of (5+-10) MeV at kinetic freeze-out. In the same way as the hadronization, the clusterization process is phase-space dominated and clusters are born into a state of maximum entropy. The large sample of observed antihelium-3 allowed for the first time in heavy-ion physics to calculate a differential multiplicity and invariant cross section as a function of transverse momentum. As expected, the collective transverse flow in the fireball flattens the shape of the transverse momentum spectrum and leads to the high inverse slope parameter of (950+-140) MeV of the antihelium-3 spectrum. With the extracted mean transverse momentum of antihelium-3, the collective flow velocity in transverse direction could be estimated. As the average thermal velocity is small compared to the mean collective flow velocity for heavy particles, the mean transverse momentum of antihelium-3 by itself constrains the flow velocity. Here, a simple ideal-gas approximation was fitted to the distribution of the mean transverse momentum as a function of particle mass and provided direct access to the kinetic freeze-out temperature and the flow velocity. A concept, which is complementary to the combined analysis of momentum spectra and two-particle HBT correlation methods commonly used to extract these parameters, and a cross check for the statistical analysis. The upper limit for the transverse collective flow velocity from the antihelium-3 measurement alone is v flow <= (0.68+-0.06)c, whereas the ideal-gas approximation yields a temperature of (130+-40) MeV and v flow = (0.46+-0.08)c. The results indicate, that the kinetic freeze-out conditions at SPS and RHIC are very similar, except for a smaller baryon chemical potential at RHIC. The simultaneous inclusive measurement of antiprotons allowed to study the cluster production in terms of the coalescence picture. With the large momentum coverage of the antihelium-3 momentum spectrum, the coalescence parameter could be calculated as a function of transverse momentum. Due to the difference between antiproton and antihelium-3 inverse slopes, increases with increasing transverse momentum - again a direct consequence of collective transverse flow. Both B2 and B3 follow the common behavior of decreasing coalescence parameters as a function of collision energy. According to the simple thermodynamic coalescence model, this indicates an increasing freeze-out volume for higher energies and is confirmed by the interpretation of the coalescence parameters in the framework of Scheibl and Heinz. Their model includes a dynamically expanding source in a quantum mechanical description of the coalescence process and expresses the coalescence parameter as a function of the homogeneity volume V hom accessible also in two-particle HBT correlation analyzes. The values for the antideuteron and antihelium-3 results agree well with the homogeneity volume from pion-pion correlations, but do not seem to follow the same transverse mass dependence. A comparison with proton-proton correlations may clarify this point and provide an important cross check for this analysis. Compared to SPS the homogeneity volume increases nearly by a factor of two. The analysis of the antinuclei emission at RHIC allowed to study the kinetic freeze-out of the created fireball. The results show, that the temperature and mean transverse velocity in the expanding system does not change significantly, when the collision energy increases by one order of magnitude. Only the source volume, i.e. the homogeneity volume, increases. That leaves open questions for the theoreticians to the details of the system evolution from the initial hot and dense phase - the initial energy density is a factor of two to three higher at RHIC than at SPS - to the final kinetic freeze-out with similar conditions. At the same time, the results are important constraints for the theoretical descriptions. The successful implementation of the Level-3 trigger system in STAR opens the door for the measurement of very rare signals. Indeed, in the coalescence physics perspective, the first observations of anti-alpha 4 He nuclei and antihypertritons 3/Delta H will come within the reach of STAR, in addition to a high statistics sample of antihelium-3.
Die Struktur der uns umgebenden Materie sowie die zwischen ihren Bestandteilen wirkenden Kräfte waren schon immer eine der zentralen wissenschaftlichen Fragestellungen. Nach den gegenwärtigen Erkenntnissen ist die uns umgebende Materie aus einigen wenigen Elementarteilchen aufgebaut; sechs Quarks und sechs Leptonen. Zwischen ihnen wirken vier fundamentale Kräfte; die starke, die schwache, die elektromagnetische und die Gravitationskraft. Dominierende Kraft zwischen Quarks ist auf kleinen Skalen, wie im Inneren von Nukleonen, die starke Kraft. Die sie beschreibende Theorie ist die Quantum Chromo Dynamic (QCD). Eine besondere Eigenschaft der QCD ist die Vorhersage, dass Quarks nur in gebundenen Zuständen auftreten, entweder als Paar (Mesonen) oder als Kombination aus drei Quarks (Baryonen). Tatsächlich wurden bisher keine freien Quarks experimentell gefunden. Dieses Phänomen wird als "confinement" bezeichnet. Es stellt sich die Frage, ob es möglich ist, einen Materiezustand zu erzeugen in welchem sich die Quarks in einem ausgedehnten Volumen wie freieTeilchen verhalten. Tatsächlich sagen theoretische Berechnungen einen solchen Zustand, das Quark-Gluon-Plasma, für sehr hohe Temperaturen und/oder Dichten voraus. Ultrarelativistische Schwerionenkollisionen sind die einzige derzeit bekannte Möglichkeit, die nötigen Temperaturen und Dichten im Labor zu erreichen. Erschwert wird die Interpretation des hierbei erzeugten Materiezustandes durch die Tatsache, dass im Experiment nur der hadronische Endzustand der Kollision beobachtet werden kann, auf Grund der sehr kurzen Zeitskala jedoch nicht die erzeugte Materie selbst. Trotzdem wurden inzwischen einige Observablen gemessen, die einen Rückschluss auf den Materiezustand in den frühen Phasen der Kollision zulassen. Die kombinierte Information legt die Bildung eines "deconfinten" Zustandes nahe. Eine dieser Proben ist die Produktion von schweren Quarkonia, d.h. Mesonen, die aus charm-anticharm (bzw. bottom-antibottom) Quarkpaaren bestehen. Wie in Kapitel 2 näher erläutert, kann von ihrer Produktion möglicherweise auf die in der Kollision erreichte Temperatur geschlossen werden. Das bisherige experimentelle Programm konzentrierte sich auf die Messung des J/Ã Mesons, dem 1S Zustandes des charm - anticharm Systems. Wie von der Theorie vorhergesagt, wurde eine Unterdrückung seiner Produktion in Schwerionenkollisionen relativ zur Produktion in Proton-Proton-Kollisionen beobachtet, z.B. vom Experiment NA50 am SPS Beschleuniger des Europäischen Zentrums für Teilchenphysik CERN, wie in Abbildung 2.2 gezeigt.Die Deutung dieser Meßdaten ist jedoch umstritten. Neben einer Interpretation im Rahmen des oben beschriebenen Modells können die Daten sowohl von hadronischen Modellen als auch von statistischen Hadronisierungsmodellen, die eine Bildung des cc Zustandes nicht in den initialen Partonkollisionen, sondern erst beim Übergang zum hadronischen Endzustand annehmen, beschrieben werden. Eine Möglichkeit, einzelne Modelle zu falsifizieren bzw. einige der Modellparameter weiter einzuschränken, besteht in der Messung anderer Quarkonia Zustände als dem J/Ã Meson. Hier wären zum einen die anderen Zustände der cc Familie zu nennen, z.B. das Âc(1P). Dieses ist jedoch durch seine Zerfallskanäle experimentell nur schwer nachzuweisen. Eine andere Möglichkeit bietet die Messung von Bindungszuständen zwischen bottom Quarks. Das bb System hat durch die grössere Massendifferenz zwischen dem ersten Bindungszustand, dem (1S), und der für die Erzeugung zweier Hadronen mit jeweils einem bottom und einem leichten Quark, wesentlich mehr Zustände als das cc System. Experimentell sind durch den Zerfallskanal in zwei Leptonen insbesondere die Upsilon gut nachzuweisen.Die Messung von Upsilons in ultrarelativistischen Schwerionenkollisionen ist jedoch experimentell äusserst herausfordernd. Durch die große Masse von circa 10 GeV/c2 ist die Produktionswahrscheinlichkeit sehr klein im Vergleich zu leichteren Teilchen, zum Beispiel dem nur 3.14 GeV/2 schwerem J/Ã. Der im Jahr 2000 in Betrieb genommene Relativistic Heavy Ion Collider (RHIC, siehe Kapitel 3.1) des Brookhaven National Laboratories (BNL) auf Long Island in der Nähe vonNew York erreicht zum ersten Mal eine ausreichend grosse Schwerpunktsenergie und Luminosit ät, welche eine Upsilon Messung möglich erscheinen lassen. Die Entwicklung des experimentellen Programms zur Messung von Upsilons mit dem STAR Detektor am RHIC und erste Ergebnisse aus der Strahlzeit der Jahre 2003/2004 werden in dieser Arbeit beschrieben. Herzstück des STAR Detektors, der in Kapitel 3.2 näher beschrieben wird, ist eine Time Projection Chamber (TPC) welche die Rekonstruktion geladener Teilchen in einem grossen Phasenraumbereich bei mittlerer Rapidität erlaubt. In den Jahren 2001 bis 2005 wurde das Experiment um elektromagnetische Kalorimeter (BEMC, EEMC) erweitert, mit welchen zusätzlich die Energie von Photonen und Elektronen bestimmt werden kann. Die verschiedenen Detektoren des STAR Detektorsystems können in zwei, durch ihre mögliche Ausleserate definierte, Klassen eingeteilt werden. Ein Teil der Detektoren wird bei jedem RHIC Bunch Crossing ausgelesen, d.h. mit einer Frequenz von 9.3 MHz. Zu dieser Klasse der sogenannten Triggerdetektoren gehören unter anderem das schon erwähnte elektromagnetische Kalorimeter, der Central Trigger Barrel (CTB), die Zero Degree Calorimeter (ZDC) und die Beam-Beam Counter (BBC). Die Time Projection Chamber und einige andere Detektoren, wie z.B. der Silicon Vertex Tracker (SVT), können im Gegensatz dazu nur mit maximal 100 Hz ausgelesen werden.
Kaon and pion production in centrality selected minimum bias Pb+Pb collisions at 40 and 158A GeV
(2009)
Results on charged kaon and negatively charged pion production and spectra for centrality selected Pb+Pb mininimum bias events at 40 and 158A GeV have been presented in this thesis. All analysis are based on data taken by the NA49 experiment at the accelerator Super Proton Synchrotron (SPS) at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland. The kaon results are based on an analysis of the mean energy loss <dE/dx> of the charged particles traversing the detector gas of the time projection chambers (TPCs). The pion results are from an analysis of all negatively charged particles h- corrected for contributions from particle decays and secondary interactions. For the dE/dx analysis of charged kaons, main TPC tracks with a total momentum between 4 and 50 GeV have been analyzed in logarithmic momentum log(p) and transverse momentum pt bins. The resulting dE/dx spectra have been fitted by the sum of 5 Gaussians, one for each main particle type (electrons, pions, kaons, protons, deuterons). The amplitude of the Gaussian used for the kaon part of the spectra has been corrected for efficiency and acceptance and the binning has been transformed to rapidity y and transverse momentum pt bins. The multiplicity dN/dy of the single rapidity bins has been derived by summing the measured range of the transverse momentum spectra and an extrapolation to full coverage with a single exponential function fitted to the measured range. The results have been combined with the mid-rapidity measurements from the time-of-flight detectors and a double Gaussian fit to the dN/dy spectra has been used for extrapolation to rapidity outside of the acceptance of the dE/dx analysis. For the h- analysis of negatively charged pions, all negatively charged tracks have been analyzed. The background from secondary reactions, particle decays, and gamma-conversions has been corrected with the VENUS event generator. The results were also corrected for efficiency and acceptance and the pt spectra were analyzed and extrapolated where necessary to derive the mean yield per rapidity bin dN/dy. The mean multiplicity <pi-> has been derived by summing up the measured dN/dy and extrapolating the rapidity spectrum with a double Gaussian fit to 4pi coverage. The results have been discussed in detail and compared to various model calculations. Microscopical models like URQMD and HSD do not describe the full complexity of Pb+Pb collisions. Especially the production of the positively charged kaons, which carry the major part of strange quarks, cannot be consistently reproduced by the model calculations. Centrality selected minimum bias Pb+Pb collisions can be described as a mixture of a high-density region of multiply colliding nucleons (core) and practically independent nucleon-nucleon collisions (corona). This leads to a smooth evolution from peripheral to central collisions. A more detailed approach derives the ensemble volume from a percolation of elementary clusters. In the percolation model all clusters are formed from coalescing strings that are assumed to decay statistically with the volume dependence of canonical strangeness suppression. The percolation model describes the measured data for top SPS and RHIC energies. At 40A GeV, the system size dependence of the relative strangeness production starts to evolve from the saturation seen at higher energies from peripheral events onwards towards a linear dependence at SIS and AGS. This change of the dependence on system size occurs in the energy region of the observed maximum of the K+ to pi ratio for central Pb+Pb collisions. Future measurements with heavy ion beam energies around this maximum at RHIC and FAIR as well as the upgraded NA49 successor experiment NA61 will further improve our understanding of quark matter and its reflection in modern heavy ion physics and theories.
Nuclear matter, that takes the form of protons and neutrons under normal conditions, is subject to a phase transition at high temperatures and densities, liberating the quarks and gluons that are usually confined in nucleons and creating a medium of free partons: the Quark-Gluon-Plasma. It is generally believed that this state of matter can be created in relativistic collisions of heavy nuclei. The study of the medium created in these collisions is the subject of heavy-ion physics. One topic within this field are particles with high transverse momentum, that are created in initial hard collisions between partons of the incoming nuclei. The energetic partons lose energy due to interactions with the medium before they fragment into a jet of hadrons. Due to momentum conservation, these jets are usually created as back-to-back pairs, or less commonly as three-jet or photon-jet events, where a single jet is balanced by a hard photon. The energy loss can be measured using correlations between particles with high transverse momenta. A trigger particle is selected with very high transversemomentum and the distribution of the azimuthal angle of associated particles in the same event is studied, relative to the azimuth of the trigger particle.These azimuthal correlations show a peak for opening angles around 0 from particles selected from the same jet, and a second peak at opening angles around 180 degrees from back-to-back di-jets. Random combinations with the underlying event generate a flat background, extending over the full range of opening angles. The STAR experiment observed a modification of these correlations in central Au+Au collisions, where trigger particles with 4GeV < pT(trigger) < 6GeV and associated particles with 2GeV < pT(trigger) < 4GeV were selected. A strong suppression has been observed for away-side correlations in central Au+Au collisions, relative to p+p, d+Au and peripheral Au+Au data. This can be explained by assuming two partons going in opposite directions, where at least one has to travel a large distance through the medium, causing energy loss and effectively removing the event from the analysis. For near-side correlations, no significant modification has been observed, which can be explained by surface emission, assuming that the observed jets have travelled only a short distance in themedium, not leaving enough time for interactions with the medium. Both trigger- and associated particles in a correlation analysis with charged hadrons are subject to modifications due to the medium. This can be avoided by using photon-jet events instead of di-jets, because the photon does not interact with the medium and therefore provides the best available measure of the properties of the opposite jet in the presence of the underlying event. This thesis studies azimuthal correlations between regions of high energy deposition in the electro-magnetic calorimeter as trigger- and charged tracks as associated particles. The data sample had been enriched by online event selection, allowing for the selection of trigger particles with a transverse energy of more than 10GeV and associated particles with more than 2,3 or 4 GeV. The away-side yield per trigger particle is strongly suppressed like in correlations between charged particles. The near-side yield is also reduced by about a factor two, clearly different from charged correlations. The trigger particles are a mixture of photon pairs from the decays of neutral pions and single photons, mainly from photon-jet events, with small contributions from other hadron decays and fragmentation photons. Pythia simulations predict a ratio of neutral pions to prompt photons of 3.5:1 in p+p collisions with the same cuts as in the presented analysis. Single particle suppression further reduces this ratio in central Au_Au collisions, down to about 0.8:1, indicating that the majority of trigger particles in central Au+Au collisions are prompt photons. The increasing fraction of prompt photon triggers without an accompanying jet and therefore zero associated yield reduces the average yield per trigger particle. The magnitude of the observed effect agrees well with the expectation from Pythia simulations and the assumption of a single particle suppression by a factor 4-5. An analysis of away-side correlations is more difficult, because both photon-jet and di-jet events contribute. The aim is the separation of these two contributions. As a clear separation is not possible with the available dataset, a comparison with two different scenarios is given, where a surprisingly small suppression by only a factor of about 5 is favoured for both dijet- and photon-jet-correlations. A separate measurement of both contributions will be possible by a shower-shape analysis with the EM calorimeter or a comparison with charged correlations in the same kinematic region.
For this thesis photon and pi0 spectra in Gold-Gold-collisions at an energy of sqrt(s_NN) = 62 GeV were measured using the STAR-experiment at RHIC. Heavy ion collisions allow to study strongly interacting matter under extreme condiditons in the laborartory. Nuclear matter is strongly compressed and heated. Theories predict in a system of strongy interacting matter at high temperature and pressure a phase transition from hadronic matter, in which quarks are bound into hadrons, to a plasma of free quarks and gluons (QGP). To study the properties of this created medium, a number of different observables is available. One possibility to determine the temperature of such a system, is to measure the photon emission from the medium. The experimental difficulty is that there are more mechanisms producing photons than just the thermal production. Photons are produced in hard scattering processes or can be the result of the interaction of hard partons with the medium. According to theoretical calculations the photon yield from hard processes exceeds the thermal production for transverse momenta above 3 GeV/c. Photons from hard processes and thermal photons are referred to as direct photons, because they are produced inside of the medium. The largest part of the photons below pt=3GeV/c, however, comes from electromagnetic decays of hadrons in the final state of the collision. The largest fraction comes from the pi0- and the eta-mesons. Their contribution to the photon spectra can be determined by measuring the spectra of these decaying particles and calculating the resulting, corresponding photon spectra. The experimental difficulty is to measure these spectra to an accuracy of a few percent because the decay photons make up about 90% of all photons in the relevant phase space region. The STAR-experiment provides different detectors to measure photons and pi0-mesons. The primary detector for this kind of measurement are the electromagnetic calorimeters. However, the analysis described in this thesis uses the time projection chamber (TPC). Because photons don't carry electric charge and the TPC is only sensitive to charged particles, a conversion of the photon into an electron-positron-pair is required. This happens inside the electromagnetic fields of the nuclei and the electrons in the atomic shell of the detector material in the experimental setup of STAR. The resulting electron and positron tracks are measrued in the TPC. In chapter 3 the reconstruction of conversions from the measured tracks is described. Chapter 4 discusses the efficiency of the measurement, which is determined with a Monte-Carlo-Method, and the uncertainties of the correction. Chapter 5 presents the results of the analysis. The data set, on which the analysis is based, consists of Gold-Gold-Collisions an a center of mass energy of sqrt(s_NN)=62GeV. The selection criteria for individual events during data taking and during the analysis are explained. The data set is divided into four centrality selection classes. The first result are the transverse momentum and rapidity spectra of inclusive photons for all four centralities and the whole data set. Pi0-spectra versus transverse momentum for the four centralities and the whole data set are also shown. The pi0-spectra are compared to the spectra of pi0-mesons measured by the PHENIX-Collaboration at the same energy and with pi0-spectra measured by STAR at full RHIC energy. In addition a comparison to charged pi+- and pi--spectra is shown, which were also measured by the STAR collaboration. It is attempted to extract the fraction of direct photons by dividing the spectra of inclusive photons by the spectra of simulated decay photons. In these simulations pi0- and eta-spectra are modeled based on the pi+- and pi--spectra. Studying the uncertainties of this procedure shows that the size of the uncertainties is of the same magnitude as the signal of direct photons. Also the systematic uncertainties of the pi+- and pi--spectra are similar. Therefore the measurement of direct photon spectra is not possible. In chapter 6 possibilities are described to reduce the large systematic uncertainties. In addition it is discussed, what could be done with an already existing data set at full RHIC energy and how the addition of a dedicated converter during a future data taking period could reduce the systematic errors. The result of this thesis are inklusive photon and pi0 spectra. The systematic uncertainties were extensively studied. It is described, which enhancements are necessary to provide the perspective for measuring direct photons in the area of 1 to 3 GeV/c transverse momentum.
Der STAR Level-3 Trigger
(2002)
Schwerionen-Collider-Experimente, wie das STAR-Experiment am RHIC (BNL) oder das geplante ALICE-Experiment am LHC (CERN) untersuchen Schwerionenkollisionen bei Schwerpunktsenergien von Wurzel aus SNN = 200 GeV (RHIC), bzw. Wurzel aus sNN = 5, 5 TeV (ALICE). In diesen Kollisionen werden mehrere tausend geladene Teilchen produziert, die in STAR und ALICE in großvolumigen TPCs gemessen werden. Das Datenvolumen erreicht dabei bis zu 10 MB (STAR) und 60 MB (ALICE) pro Ereignis. Aufgrund der hohen Luminosität der Collider könnten die Experimente zentrale Schwerionenkollisionen mit einer Rate bis zu 100 Hz bzw. 200 Hz (ALICE) untersuchen. Die dabei entstehenden Datenraten im Bereich mehrerer GB/s sind mit heutiger Technologie jedoch nicht mehr einfach zu speichern. Deshalb kann nur ein Bruchteil der zur Verfügung stehenden Ereignisse aufgezeichnet werden. Aufgrund der exponentiellen Entwicklung der CPU-Leistung wird es jedoch möglich, die Rekonstruktion von Ereignissen während der Datennahme in Echtzeit durchzuführen. Basierend auf den rekonstruierten Spuren in den Detektoren kann die Entscheidung getroffen werden, ob ein Ereignis gespeichert werden soll. Dies bedeutet, dass die begrenzte Speicherbandbreite gezielt mit Ereignissen, die eine interessierende physikalische Observable beinhalten, angereichert werden kann. Ein solches System zur Ereignisselektion wird als Level-3-Trigger oder allgemeiner als High Level Trigger bezeichnet. Am STAR-Experiment wurde erstmals in einem Schwerionenexperiment solch ein Level-3-Triggersystem aufgebaut. Es besteht aus 432 i960-CPUs, auf speziell gefertigten Receiver Boards für die paralelle Clusterrekonstruktion in der STARTPC. 52 Standard-Computer mit ALPHA- bzw. Pentium-CPUs rekonstruieren die Spuren geladener Teilchen und tre.en eine Triggerentscheidung. Dieses System ermöglicht die Echtzeit-Rekonstruktion zentraler Au-plus-Au-Kollisionen mit anschliessender Analyse durch einen Trigger-Algorithmus mit einer Rate von 40-50 Hz. Die Qualität, die mit dieser schnellen Analyse erreicht wird, kann mit der Qualität der STAR-Offline-Rekonstruktion verglichen werden. Der Level-3-Clusterfinder erreicht in Bezug auf Ortsauflösung und Rekonstruktionseffizienz dieselbe Qualität wie der Offline-Clusterfinder. Der Level-3-Trackfinder erreicht bei Rekonstruktionseffizienz und Impulsauflösung 10-20% schlechtere Werte als der Offline- Trackfinder. Die Anwendung eines Level-3-Triggers besteht in der Messung von seltenen Observablen ("rare Probes"), die ohne eine Anreicherung nicht, oder nur schwer, meßbar wären. In den Jahren 2000 und 2001 wurden erste Triggeranwendungen für das STARLevel- 3-System erprobt. In ultraperipheren Au-plus-Au-Kollisionen wurden po-Kandidaten schon im Jahr 2000 selektiert. Während der Strahlzeit des Jahres 2001 wurde das Level-3-System erstmals zum Triggern in zentralen Au-plus-Au-Kollisionen eingesetzt. Die Triggeralgorithmen beinhalteten einen Õ-Trigger, einen 3He-Trigger und einen Algorithmus zur Anreicherung von Spuren hohen Impulses in der Akzeptanz des RICH-Detektors. Das STAR Level-3-System ist in der Lage zehnmal mehr Ereignisse zu analysieren, als gespeichert werden können. Aufgrund der begrenzten Luminosität des RHIC-Beschleunigers, konnten die Level-3 Trigger erst zum Ende der Strahlzeit eingesetzt werden. Den genannten Algorithmen standen zusätzlich zu den 3 · 10 hoch 6 gespeicherten zentralen Ereignissen, 6 · 10 hoch 5 zentrale Ereignisse zur Analyse zur Verfügung. Mit diesem begrenzten Anreicherungsfaktor von 20% blieb das System hinter seinen Möglichkeiten zurück. Es konnte jedoch gezeigt werden, dass das STAR Level-3-System in der erwarteten Qualität und Stabilität funktioniert.
Die Physik beschäftigt sich seit jeher mit der Frage nach dem Aufbau und der Struktur der Materie. Die Antworten änderten sich im Laufe der Zeit, der gegenwärtige Stand der Erkenntnis ist im sogenannten Standardmodell zusammengefasst. Dort werden die Elementarteilchen in Leptonen und Quarks unterteilt, die Wechselwirkungen zwischen ihnen beschreibt man durch vier fundamentale Kräfte: die Gravitation, die elektromagnetischen Kraft, die schwache und die starke Kernkraft. Gemäß dem Standardmodell sind Nukleonen, also Protonen und Neutronen, aus Quarks aufgebaut. Das Proton ist beispielsweise ein gebundener Zustand aus zwei up und einem down Quark. Die Nukelonen bilden ihrerseits die Atomkerne, welche die Systematik der Elemente bestimmen. Quarks treten in sechs verschiedenen Arten (flavours) auf: up, down, strange, charm, bottom und top. Freie Quarks konnten bislang nicht nachgewiesen werden, sie werden nur als Quark-Antiquark Paar (Meson) oder als Kombination aus drei Quarks (Baryon) beobachtet. Mesonen und Baryonen werden unter dem Begriff Hadronen zusammengefaßt. Die starke Kernkraft beruht letztlich auf der Wechselwirkung zwischen Quarks, diese wird durch die Quantenchromodynamik (QCD) beschrieben. Ähnlich der Glashow- Salam-Weinberg Theorie (GSW), die die elektromagnetische und die schwache Kernkraft beschreibt, ist die Quantenchromodynamik durch Austauschteilchen charakterisiert. Im Fall der GSW wurden die Photonen bzw. W± oder Z-Teilchen als Austauschteilchen identifiziert, in der QCD fungieren Gluonen als Austauschteilchen. Photonen vermitteln die elektromagnetische Kraft zwischen allen Teilchen, die elektrische Ladung tragen. Analog wirkt die Kraft, die durch den Austausch von Gluonen beschrieben wird, zwischen Teilchen, die eine Farbladung tragen. Anders als das neutrale Photon trägt das Gluon selbst Farbe und wechselwirkt daher mit anderen Teilchen, die Farbe tragen. Dieser Umstand zeigt bereits, dass in der QCD ganz andere Phänomene zu erwarten sind als in der GSW. Die Tatsache, dass Quarks nur in gebundenen Zuständen vorliegen, erschwert die direkte Beobachtung der Wechselwirkung zwischen ihnen. Ein indirekter Weg, um die Wirkungweise diese Kraft zu untersuchen, liegt in der Erzeugung hoher Kernmateriedichten und hoher Kerntemperaturen. Die Idee besteht darin, das Phasendiagramm von Kernmaterie experimentell zu bestimmen (Abbildung 1.3) und dann auf die zugrundeliegende Kraft zu schließen. Unter anderem führen die Kräfte, die zwischen den Einzelteilchen des Mediums herrschen, zu charakteristischen Phasenübergängen. Im Fall der Kernmaterie hofft man insbesondere, den Übergang von gebundenen Zuständen in eine Quark-Gluon-Plasma Phase (QGP), in der sich Quarks und Gluonen frei bewegen, zu beobachten. Zwei prominente Beispiele demonstrieren, warum die Eigenschaften dieses Materiezustandes - und ob er überhaupt existiert - auch für andere Teilgebiete der Physik von großem Interesse sind. Zum einen geht man davon aus, dass in der Frühphase des Universums, 10-12 s nach dem Urknall, die Energiedichte so hoch war, dass die Materie in einem Plasmazustand vorlag. In diesem Bild führt die Expansion des Raumes zu einer Abkühlung des Plasmas und schließlich zum Ausfrieren in Hadronen. Zum anderen zeigen viele Modellstudien, dass im Innern von Neutronensternen mit extremen Dichten zu rechnen ist. Unter Umständen werden Energiedichten erreicht, die hoch genung sind, um einen Phasenübergang in ein Quark Gluon Plasma zu erzwingen. Die Beschreibung dieser astronomischen Objekte setzt somit auch die Kenntnis der Kräfte zwischen den Quarks voraus. Der einzige Weg, dichte Kernmaterie im Labor zu erzeugen, stellen Schwerionenreaktionen dar. Wenn zwei ultrarelativistische schwere Kerne zentral kollidieren, entsteht für kurze Zeit eine Region hoher Energiedichte (Abbildung 1.1). QCD-Gitter-Rechnungen deuten darauf hin, dass die Dichte, die man in Schwerionreaktion gegenwärtig erreicht, hoch genung ist, um einen Übergang der Kernmaterie in eine Plasma-Phase zu erzwingen. Aufgrund des hohen Drucks expandiert die verdichtete, heiße Kernmaterie in longitudinaler (entlang des Strahls) und transversaler (senkrecht zum Strahl) Richtung und die Dichte nimmt ab. Vorausgesetzt am Anfang der Reaktion wurde ein Quark-Gluon-Plasma erzeugt, dann friert diese Phase in Hadronen aus (chemisches Ausfrieren), wenn Dichte und Temperatur einen kritischen Wert unterschreiten. Die erzeugten Hadronen wechselwirken zunächst noch elastisch miteinander, d.h. die Impulse der Teilchen ändern sich, die Identität der Teilchen bleibt jedoch erhalten. Schließlich enden auch diese Wechselwirkungen (thermisches Ausfrieren), und die Teilchen verlassen die Reaktionszone (Abbildung 1.4). Der Ablauf einer solchen Schwerionenreaktion dauert einige 10-23s und ihre räumliche Ausdehnung liegt in der Größenordnung von 10-15m, damit ist die Reaktion selbst nicht beobachtbar. Nur der Endzustand, also die Identitäten und Impluse der emittierten Teilchen, kann bestimmt werden. Um den Ablauf der Reaktion zu rekonstruieren, ist man daher auf Modellrechnungen angewiesen. Aufgrund dieser Modellrechnungen wurden einige Observablen vorgeschlagen, die einen Phasenübergang kennzeichnen. Neben anderen Signaturen führt ein Phasenübergang wahrscheinlich zu einer verlängerten Emissionsdauer. Dieser Effekt kann möglicherweise durch die Analyse von Zwei-Teilchen-Korrelationen sichtbar gemacht werden. Ganz allgemein stellt die Untersuchung von Teilchenkorrelationen die einzige Möglichkeit dar, die raum-zeitlichen Strukturen während des thermischen Ausfrierens experimentell zu bestimmen. Korrelationen zwischen Teilchen, die von einer hinreichend kleinen Quelle emittiert werden, haben verschiedene Ursachen. Betrachtet man beispielsweise die Häufigkeitsverteilung der Impulsdifferenz zwischen zwei elektrisch gleich geladenen Teilchen, so stellt man fest, dass Paare mit geringer Impulsdifferenz weniger häufig vorkommen, als man anhand der Ein-Teilchen Impulsverteilung vorhersagen würde. Dieser Effekt ist auf die Abstoßung zwischen zwei elektrisch gleich geladenen Teilchen zurückzuführen, die mit kleiner Impulsdifferenz emittiert wurden. Eine weniger offensichtliche Korrelation wird durch den Quantencharakter identischer Teilchen verursacht. Zwei identische Bosonen, die im Phasenraum nahe beieinander liegen, können gemäß den Prinzipien der Quantentheorie nicht unterschieden werden. Die Wellenfunktion, die diesen Zwei-Teilchen-Zustand beschreibt, muß beim Vertauschen der Teilchen erhalten bleiben. Diese Forderung führt zu einem Interferenzterm in der Zwei-Teilchen Intensitätsverteilung. Diese Verteilung ist proportional zur Wahrscheinlichkeit, ein Teilchenpaar mit der Impulsdifferenz q zu messen. Berechnet man die Impulsdifferenzverteilung von Pionenpaaren und berücksichtig nur quanten- statistische Effekte, so findet man, dass Paare mit geringem Impulsunterschied bis zu zweimal häufiger vorkommen, als man aufgrund einfacher statistischer Überlegungen erwarten würde. Um diesen Effekt experimentell sichtbar zu machen, konstruiert man die Korrelationsfunktion, die die gemessene Impulsdifferenzverteilung in Relation zu einer Untergrundverteilung setzt. Experimentell gewinnt man diese Referenzverteilung, indem Paare aus Spuren aus verschiedenen Ereignissen gebildet werden. Die Referenzverteilung entspricht damit der Verteilung, die man messen würde, wenn die Teilchen nicht der Quantenstatistik unterlägen. Die Korrelationsfunktion wird im allgemeinen durch eine Gauß-Funktion angenähert. Das Inverse der Standardabweichung dieser Funktion wird nach den Pionieren der Intensitätsinterferometrie R. Hanbury Brown und R. Twiss als HBT-Radius bezeichnet. Teilchen interferieren nur dann, wenn sie im Phasenraum nahe beieinander liegen, das heißt sowohl die Impulsdifferenz als auch der räumliche Abstand muß hinreichend klein sein. Diese Bedingung kann genutzt werden, um von der gemessenen Korrelationsfunktion, die nur auf den Impulskomponenten basiert, auf die räumliche Verteilung der Teilchenproduktion zu schließen. Eine detaillierte Betrachtung erlaubt sogar, aufgrund der gemessenen Korrelationsfunktion quantitative Aussagen über die räumlichen Aspekte der Teilchenquelle zu machen. Beispielsweise können im Rahmen eines Modells die Stärke der transversalen Expansion oder die Emissionsdauer in Relation zu den HBT-Radien gesetzt werden. In Kapitel 2 sind die Grundlagen der Teilcheninterferometrie ausführlicher dargestellt. Der eigentliche Gegenstand dieser Arbeit ist experimentelle Analyse der Zwei- Teilchen-Korrelationen in einer Schwerionenreaktion. Dazu wird zunächst in Kapitel 3 das STAR Experiment am RHIC vorgestellt, in dem die Daten aufgezeichnet wurden, die Grundlage dieser Analyse sind. Am RHIC-Beschleuniger am BNL in den USA werden AuAu Kollisionen bis zu einer Schwerpunktsenergie von Wurzel aus SNN=200 GeV erzeugt. Figur 3.1 zeigt den Beschleuniger-Ring und die vier Experimente Brahms, Phenix, Phobos und STAR. Der hier analysierte Datensatz wurde bei der Datennahme im Jahr 2000 aufgezeichnet. Zu dieser Zeit wurde am RHIC eine Schwerpunktsenergie von Wurzel aus SNN=130 GeV erreicht. Bei einer zentralen AuAu Kollision werden mehrere Tausend Teilchen produziert. Der STAR Detektor ist dafür konzipiert, hadronische Teilchen kleiner Rapidität (d.h. großer Winkel zur Strahlachse) zu messen, innerhalb der Akzeptanz werden etwa 80% der produzierten geladenen Teilchen nachgewiesen. Der schematische Aufbau des STAR Detektorsystems ist in Figur 3.2 dargestellt. Der zentrale Detektor ist eine TPC (Zeit-Projektions-Kammer). Dieser Detektor basiert darauf, dass geladene Teilchen beim Durchgang durch ein Messgas eine Spur von Ionen hinterlassen. Ein starkes elektrisches Feld driftet die Elektronen, die bei den Ionisationsprozessen freigesetzt wurden, zu einer Ausleseebene. Der Punkt, an dem die Elektronen auf der Ausleseebene ein Signal erzeugen, entspricht der Projektion des Ionisationpunktes auf die Ausleseebene. Die dritte Komponente, die den Raumpunkt der Ionisation festlegt, ist durch die Driftzeit bei bekannter Driftgeschwindigkeit gegeben. So erscheint eine Teilchenspur als eine Kette von Ionisationspunkten im Detektorgas. Ein magnetisches Feld parallel zur Strahlachse führt zu einer Ablenkung der geladenen Teilchen. Die Krümmung der Spur ist dabei umgekehrt proportional zum transversalen Impuls. Abbildung 3.6 zeigt ein typisches Ereignis mit etwa 105 Ionisationspunkten und den entsprechenden Teilchenspuren. Der spezifische Energieverlust eines Teilchens beim Durchgang durch das Messgas hängt von seinem Impuls und seiner Masse ab. Die Stärke des auf der Ausleseebene induzierten Signals erlaubt den spezifischen Energieverlust zu bestimmen. Da der Impuls durch die Krümmung der Spur bekannt ist, kann so die Masse und damit die Identität des Teilchens bestimmt werden (siehe Abbildung 3.7). In Kapitel 4 wird der Datensatz beschrieben, der als Grundlage für diese Analyse dient. Während der Datennahme werden die digitalisierten Daten der TPC auf ein Speichermedium geschrieben. Der erste Schritt bei der Rekonstruktion der Ereignisse besteht darin, die Ionisationspunkte zu lokalisieren. Dies leistet der Clusterfinder- Algorithmus, der in Kapitel 4.1.1 beschrieben ist. Die Spurpunkte werden dann durch den Tracking-Algorithmus zu Teilchenspuren verbunden. Die erreichte Effizienz, Akzeptanz und Impulsauflösung der Rekonstruktion sind in Kapitel 4.1.2 zusammengefaßt. Die Zwei-Teilchen-Korrelationen werden nur für zentrale Kollisionen betrachtet, das sind Ereignisse mit kleinem Stoßparameter. Die Multipliztät der gemessenen Spuren ist in erster Näherung ein Maß für die Zentralität des Ereignisses. Für diese Analyse werden nur die 12% zentralsten Ereignisse zugelassen. Die Selektion der Ereignisse ist in Kapitel 4.2 beschrieben. Die Auswahl der Spuren, die in der Analyse verwendet werden, ist in Kapitel 4.3 beschrieben. Es werden nur Spuren zugelassen, deren Impulse in einem Bereich hinreichend hoher Akzeptanz und Effizienz liegen. Außerdem werden die Spuren ausgewählt, die mit hoher Wahrscheinlichkeit von Pionen stammen. Eine weitere Auswahl wird auf der Paarebene getroffen. Die Korrelationsfunktion wird in einzelnen Intervallen transversalen Paarimpulses kt und Paarrapidität Yðð gebildet. Damit kann die Abhängigkeit der HBT-Radien von diesen Größen dargestellt werden. Zwei weitere Auswahlkriterien sollen die Qualität der Spurpaare garantieren. Zum einen werden solche Paare verworfen, die im Detektor zu nahe beieinander liegen. Für die HBT-Analyse sind Paare mit geringem Impulsunterschied entscheidend, ein geringer Impulsunterschied heißt notwendigerweise, dass die Spuren räumlich nicht sehr weit getrennt sind. Wenn die Spuren aber zu nahe liegen, können sie vom Detektor und von der Rekonstruktionskette nicht mehr aufgelöst werden. Damit verliert man einen Teil der Paare in der Signalverteilung, nicht aber in der Untergrundverteilung, da in diesem Fall die endliche Zwei-Spur-Auflösung keine Rolle spielt. Um die Korrelationsfunktion nicht durch einen Detektoreffekt zu verfälschen, entfernt man die Paare, die im Detektor nahe beieinander liegen, sowohl in der Signal- als auch in der Untergrundverteilung. Ein weiteres Problem stellen "gebrochene" Spuren dar. In einigen Fällen wird eine Teilchenspur von der Rekonstruktionskette nicht als Ganzes erkannt, vielmehr werden zwei Spurstücke im Dektor gefunden. Da diese Spurstücke vom selben Teilchen stammen, haben sie eine sehr geringe Impulsdifferenz. Diese Paare können anhand ihrer Topologie im Detekor erkannt werden. Wie im Fall der begrenzten Zwei-Spur-Auflösung werden sie sowohl für die Signal- als auch für die Untergrundverteilung nicht zugelassen. In Kapitel 5 werden schließlich die Ergebnisse der Korrelationsanalyse dargestellt. Die Korrelationsfunktion wird in verschiedenen Parametrisierungen betrachtet. In der einfachsten Form betrachtet man nur den Betrag des Impulsdifferenzvektors. Dieser Ansatz bedeutet aber, dass der entsprechende HBT-Radius alle Raum-Zeit Komponenten mischt und damit nur wenig Aussagekraft bezüglich der Quellfunktion besitzt. Eine differenzierte Analyse in drei unabhängigen Komponenten ermöglichen die Pratt-Bertsch (PB) und die Yano-Koonin-Podgoretskii (YKP) Parametrisierung. Die beiden Parametrisierungen unterscheiden sich in der Zerlegung des Impulsdifferenzvektors in drei unabhängige Komponenten. Im ersten Fall bezeichnet man die Komponenten als qout, qlong und qside, im zweiten Fall als qpara, qperp und q0 (Kapitel 2.7 und 2.8). Die entsprechenden Korrelationsfunktionen sind in Gleichung 2.31 bzw. 2.34 gegeben. Die jeweiligen HBT-Radien Rout, Rlong und Rside bzw. Rpara, Rperp und R0 können in Relation zu den Parametern der Quellfunktion (Gleichung 2.43) gesetzt werden. Die beiden Parametrisierungen liefern im Prinzip die gleiche Information und die beiden Sätze von HBT-Radien können in Beziehung zueinander gesetzt werden (Gleichung 2.41). Beispielsweise entspricht der HBT-Radius R0 in der YKP-Parametrisierung in erster Näherung der Emissionsdauer, während in der PB- Parametrisierung diese Größe Verhältnis von Rout zu Rside abhängt. Zusätzlich zu den Radien enthält die YKP-Parametrisierung einen Parameter ß, der erlaubt, die longitudinale Geschwindigkeit des betrachteten Quellelementes zu bestimmen. Die Abbildungen 5.7 bis 5.10 zeigen die HBT-Radien beider Parametrisierungen in Abhänigigkeit vom transversalen Paarimpuls kt und von der Paarrapidität Yðð. Die Größe der gemessenen Radien bewegt sich zwischen 3 und 7 fm. Nur der Radius R0 verschwindet in den meisten kt-Yðð Intervallen. Die anderen Radien nehmen mit steigendem kt ab und sind unabhängig von Yðð . Abbildung 5.11 demonstriert, dass die beiden Parametrisierungen -dort wo sie vergleichbar sind- konsistente Ergebnisse liefern. Eine Diskussion der Ergebnisse schließt sich in Kapitel 6 an. Die Abhänigigkeit des Parameters ß von Yðð zeigt eine starke longitudinale Expansion an. Ein ähnliches Verhalten wurde bei niedrigeren Schwerpunktsenergien beobachtet, wo man allerdings eine schwächere longitudinale Expansion erwarten würde. Die Lebensdauer der Quelle, also die Zeit vom anfänglichen Überlapp der Kerne bis zum thermischen Ausfrieren, bestimmt die kt-Abhänigigkeit des Parameters Rlong. Dieser Zusammenhang wurde von Mahklin und Sinyukow formuliert, eine Anpassung der entsprechenden Funktion an die gemessene kt Abhänigigkeit von Rlong ergibt eine Lebensdauer von etwa 8 fm/c bei einer Ausfriertemperatur von etwa 126 MeV. Entsprechende Messungen bei niedrigeren Kollisionsenergien lieferten ähnliche Resultate. Die kt-Abhängigkeit des Parameters Rside ist mit der Stärke der transversalen Expansion gemäß Gleichung 6.3 verknüpft. Da die Relation nicht eindeutig ist, muß entweder eine feste Ausfriertemperatur angenommen werden oder es werden gleichzeitig Einteilchenspektren betrachtet, um die Mehrdeutigkeit zu eliminieren. Eine vorläufige Abschätzung ergibt eine mittlere transversale Expansions- geschwindigkteit von v ungefähr gleich 0.6 und einen gemetrischen Radius von RG ungefähr gleich 7.4 fm . Auch diese Ergebnisse sind vergleichbar mit entsprechenden Resultaten bei niedrigeren Kollisionsenergien. Ein weiterer Parameter der Quellfunktion ist die Emissionsdauer. Die Pionen werden nicht zu einem festen Zeitpunkt emittiert, man geht vielmehr davon aus, dass die Zeitpunkte der letzten elastischen Wechselwirkung in der Quelle gaußförmig verteilt sind. Den Mittelwert dieser Verteilung bezeichnet man als Lebensdauer der Quelle, die Breite als Emissionsdauer. Entsprechend Gleichung 6.4 bzw. 6.5 ist die Emissionsdauer mit dem Radius R0 bzw. dem Verhältnis Rout zu Rside verbunden. Wie in Abbildung 5.8 ersichtlich verschwindet der Parameter R0 , außer im kleinsten kt Intervall. Dies entspricht in der PB-Parametrisierung der Tatsache, dass das Verhältnis Rout zu Rside bei hohen kt kleiner als eins ist. Diese Resultate sind nicht vereinbar mit herkömmlichen Modellen. Insbesondere weil eine verlängerte Emissionsdauer als Signatur für die Bildung eines Quark-Gluon-Plasmas vorgeschlagen wurde, wird dieses Ergebnis derzeit intensiv diskutiert. Die Ergebnisse dieser Analyse sind sowohl mit bereits publizierten Daten der STAR Kollaboration als auch mit Resultaten von anderen RHIC Experimenten verträglich (siehe Abbildung 6.8). In Abbildung 6.9 ist die Abhängigkeit der HBT-Radien von kt bei verschiedenen Schwerpunktsenergien dargestellt. Im Gegensatz zu vielen anderen Observablen ändern sich die HBT Radien nur geringfügig. Da man erwartet, dass die Reaktion bei hohen Energien vollkommen anders abläuft, würde man auch davon ausgehen, dass sich die Ausfrierbedingungen ändern. Dass dies nicht in den Zwei-Teilchen- Korrelationen sichtbar wird, deutet darauf hin, dass die Näherungen die notwendig sind, um die gemessenen Radien mit Modellparametern zu verbinden, nicht gültig sind. Die Systematik der HBT Parameter als Funktion der Schwerpunktsenergie enthält damit keinen direkten Hinweis, dass die kritische Energiedichte überschritten wurde, ab der die Kernmaterie in einer Plasmaphase vorliegt. Andererseits werden weder die verschwindende Emissionsdauer noch die Tatsache, dass die anderen HBT-Parameter sich nur wenig mit der Schwerpunktsenergie ändern, als Argument dafür gewertet, dass die kritische Energiedichte nicht überschritten wurde. Die Frage, ob ein Quark- Gluon-Plasma im Labor erzeugt und analysiert werden kann, bleibt damit offen. Das thermische Ausfrieren einer Pionenquelle scheint hingegen anders zu verlaufen, als bisher angenommen wurde. Systematische Studien der Korrelationsfunktion in AA Kollisionen am RHIC in Kombination mit Fortschritten im theoretischen Verständnis der Teilcheninterferometrie in Schwerionenreaktion werden in Zukunft hoffentlich erlauben, die gemessenen Radien in ein konsistentes Bild einzuordnen. In zukünftigen Experimenten am LHC werden noch weit höhere Dichten erreicht als bisher, damit sollten sich auch die Ausfrierbedingungen stark verändern. Es wird sich dann zeigen, ob die Teilcheninterferometrie das geeignete Instrument ist, um die Quellfunktion einer Schwerionenreaktion zu messen.
Der Ursprung der Masse bekannter Teilchen und der Einschlu der Quarks in Hadronen ist einer der grundlegendsten Fragestellungen der modernen Physik. Die Kenntnis des Verhaltens von Kernmaterie unter extremen Bedingungen ist unabdingbar zum Verstandnis der Evolution des Universums und zur Theoriebildung von stellaren Objekten wie Neutronensternen und schwarzen Löchern. Einen experimentellen Zugang zur Untersuchung dieser Problematik stellt die Erzeugung heier und dichter Kernmaterie in ultrarelativistischen Schwerionenkollisionen dar. Hierzu untersucht das NA49 Experiment seit Herbst 1994 am 208-Pb-Strahl des CERN-SPS Pb+Pb Kollisionen bei 158 GeV pro Nukleon. Ein Schwerpunkt des Forschungsprogrammes liegt in der Untersuchung des Zustandes der Materie in der frühen Phase der Reaktion. Nach gegenwartem Stand der Theorie wird bei genugent hoher Energiedichte der Einschlu der Quarks in Hadronen aufgebrochen und ein Zustand der Materie erzeugt, in welchen die eektiven Freiheitsgrade von Hadronen und Hadronen-Resonanzen in die von Quarks und Gluonen übergehen - das sogenannte Quark-Gluon-Plasma (QGP). Die Honung ist nun, da sich die Formation eines solchen QGP im hadronischen Endzustand wiederspiegelt. Es wird erwartet, da die Seltsamkeitsproduktion in einem QGP sich in ihrer Rate und ihren Gleichgewichtswerten von der in einem hadronischen Feuerball-Szenario unterscheidet und sich somit als Signatur fur die Erzeugung eines GQP eignet. Von besonderen Interesse ist hier die Produktion von Hyperonen. Schwerpunkt dieser Arbeit ist die Untersuchung der Produktion von doppelt seltsamen geladenen -Hyperonen in zentralen Pb+Pb Kollisionen. Zu diesem Zweck wurden 58000 zentrale Pb+Pb Ereignisse der im Herbst 1995 aufgezeichneten Reaktionen untersucht. Die Analyse der Daten wurde auschlielich mit der zweiten Spurendriftkammer (VTPC2) durchgeführt. Zur Rekonstruktion der -Hyperonen muten Verfahren entwickelt werden, um die typischen Zerfalls-Topologien der doppelt seltsamen Hyperonen aus der Vielzahl von ca. 700 in der Vertex-TPC gemessenen geladenen Teilchenspuren herauszulösen. Aus den in der kombinatorischen Analyse rekonstruierten 720 und 138 + - Hyperonen konnten Spektren des Transversalimpulses und Rapiditatsverteilungen ermittelt werden. Die gewonnene Phasenraum-Akzeptanz fur die in der VTPC2 gemessenen und + - Hyperonen beträgt ....
In this thesis the anti-proton to proton ratio in 197Au + 197Au collisions, measured at mid-rapidity, at a center of mass energy of psNN = 200GeV is reported. The value was measured to be ¹p/p = 0.81+-0.002stat +- 0.05syst: in the 5% most central collisions. The ratio shows no dependence on rapidity in the range jyj < 0:5. Furthermore, a dependence on transverse momentum within 0:4< p? < 1:0 GeV/c is not observed. At higher p?, a slight drop in the ratio is observed. In the present analysis, the highest momentum considered is p? = 4:5 GeV/c yielding ¹p=p = 0:645§0:005stat: §0:10syst:. However, the systematic error is higher in this momentum range. A slight centrality dependence was observed, where a decrease from ¹p=p = 0:83§0:002stat:§0:05syst: for most peripheral collisions (less than 80% central) to ¹p=p = 0:78§0:002stat:§0:05syst: for the 5% most central collisions was measured. An estimate of the feed-down contributions fromthe decay of heavier strange baryons results in ¹p=p = 0:77 § 0:05syst:. The measured ratio indicates a » 12:5 times higher value compared to the highest SPS energy of psNN = 17:3 and an \almost net-baryon free" region, at mid- rapidity. The asymmetry of protons and anti-protons may be explained by the contribution ofvalence quarks in a nucleus break-up picture. In such a scenario, the absolute value of the ratio and the fact that the ratio does not depend on rapidity (at mid-rapidity) is well reproduced. Fragmentation of quarks and anti- quarks into protons and anti-protons is assumed. An estimate of the ratio, when feed-down correction is taken into consideration, agrees well with the prediction of a statistical model analysis at a temperature of T = 177 § 7 MeV and a baryon chemical potential of ¹B = 29 § 8 MeV. The temperature achieved is only slightly higher when compared to the top SPS energy, while the baryochemical potential is factor »10 lower. As in the case of the SPS results, these parameters are close to the phase boundary of Figure 1.6. The measurement of the ratio at high transverse momentum was of special in- terest in this analysis, since at RHIC energies, the cross section for hadrons at high transverse momentum is increased with respect to SPS energies. The weak dependence of the ratio on the transverse momentum is well described by the non- perturbative quenched and baryon junction scenario (i.e. Soft+Quench model), where baryon creation is enhanced by baryon junctions. In comparison the ratio does not decrease within the considered momentum range as predicted by pQCD.