Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (8)
- Bachelor Thesis (3)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Physics (2)
- Accelerator (1)
- Activation experiment (1)
- Aktivierungsmethode (1)
- Coulombspaltung (1)
- Cross section (1)
- Gammakalorimeter (1)
- Gammaspektroskopie (1)
- Inverse Kinematics (1)
- Kupfer-63 (1)
Institute
- Physik (31)
- Biowissenschaften (1)
Starting from the first observation of the halo phenomenon 20 years ago, more and more neutron-rich light nuclei were observed. The study of unstable nuclear systems beyond the dripline is a relatively new branch of nuclear physics. In the present work, the results of an experiment at GSI (Darmstadt) with relativistic beams of the halo nuclei 8He, 11Li and 14Be with energies of 240, 280 and 305 MeV/nucleon, respectively, impinging on a liquid hydrogen target are discussed. Neutron/proton knockout reactions lead to the formation of unbound systems, followed by their immediate decay. The experimental setup, consisting of the neutron detector LAND, the dipole spectrometer ALADIN and different types of tracking detectors, allows the reconstruction of the momentum vectors of all reaction products measured in coincidence. The properties of unbound nuclei are investigated by reconstructing the relative-energy spectra as well as by studying the angular correlations between the reaction products. The observed systems are 9He, 10He, 10Li, 12Li and 13Li. The isotopes 12Li and 13Li are observed for the first time. They are produced in the 1H(14Be, 2pn)12Li and 1H(14Be, 2p)13Li knockout reactions. The obtained relative-energy spectrum of 12Li is described as a single virtual s-state with a scattering length of as = -22;13.7(1.6) fm. The spectrum of 13Li is interpreted as a resonance at an energy of Er = 1.47(13) MeV and a width of Gamma ~ 2 MeV superimposed on a broad correlated background distribution. The isotope 10Li is observed after one-neutron knockout from the halo nucleus 11Li. The obtained relative-energy spectrum is described by a low-lying virtual s-state with a scattering length as = -22.4(4.8) fm and a p-wave resonance with Er = 0.566(14) MeV and Gamma = 0.548(30) MeV, in agreement with previous experiments. The observation of the nucleus 8He in coincidence with one or two neutrons, as a result of proton knockout from 11Li, allows to reconstruct the relative-energy spectra for the heavy helium isotopes, 9He and 10He. The low-energy part of the 9He spectrum is described by a virtual s-state with a scattering length as = -3.16(78) fm. In addition, two resonance states with l 6= 0 at energies of 1.33(8) and 2.4 MeV are observed. For the 10He spectrum, two interpretations are possible. It can be interpreted as a superposition of a narrow resonance at 1.42(10) MeV and a broad correlated background distribution. Alternatively, the spectrum is being well described by two resonances at energies of 1.54(11) and 3.99(26) MeV. Additionally, three-body energy and angular correlations in 10He and 13Li nuclei at the region of the ground state (0 < ECnn < 3 MeV) are studied, providing information about structure of these unbound nuclear systems.
Der Verzehr von radioaktiv belasteten Pilzfruchtkörpern stellt ein Gesundheitsrisiko für den Menschen dar und auch fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 sind Pilze aus Waldökosystemen zum Teil noch stark durch das ausgetretene radioaktive 137Cs belastet. Die Einschätzung der Belastung und somit des Gesundheitsrisikos ist aufgrund einer Vielzahl von Einflussfaktoren, wie z. B. der Pilzart, der Tiefe des Myzels, der Bodenkontamination und der Feuchtigkeit des Bodens, schwierig. Ziel dieser Arbeit war es die Variabilität, den Einfluss verschiedener Faktoren sowie die effektive Halbwertszeit der 137Cs-Aktivität in Pilzfruchtkörpern zu ermitteln. Des Weiteren wurde überprüft, ob die Bodenkontamination für eine Abschätzung der 137Cs-Aktivität von Pilzfruchtkörpern herangezogen werden kann. Für die Untersuchungen wurden über mehrere Jahre Proben von Maronenröhrlingen (Imleria badia) und Steinpilzen (Boletus edulis) aus vier Waldgebieten in Mittel- und Süddeutschland mit unterschiedlichem Aktivitätseintrag nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 analysiert. Die Gebiete waren Eichenzell, Wülfersreuth, Oberschönenfeld und der Nationalpark Bayerischer Wald. Als Ergänzung dienten zugesendete Proben derselben Pilzarten von Mitgliedern aus Pilzvereinen aus ganz Deutschland. Zusätzlich zu den Pilzproben wurden Bodenproben gemessen, um zum einen die aktuelle Bodenkontamination zu bestimmen und zum anderen zu überprüfen, ob der Großteil des 137Cs weiterhin im Bereich des Pilzmyzels zu finden ist.
Für die Untersuchung der örtlichen Variabilität der 137Cs-Aktivität wurden Maronenröhrlinge (Imleria badia) aus dem Waldgebiet Eichenzell in den Jahren 2017 bis 2019 analysiert. Innerhalb eines Sammeltages variierten die Messwerte verschiedener Proben innerhalb des Waldgebietes teilweise um den Faktor sechs. Dabei ist die Variabilität innerhalb eines Teilgebietes größer als zwischen beiden Teilgebieten des Waldgebietes Eichenzell. Für ein repräsentatives Ergebnis eines Gebietes ist es aufgrund der Variabilität erforderlich, eine ausreichende Menge an Fruchtkörpern zu analysieren.
Um die effektive Halbwertszeit der 137Cs-Aktivität in Maronenröhrlingen (Imleria badia) zu ermitteln, wurden Proben aus drei Waldgebieten über fünf bis neun Jahre analysiert. Die Wahl der drei Waldgebiete erfolgte anhand des 137Cs-Aktivitätseintrags nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986. Die Bodenkontaminationswerte variieren von 3.000 Bq/m² in Eichenzell über 12.500 Bq/m² in Wülfersreuth bis 35.000 Bq/m² in Oberschönenfeld. Die effektiven Halbwerts-zeiten liegen in einem engen Bereich von 5,2 bis 5,8 Jahre mit einem Mittelwert von 5,4 ± 0,3 Jahren. Damit reduziert sich die radioaktive Belastung der Pilzfruchtkörper in etwa fünfmal schneller als durch die rein physikalische Halbwertszeit des 137Cs von 30,08 Jahren. Durch die Hinzunahme von bereits im Jahr 1990 veröffentlichten Daten ergab sich eine längere effektive Halbwertszeit von 7,7 ± 0,6 Jahren.
Für die Untersuchung der zwei Einflussfaktoren Exposition des Sammelgebiets (Hangausrichtung nach Ost oder West) und Höhenlage wurden sowohl Maronenröhrlinge (Imleria badia) als auch Steinpilze (Boletus edulis) hinsichtlich der 137Cs-Aktivität gemessen, um die Auswirkung auf Pilzarten mit unterschiedlichem Akkumulationsvermögen zu analysieren. Als Untersuchungsgebiet diente der Nationalpark Bayerischer Wald, da dieser ein großes Gebiet umfasst und verschiedene Ausprägungen der beiden Faktoren abbildet. Zudem wurde das Gebiet in Folge der Reaktorkatastrophe von Tschernobyl stark kontaminiert und der Park ist ein beliebtes Pilzsammelgebiet. Anhand der 137Cs-Aktivität von Bodenproben konnte das Gebiet in zwei Regionen (Cluster) eingeteilt werden: eine Region mit hohem und eine mit niedrigem Aktivitätseintrag. Im Vergleich wiesen Maronenröhrlinge (Imleria badia) durchschnittlich eine um den Faktor fünf höhere 137Cs-Aktivität als Steinpilze (Boletus edulis) auf. Der Faktor Höhenlage zeigte im Gegensatz zur Exposition einen Einfluss auf die Kontamination der Pilzfruchtkörper. In Bezug auf die Höhenlage war der Einfluss nur im Falle eines hohen Aktivitätseintrags signifikant, wobei die Pilzproben aus der niedrigsten Höhenlage am höchsten belastet waren.
Zur Ermittlung der vertikalen Verteilung des 137Cs im Boden wurden in den Waldgebieten Eichenzell und Nationalpark Bayerischer Wald Proben bis zu einer Tiefe von 24 cm entnommen und anschließend in 2 cm Schichten analysiert. Alle Verteilungen konnten mit einem Gauß-Fit oder einem multiplen Gauß-Fit mit 2 bis 3 Maxima abgebildet werden. Das erste Maximum lag in allen Fällen in den organischen Horizonten oder im Übergangsbereich zum Ah-Horizont. Folglich befindet sich der Großteil des 137Cs fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl immer noch im Bereich des Pilzmyzels und kann somit von den Pilzen aufgenommen und in den Fruchtkörpern angereichert werden.
Der Vergleich der 137Cs-Aktivität der Pilz- und Bodenproben aus dem Nationalpark Bayerischer Wald ergab sowohl für Maronenröhrlinge (Imleria badia) als auch für Steinpilze (Boletus edulis) eine positive Korrelation. Nach Unterteilung der Proben anhand der Höhenlage zeigte sich eine noch stärkere Korrelation. Dies zeigt, dass neben der Bodenkontamination auch die Höhenlage einen Einfluss auf die 137Cs-Aktivität der Fruchtkörper hat.
...
Most elements heavier than iron are synthesized in stars during neutron capture reactions in the r- and s-process. The s-process nucleosynthesis is composed of the main and weak component. While the s-process is considered to be well understood, further investigations using nucleosynthesis simulations rely on measured neutron capture cross sections as crucial input parameters. Neutron capture cross sections
relevant for the s-process can be measured using various experimental methods. A prominent example is the activation method relying on the 7Li(p,n)7Be reaction as a neutron source, which has the advantage of high neutron intensities and is able to create a quasi-stellar neutron spectrum at kBT = 25 keV. Other neutron sources able to provide quasi-stellar spectra at different energies suffer from lower neutron intensities. Simulations using the PINO tool suggest the neutron activation of samples with different neutron spectra, provided by the 7Li(p,n)7Be reaction, and a subsequent linear combination of the obtained spectrum-averaged cross sections
to determine the Maxwellian-averaged cross section (MACS) at various energies of astrophysical relevance. To investigate the accuracy of the PINO tool at proton energies between the neutron emission threshold at Ep = 1880.4 keV and 2800 keV,
measurements of the 7Li(p,n)7Be neutron fields are presented, which were carried out at the PTB Ion Accelerator Facility at the Physikalisch-Technische Bundesanstalt in Braunschweig. The neutron fields of ten different proton energies were measured.
The presented neutron fields show a good agreement at proton energies Ep = 1887, 1897, 1907, 1912 and 2100 keV. For the other proton energies, E p = 2000, 2200, 2300, 2500, and 2800 keV, differences between measurement and simulation were found and discussed. The obtained results can be used to benchmark and adapt the PINO tool and provide crucial information for further improvement of the neutron activation method for astrophysics.
An application for the 7Li(p,n)7Be neutron fields is presented as an activation experiment campaign of gallium, an element that is mostly produced during the weak s-process in massive stars. The available cross section data for the 69,71Ga(n,γ)
reactions, mostly determined by activation measurements, show differences up toa factor of three. To improve the data situation, activation measurements were carried out using the 7Li(p,n)7Be reaction. The neutron capture cross sections for
a quasi-stellar neutron spectrum at kBT = 25 keV were determined for 69Ga and 71Ga.
The stellar nucleosynthesis of elements heavier than iron can primarily be attributed to neutron capture reactions in the s and r process. While the s process is considered to be well understood with regards to the stellar sites, phases and conditions where it occurs, nucleosynthesis networks still need accurate neutron capture cross sections
with low uncertainties as input parameters. Their quantitative outputs for the isotopic abundances produced in the s process, coupled with the observable solar abundances, can be used to indirectly infer the expected r process abundances. The two stable gallium isotopes, 69Ga and 71Ga, have been shown in sensitivity studies to have considerable impact on the weak s process in massive stars. The available experimental data, mostly derived from neutron activation measurements for quasi-stellar neutron spectra at kBT = 25 keV, show disagreements up to a factor of three.
Determining the differential neutron capture cross section can provide input data for the whole range of astrophysically relevant energies. To that end, a neutron time of flight experimental campaign at the n_TOF facility at CERN was performed for three months, using isotopically enriched samples of both isotopes. The data taken at the EAR1 experimental area covered a wide neutron energy range from thermal to several hundred keV. The respective differential and spectrum averaged neutron capture cross sections for 69Ga and 71Ga were determined in this thesis. They show good agreement with the evaluated cross sections for 71Ga, but reproduce the deviations from the evaluated data that other, more recent activation measurements showed for 69Ga.
Die Entstehung der Elemente im Universum wird auf eine Vielzahl von Prozessen zurückgeführt, die sowohl in Urknall - als auch in stellaren Szenarien angesiedelt werden. Die Kenntnis der dort ablaufenden Reaktionen und deren Raten ermöglicht es die zugrundeliegenden Modelle einzugrenzen und somit genauere Aussagen über die Plausibilität der Szenarien zu treffen. Ein Teil dieser Prozesse stützt sich auf Neutroneneinfänge an Atomkernen, wodurch die Massezahl des Ausgangskerns erhöht wird.
Die Aktivierungsmethode ermöglicht die Bestimmung der Wahrscheinlichkeit eines Neutroneneinfangs, sofern der Zielkern eine detektierbare Radioaktivität aufweist. Die experimentelle Untersuchung einer Reaktion mit einem kurzlebigen Produktkern ist eine besondere Herausforderung, da bei langen Aktivierungen zwar viele Einfänge stattfinden, die meisten Produktkerne jedoch schon während der Aktivierung zerfallen. Ein probates Mittel um genügend Zerfälle des Produktkerns beobachten zu können ist die zyklische Aktivierung, wobei die Probe in mehrfachen Wiederholungen kurz bestrahlt und ausgezählt wird.
Im Rahmen dieser Arbeit wurden zwei verschiedene Anwendungen der zyklischen Aktivierung behandelt.
Eine vom Paul Scherrer Institut Villigen bereitgestellte Probe von 10Be wurde am TRIGA Reaktor der Johannes Gutenberg - Universität Mainz mit Neutronen aktiviert. Über die Cadmiumdifferenzmethode konnte der thermische und der epithermische Anteil der Neutronen separiert werden und dadurch sowohl der thermische Wirkungsquerschnitt als auch das Resonanzintegral für die Reaktion 10Be(n,γ)11Be bestimmt werden.
Am Institut für Kernphysik der Goethe Universität Frankfurt wurde mit einem Van - de - Graaff - Beschleuniger über die 7Li(p,n)7Be Reaktion ein quasistellares Neutronenspektrum mit kBT ≈ 25 keV erzeugt. Für die zyklische Aktivierung von Proben wurde die Infrastruktur in Form einer automatisiert ablaufenden Vorrichtung zur Bestrahlung und Auszählung geplant und umgesetzt. In diesem Rahmen wurden die über das Spektrum gemittelten Neutroneneinfangsquerschnitte für verschiedene Reaktionen bestimmt. Für 19F(n,γ)20F konnte der Gesamteinfangsquerschnitt bestimmt werden. Für die Reaktion 45Sc(n,γ)46Sc wurde der partielle Wirkungsquerschnitt in den 142,5 keV Isomerzustand gemessen. Aus der 115In(n,γ)116In Reaktion konnten die partiellen Querschnitte in die Isomerzustände bei 289,7 keV, 127,3 keV sowie den Grundzustand bestimmt werden.
Außerdem wurde mit einer Hafniumprobe die partiellen Einfangsquerschnitte in den 1147,4 keV Isomerzustand von 178Hf und in den 375 keV Isomerzustand von 179Hf gemessen.
Der langsame Neutroneneinfang-Prozess (s-Prozess) ist für die Erzeugung von rund der Hälfte der Elemente zwischen Eisen und Blei verantwortlich. Sein Reaktionspfad enthält entlang des Stabilitätstals einige Verzweigungspunkte an instabilen Isotopen, deren Neutroneneinfangquerschnitte die Produktion schwererer Elemente und deren Isotopen-Verhältnisse beeinflussen. Kennt man ihre Zerfalls- und Neutroneneinfangraten unter den angenommenen stellaren Bedingungen ist es möglich, Rückschlüsse auf die physikalischen Umstände während des s-Prozesses zu ziehen. Einer dieser Verzweigungspunkte ist 63-Ni. Die experimentelle Bestimmung des differentiellen Wirkungsquerschnittes für den Neutroneneinfang an diesem Isotop ist das primäre Ergebnis der vorliegenden Arbeit. Der 63-Ni(n,gamma)- Wirkungsquerschnitt hat Einfluss auf die Häufigkeiten von 64-Ni, die Kupfer- und die Zink-Isotope. Die Sensitivität der Produktion dieser Nuklide in s-Prozess-Szenarien wurde ebenfalls im Rahmen dieser Arbeit anhand von Simulationen des entsprechenden Nukleosynthesenetzwerkes untersucht. Zudem wurde die Datenlage für s-Prozess-Modelle mit einer Flugzeit-Messung des 63-Cu(n,gamma)-Wirkungsquerschnitts erweitert.
Die beiden Experimente zur Querschnittsbestimmung von 63-Ni und 63-Cu fanden am Los Alamos Neutron Science Center in New Mexico, USA statt. Eine aus angereichertem 62-Ni hergestellte 63-Ni-Probe wurde im Rahmen einer Flugzeit-Messung gepulst mit Neutronen bestrahlt. Der Nachweis der prompten Gammastrahlung aufgrund von Neutroneneinfängen erfolgte mit dem 4π-BaF_2-Detektor DANCE. Die kalorimetrische Messung macht den Q-Wert der Reaktion für jedes Einfangereignis zugänglich und erlaubt die Unterscheidung von Ereignissen verschiedener Isotope. Es konnte gezeigt werden, dass diese Methode die Bestimmung von Querschnitten selbst mit Proben ermöglicht, die nur zu einem Bruchteil aus dem zu untersuchenden Isotop bestehen. Der 63-Ni(n,gamma)-Wirkungsquerschnitt wurde für den Energiebereich von 40 eV bis 500 keV mit einer maximalen Unsicherheit von 15% bestimmt. Es zeigte sich, dass theoretische Abschätzungen den Querschnitt bislang um etwa einen Faktor 2 unterschätzten. In demselben Energiebereich konnte der 63-Cu(n,gamma)-Wirkungsquerschnitt mit einer maximalen Unsicherheit von 8% vermessen werden.
This work derives the value of the neutron capture cross section of 60Fe at the energy of kT = 25 meV. Iron plays an important role in stellar nucleosynthesis, because it is a seed material for the s-process, a neutron capture process in which the elements between iron and bismuth are synthesized.
To determine the thermal neutron cross section of 60Fe, an iron sample produced in the framework of the ERAWAST1 program at the Paul Scherrer Institute in Switzerland was irradiated at the research reactor TRIGA2 at Johannes Gutenberg University in Mainz, Germany. Before the irradiation, the number of 60Fe particles in the sample was calculated using the decay scheme of 60Fe. There were (8.207 ± 0:066 stat 0:298 syst) * 10 14 60Fe particles in the sample.
The irradiation of the sample took place in May 2012. The counting of the reaction product, 61Fe, was undertaken using a HPGe detector located in a laboratory at Johannes Gutenberg University in Mainz. Knowing the number of 60Fe particles in the sample, the number of produced 61Fe particles and the neutron flux from the reactor, the thermal neutron capture cross section of ρth60Fe = (0.203 ± 0:021 stat 0:024 syst) b could be determined.
The determination of the thermal neutron capture cross section at the energy of kT = 25 meV constitutes to the first at this energy. There was already a measurement of the neutron capture cross section of 60Fe at the energy of kT = 25 keV in Karlsruhe in Germany. The result of the measurement was 25 keV = (9.9 ± 2:8 syst 1:4 stat) mb and was published in the year 2009 [14].
Adding datapoints for the cross section at different energies improves extarpolation and helps verification of theoretical models for elemental synthesis. For this reason, a measurement of the 60Fe neutron capture cross section at the energy of kT = 90 keV is planned at Goethe University Frankfurt, Germany.
Having the neutron capture cross section of 60Fe at the energy of kT = 25 keV measured in the year 2009 in Karlsruhe [14], at the energy of kT = 25 meV measured in May 2012 at Johannes Gutenberg University in Mainz and at the planned energy of kT = 90 keV at Goethe University Frankfurt, there will be three points for the extrapolation of the values for the neutron capture cross section of 60Fe. This will lead to a significant reduction in uncertainty with respect to existing theoretical discrepancies.
Im Rahmen dieser Arbeit wurden astrophysikalisch relevante, kernphysikalische Raten, die zum Verständnis der beobachteten Häufigkeit des langlebigen Isotopes 60Fe wichtig sind, am GSI Helmholtzzentrum für Schwerionenforschung GmbH und am Forschungsreaktor TRIGA in Mainz gemessen.
Zunächst wurde der Coulombaufbruch von 59Fe und 60Fe am GSI Helmholtzzentrum für Schwerionenforschung GmbH untersucht. Zur Produktion der radioaktiven Strahlen wurde ein 64Ni-Primärstrahl auf ein Spallationstarget geleitet. Im Fragmentseparator wurden die Isotope nach deren magnetischen Steifigkeit separiert und nur die gewünschte Spezies im LAND/R3B-Aufbau untersucht. Die Bestimmung von Impuls und Ladung der eingehenden Ionen erlaubte eine individuelle Identifikation. Der Coulombaufbruchwirkungsquerschnitt wurde mit einer Bleiprobe bestimmt. Die verschiedenen Untergrundkomponenten ergaben sich aus einer begleitenden Leermessung, sowie einer Messung mit einer Kohlenstoffprobe. Der Wirkungsquerschnitt der Reaktion Pb(60Fe,n+59Fe)Pb bei (530±5) MeV/u wurde zu σ(60Fe,n+59Fe) COULEX = (298±11stat±31syst) mb (0.1) bestimmt und für die Reaktion Pb(59Fe,n+58Fe)Pb ergab sich σ(59Fe,n+58Fe) COULEX = (410±11stat±41syst) mb. (0.2)
Außerdem konnten für beide einkommenden Strahlsorten die Wahrscheinlichkeiten für die Produktion von zwei Neutronen bestimmt werden.
Anschließend wurde der Neutroneneinfangsquerschnitt von 60Fe bei kT = 25,3 meV am Forschungsreaktor TRIGA in Mainz bestimmt. Hierfür wurde eine 60Fe Probe zunächst anhand des Anstieges der Aktivität der 60Co-Tochterkerne charakterisiert und anschließend im Reaktor bestrahlt. Die frisch erzeugte Aktivität des 61Fe wurde mit einem HPGe-Detektor nachgewiesen. Mit Hilfe der Cadmiumdifferenzmethode konnte daraus erstmals der thermische Neutroneneinfangsquerschnitt von 60Fe zu σ60Fe(n,γ) th = 0,22±0,02stat±0,02syst b. (0.3) bestimmt werden. Für das Resonanzintegral ergab sich die obere Schranke von I 60Fe(n,γ) res = 0,61 b. (0.4)
Mithilfe einer (n,γ)-Aktivierung von Germanium am Forschungsreaktor TRIGA in Mainz wurde zum einen in Hinblick auf zukünftige Experiment an der NIF eine Sensitivitätsstudie durchgeführt. Zum anderen wurden die thermischen Neutroneneinfangquerschnitte von 74Ge und 76Ge jeweils für den Einfang in den Isomer- und Grundzustand gemessen, um die Abweichungen der Daten von [Hol93] und [Mug06] zu klären. Zusätzlich wurden die Halbwertszeiten der betrachteten radioaktiven Ge-Isotope bestimmt.
This thesis presents experimental studies of proton capture and fragmentation reactions with heavy-ion storage rings. In one experiment, the 96Ru(p, γ)97Rh cross sections near the Gamow window have been measured at the ESR of GSI. In the other experiment, the measurement of the fragmentation yields has been carried out at the CSRe of IMP.
It is essential to determine the cross sections of (γ, p) or (p, γ) reactions for p-process network calculations. However, only very few of the required cross sections have been measured and thus most of them rely solely on Hauser-Feshbach model predictions. The predictions of the model have always very large uncertainties because of the not well-known input parameters. These parameters can be constrained by experiments. Compared to the traditional activation technique, a novel method using a storage ring has been developed to measure the cross sections of (p, γ) reactions in inverse kinematics.
This proton capture experiment has been performed at the ESR, where the circulating 96Ru44+ ions interacted with a hydrogen gas target at 9, 10 and 11 MeV/u. The nuclear reaction products of (p, p), (p, α), (p, n) and (p, γ) reactions were registered by position sensitive detectors. A Geant4 simulation code has been developed to distinguish the (p, γ) reaction products unambiguously from the background reactions. In this work, a relative normalization method has been utilized to accurately determine the cross sections of the (p, γ) reaction. The 96Ru(p, γ)97Rh cross section in the Gamow window of the p process is sensitive to two parameters, i.e., the γ-ray strength function and the optical model potential, while it is mainly sensitive to the γ-ray strength function in the energy region of our experiment. Therefore, our experimental (p, γ) cross sections near 10 MeV/u have been used to directly constrain the γ-ray strength function used in the model. Furthermore, the proton potential has also been constrained by combining our results with additional experimental data for this reaction in the lower energy region. The constrained model has been used to calculate the reaction rate over a wide temperature range, which is an extremely important input for astrophysical calculations.
The yields of fragments produced by 78Kr fragmentation reactions have been measured at the CSRe for the Tz = −1/2 and Tz = 1/2 nuclei along or close to the paths of αp- and rp-processes. The measured yields present a significant odd-even staggering effect for Tz = −1/2 nuclides but they are small for Tz = 1/2 nuclides.
The magnitude of this effect for four consecutive yields has been quantified using a third-order difference formula. It is found that the largest odd-even staggering is reached near the closed shells Z = 20 and Z = 28. Our experimental results could also compared with the data from other experiments with different projectile-target combinations. All these experimental data strongly support the closed shells Z = 20 and Z = 28 for the Tz = −1/2 nuclei.