Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (8)
- Bachelor Thesis (3)
Has Fulltext
- yes (33) (remove)
Is part of the Bibliography
- no (33)
Keywords
- Physics (2)
- Accelerator (1)
- Activation experiment (1)
- Aktivierungsmethode (1)
- Coulombspaltung (1)
- Cross section (1)
- Gammakalorimeter (1)
- Gammaspektroskopie (1)
- Inverse Kinematics (1)
- Kupfer-63 (1)
Institute
- Physik (31)
- Biowissenschaften (1)
Das Hauptziel der vorliegenden Arbeit war es, die energieabhängigen Wirkungsquerschnitte von (γ,n)-Reaktionen für 169Tm, 170Yb, 176Yb und 130Te mittels der Photoaktivierungsmethode zu bestimmen.
Dazu wurden zunächst die Effizienzen der verwendeten Detektoren mithilfe von Simulationen korrigiert, da die verwendeten Targets eine ausgedehnte Geometrie aufweisen im Gegensatz zu den punktförmigen Eichquellen. Es hat sich herausgestellt, dass mit den Simulationen die Effizienzen der MCA-Detektoren energieabhängig korrigiert werden konnten, da die Simulationen die Form der gemessenen Effizienzen gut reproduzieren konnten. Bei den Effizienzen der LEPS-Detektoren hingegen konnte keine energieabhäangige Korrektur vorgenommen werden, da die LEPS-Detektoren aufgrund des geringen Abstandes zu den Detektoren hohe Summeneffekte zeigten. Im Rahmen dieser Arbeit konnten diese Summeneffekte jedoch nicht korrigiert bzw. berücksichtigt werden.
In dieser Arbeit wurde der langsame Neutroneneinfang (s-Prozess) mit dem Nukleosynthese-Programm NETZ simuliert. Ziel solcher Programme ist es, die solare Häufigkeitsverteilung zu reproduzieren.
Der s-Prozess dient der Synthese von Elementen schwerer als Eisen und ereignet sich in astrophysikalischen Szenarien mit relativ geringen Neutronendichten. Dadurch sind die Neutroneneinfangzeiten meist größer als die Betazerfallszeiten und der Prozesspfad folgt dem Stabilitätstal in der Nuklidkarte. Aus diesem Grund sind die Reaktionsraten gut messbar und es steht ein umfangreiches Daten-Netzwerk zur Verfügung, welches in die Simulationen einfließen kann.
Man unterschiedet zwischen der schwachen- und der Hauptkomponente des s-Prozesses. Die schwache Komponente findet in massereichen Sternen (M > 8M⊙) beim Helium-Kernbrennen und Kohlenstoff-Schalenbrennen statt. Bei Temperaturen über 2.5 × 108 K wird die Reaktion 22Ne(α ,n)25Mg aktiviert, welche Neutronen liefert, die von der Eisensaat eingefangen werden. Bei einer mittleren Neutronendichte von 106/cm3 reicht die Neutronenbestrahlung jedoch nicht aus, um den Synthesefluss über die abgeschlossene Neutronenschale bei N = 50 hinweg zu treiben. Folglich werden nur Isotope zwischen Eisen und Yttrium (56 < A < 90) aufgebaut.
Schwerere Isotope (90 ≤ A ≤ 208) werden dagegen in der Hauptkomponente synthetisiert. Diese findet in thermisch pulsierenden AGB-Sternen statt, in denen während des Helium-Schalenbrennens Neutronen hauptsächlich über die Reaktion 13C(α ,n)16O zur Verfügung gestellt werden.
Am Ende der jeweiligen Brennphasen gibt es einen Anstieg von Temperatur und Neutronendichte, welche jedoch nicht die globale Häufigkeitsverteilung, wohl aber Verzweigungspunkte beeinflussen können. An diesen Punkten liegen die Neutroneneinfang- und Betazerfallszeiten in der gleichen Größenordnung, sodass der s-Prozesspfad aufspaltet.
Hinzu kommt, dass unter stellaren Bedingungen die Reaktionsraten starken Änderungen unterworfen sein können. Bei hohen Temperaturen und Dichten befinden sich die Kerne in angeregten Zuständen, die wie auch der Grundzustand Neutronen einfangen oder radioaktiv zerfallen können, jedoch bei veränderten Raten. Dieser Sachverhalt kann einen Einfluss auf die Häufigkeitsverteilung haben.
Das umfangreiche Reaktionsnetzwerk des s-Prozesses kann schnell und mit guter Genauigkeit mit dem Programm NETZ berechnet werden. Dabei muss dem Programm ein Neutronenpuls - der zeitliche Verlauf von Neutronendichte und Temperatur - vorgegeben werden. Ziel dieser Arbeit war es, einen geeigneten solchen Puls zu finden, um die bisherigen Ergebnisse von NETZ zu optimieren. Außerdem wurde eine Aktualisierung der Reaktionsraten und solaren Häufigkeitsverteilung durchgeführt.
Die neuen Neutronenpulse für die schwache- und Hauptkomponente liefern eine Verbesserung in der Übereinstimmung von berechneter und solarer Häufigkeit. Dabei konnte für die Hauptkomponente sowohl ein Profil mit einem rechteckigen als auch mit einem exponentiellen Verlauf der Neutronendichte gefunden werden.
Darüber hinaus bietet NETZ die Möglichkeit, den Einfluss veränderter Reaktionsraten auf die Häufigkeitsverteilung abzuschätzen. Dazu steht inzwischen auch ein Online-Interface zur Verfügung. Dies ist besonders interessant, wenn es neue Messungen z.B. für Neutroneneinfangreaktionen gibt und man die Relevanz für den s-Prozess bestimmen möchte. So konnte in dieser Arbeit die Bedeutung der kürzlich neu gemessenen Raten für 63,65Cu(n,γ) und 69,71Ga(n,γ) beurteilt werden.
Der Verzehr von radioaktiv belasteten Pilzfruchtkörpern stellt ein Gesundheitsrisiko für den Menschen dar und auch fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 sind Pilze aus Waldökosystemen zum Teil noch stark durch das ausgetretene radioaktive 137Cs belastet. Die Einschätzung der Belastung und somit des Gesundheitsrisikos ist aufgrund einer Vielzahl von Einflussfaktoren, wie z. B. der Pilzart, der Tiefe des Myzels, der Bodenkontamination und der Feuchtigkeit des Bodens, schwierig. Ziel dieser Arbeit war es die Variabilität, den Einfluss verschiedener Faktoren sowie die effektive Halbwertszeit der 137Cs-Aktivität in Pilzfruchtkörpern zu ermitteln. Des Weiteren wurde überprüft, ob die Bodenkontamination für eine Abschätzung der 137Cs-Aktivität von Pilzfruchtkörpern herangezogen werden kann. Für die Untersuchungen wurden über mehrere Jahre Proben von Maronenröhrlingen (Imleria badia) und Steinpilzen (Boletus edulis) aus vier Waldgebieten in Mittel- und Süddeutschland mit unterschiedlichem Aktivitätseintrag nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 analysiert. Die Gebiete waren Eichenzell, Wülfersreuth, Oberschönenfeld und der Nationalpark Bayerischer Wald. Als Ergänzung dienten zugesendete Proben derselben Pilzarten von Mitgliedern aus Pilzvereinen aus ganz Deutschland. Zusätzlich zu den Pilzproben wurden Bodenproben gemessen, um zum einen die aktuelle Bodenkontamination zu bestimmen und zum anderen zu überprüfen, ob der Großteil des 137Cs weiterhin im Bereich des Pilzmyzels zu finden ist.
Für die Untersuchung der örtlichen Variabilität der 137Cs-Aktivität wurden Maronenröhrlinge (Imleria badia) aus dem Waldgebiet Eichenzell in den Jahren 2017 bis 2019 analysiert. Innerhalb eines Sammeltages variierten die Messwerte verschiedener Proben innerhalb des Waldgebietes teilweise um den Faktor sechs. Dabei ist die Variabilität innerhalb eines Teilgebietes größer als zwischen beiden Teilgebieten des Waldgebietes Eichenzell. Für ein repräsentatives Ergebnis eines Gebietes ist es aufgrund der Variabilität erforderlich, eine ausreichende Menge an Fruchtkörpern zu analysieren.
Um die effektive Halbwertszeit der 137Cs-Aktivität in Maronenröhrlingen (Imleria badia) zu ermitteln, wurden Proben aus drei Waldgebieten über fünf bis neun Jahre analysiert. Die Wahl der drei Waldgebiete erfolgte anhand des 137Cs-Aktivitätseintrags nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986. Die Bodenkontaminationswerte variieren von 3.000 Bq/m² in Eichenzell über 12.500 Bq/m² in Wülfersreuth bis 35.000 Bq/m² in Oberschönenfeld. Die effektiven Halbwerts-zeiten liegen in einem engen Bereich von 5,2 bis 5,8 Jahre mit einem Mittelwert von 5,4 ± 0,3 Jahren. Damit reduziert sich die radioaktive Belastung der Pilzfruchtkörper in etwa fünfmal schneller als durch die rein physikalische Halbwertszeit des 137Cs von 30,08 Jahren. Durch die Hinzunahme von bereits im Jahr 1990 veröffentlichten Daten ergab sich eine längere effektive Halbwertszeit von 7,7 ± 0,6 Jahren.
Für die Untersuchung der zwei Einflussfaktoren Exposition des Sammelgebiets (Hangausrichtung nach Ost oder West) und Höhenlage wurden sowohl Maronenröhrlinge (Imleria badia) als auch Steinpilze (Boletus edulis) hinsichtlich der 137Cs-Aktivität gemessen, um die Auswirkung auf Pilzarten mit unterschiedlichem Akkumulationsvermögen zu analysieren. Als Untersuchungsgebiet diente der Nationalpark Bayerischer Wald, da dieser ein großes Gebiet umfasst und verschiedene Ausprägungen der beiden Faktoren abbildet. Zudem wurde das Gebiet in Folge der Reaktorkatastrophe von Tschernobyl stark kontaminiert und der Park ist ein beliebtes Pilzsammelgebiet. Anhand der 137Cs-Aktivität von Bodenproben konnte das Gebiet in zwei Regionen (Cluster) eingeteilt werden: eine Region mit hohem und eine mit niedrigem Aktivitätseintrag. Im Vergleich wiesen Maronenröhrlinge (Imleria badia) durchschnittlich eine um den Faktor fünf höhere 137Cs-Aktivität als Steinpilze (Boletus edulis) auf. Der Faktor Höhenlage zeigte im Gegensatz zur Exposition einen Einfluss auf die Kontamination der Pilzfruchtkörper. In Bezug auf die Höhenlage war der Einfluss nur im Falle eines hohen Aktivitätseintrags signifikant, wobei die Pilzproben aus der niedrigsten Höhenlage am höchsten belastet waren.
Zur Ermittlung der vertikalen Verteilung des 137Cs im Boden wurden in den Waldgebieten Eichenzell und Nationalpark Bayerischer Wald Proben bis zu einer Tiefe von 24 cm entnommen und anschließend in 2 cm Schichten analysiert. Alle Verteilungen konnten mit einem Gauß-Fit oder einem multiplen Gauß-Fit mit 2 bis 3 Maxima abgebildet werden. Das erste Maximum lag in allen Fällen in den organischen Horizonten oder im Übergangsbereich zum Ah-Horizont. Folglich befindet sich der Großteil des 137Cs fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl immer noch im Bereich des Pilzmyzels und kann somit von den Pilzen aufgenommen und in den Fruchtkörpern angereichert werden.
Der Vergleich der 137Cs-Aktivität der Pilz- und Bodenproben aus dem Nationalpark Bayerischer Wald ergab sowohl für Maronenröhrlinge (Imleria badia) als auch für Steinpilze (Boletus edulis) eine positive Korrelation. Nach Unterteilung der Proben anhand der Höhenlage zeigte sich eine noch stärkere Korrelation. Dies zeigt, dass neben der Bodenkontamination auch die Höhenlage einen Einfluss auf die 137Cs-Aktivität der Fruchtkörper hat.
...
This work derives the value of the neutron capture cross section of 60Fe at the energy of kT = 25 meV. Iron plays an important role in stellar nucleosynthesis, because it is a seed material for the s-process, a neutron capture process in which the elements between iron and bismuth are synthesized.
To determine the thermal neutron cross section of 60Fe, an iron sample produced in the framework of the ERAWAST1 program at the Paul Scherrer Institute in Switzerland was irradiated at the research reactor TRIGA2 at Johannes Gutenberg University in Mainz, Germany. Before the irradiation, the number of 60Fe particles in the sample was calculated using the decay scheme of 60Fe. There were (8.207 ± 0:066 stat 0:298 syst) * 10 14 60Fe particles in the sample.
The irradiation of the sample took place in May 2012. The counting of the reaction product, 61Fe, was undertaken using a HPGe detector located in a laboratory at Johannes Gutenberg University in Mainz. Knowing the number of 60Fe particles in the sample, the number of produced 61Fe particles and the neutron flux from the reactor, the thermal neutron capture cross section of ρth60Fe = (0.203 ± 0:021 stat 0:024 syst) b could be determined.
The determination of the thermal neutron capture cross section at the energy of kT = 25 meV constitutes to the first at this energy. There was already a measurement of the neutron capture cross section of 60Fe at the energy of kT = 25 keV in Karlsruhe in Germany. The result of the measurement was 25 keV = (9.9 ± 2:8 syst 1:4 stat) mb and was published in the year 2009 [14].
Adding datapoints for the cross section at different energies improves extarpolation and helps verification of theoretical models for elemental synthesis. For this reason, a measurement of the 60Fe neutron capture cross section at the energy of kT = 90 keV is planned at Goethe University Frankfurt, Germany.
Having the neutron capture cross section of 60Fe at the energy of kT = 25 keV measured in the year 2009 in Karlsruhe [14], at the energy of kT = 25 meV measured in May 2012 at Johannes Gutenberg University in Mainz and at the planned energy of kT = 90 keV at Goethe University Frankfurt, there will be three points for the extrapolation of the values for the neutron capture cross section of 60Fe. This will lead to a significant reduction in uncertainty with respect to existing theoretical discrepancies.
Within the nucleosynthetic processes of the slow neutron-capture reaction network (called the s process) the so called branching points, unstable isotopes where different nuclear reactions are competing, are important to understand . For modeling and calculating the nucleosynthesis and compare the resulting abundances to the observed ones, it is indispensable to know the branching ratios as well as the corresponding cross sections.
A great challenge in measuring those rates in experiments may be the radioactivity of the isotopes involved, which can make it nearly impossible to manufacture the needed targets. In addition, in stellar environments the excited states of isotopes can be in equilibrium with the ground state, affecting the half-lives and the branching ratios significantly. The isotope 152Eu is such a branching point, with neutron captures and β-decays competing. Those challenges were approached in the s405 experiment performed at the GSI Helmholtzzentrum für Schwerionenforschung GmbH: the challenge the challenge of the radioactivity can be approached by experiments carried out in inverse kinematics with radioactive beams, solving the problem of unstable targets. Also a reversed reaction was used to access the excited states of the studied isotope. The performed 152Sm(p,n)152Eu is a pioneering attempt to use those methods on heavy ions. The (p,n) reaction was used as a substitute for electron capture, the focus lies on reactions with low-momentum transfers, resulting in the emission of low-energy neutrons. The new developed low-energy detector array LENA was put to test for the fist time in the s405 experiment.
This thesis presents the first measurement of the proton capture reaction on the isotope 124Xe performed in inverse kinematics. The experiment was carried out in June 2016 at the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany.
124Xe is one of about 35 p-nuclei that cannot be produced via neutron-induced nucleo- synthesis as the vast majority of heavy elements. Its production and destruction provide important information about the nucleosynthesis of the p-nuclei. Measuring the 124Xe(p,g)125Cs reaction also gives strong constraints for its reverse 125Cs(g,p)124Xe reaction.
Fully stripped 124Xe ions repeatedly passed a H2 gas jet target at five different energies between 5.5 MeV/u and 8 MeV/u. An electron cooler compensated for the energy loss in the target and reduced the beam momentum spread. The reaction product 125Cs55+ has a smaller magnetic rigidity than 124Xe54+. Therefore 125Cs55+ was deflected towards smaller radii in the first dipole after the target area and thereby separated from 124Xe54+. It was detected with a position-sensitive Double-Sided Silicon Strip Detector (DSSSD). The novelty of this experiment was the installation of the DSSSD inside the ultra-high vacuum of the storage ring using a newly designed manipulator.
Three High-Purity Germanium X-ray detectors were used to measure the X-rays following the Radiative Electron Capture (REC) events into 124Xe53+. The REC cross sections are well-known and were used to determine the luminosity.
The 124Xe(p,g)125Cs cross sections at ion beam energies between 5.5 MeV/u and 8 MeV/u were determined relatively to the K-REC cross sections and finally compared to the theoretically predicted cross sections. While theoretical predictions of the TENDL database are lower than the measured ones by a factor of up to seven, the NON-SMOKER data are higher by a factor of up to two, except of the cross section at 7 MeV/u, where NON-SMOKER data are slightly lower than the experimental value.
For the first time, a proton capture cross section could be measured in inverse kinematics close to the astrophysically relevant Gamow window. This allows the direct determination of the (p,g) cross section of isotopes with half-lives down to several minutes, which is not possible with any other technique.
Im Rahmen dieser Arbeit wurden astrophysikalisch relevante, kernphysikalische Raten, die zum Verständnis der beobachteten Häufigkeit des langlebigen Isotopes 60Fe wichtig sind, am GSI Helmholtzzentrum für Schwerionenforschung GmbH und am Forschungsreaktor TRIGA in Mainz gemessen.
Zunächst wurde der Coulombaufbruch von 59Fe und 60Fe am GSI Helmholtzzentrum für Schwerionenforschung GmbH untersucht. Zur Produktion der radioaktiven Strahlen wurde ein 64Ni-Primärstrahl auf ein Spallationstarget geleitet. Im Fragmentseparator wurden die Isotope nach deren magnetischen Steifigkeit separiert und nur die gewünschte Spezies im LAND/R3B-Aufbau untersucht. Die Bestimmung von Impuls und Ladung der eingehenden Ionen erlaubte eine individuelle Identifikation. Der Coulombaufbruchwirkungsquerschnitt wurde mit einer Bleiprobe bestimmt. Die verschiedenen Untergrundkomponenten ergaben sich aus einer begleitenden Leermessung, sowie einer Messung mit einer Kohlenstoffprobe. Der Wirkungsquerschnitt der Reaktion Pb(60Fe,n+59Fe)Pb bei (530±5) MeV/u wurde zu σ(60Fe,n+59Fe) COULEX = (298±11stat±31syst) mb (0.1) bestimmt und für die Reaktion Pb(59Fe,n+58Fe)Pb ergab sich σ(59Fe,n+58Fe) COULEX = (410±11stat±41syst) mb. (0.2)
Außerdem konnten für beide einkommenden Strahlsorten die Wahrscheinlichkeiten für die Produktion von zwei Neutronen bestimmt werden.
Anschließend wurde der Neutroneneinfangsquerschnitt von 60Fe bei kT = 25,3 meV am Forschungsreaktor TRIGA in Mainz bestimmt. Hierfür wurde eine 60Fe Probe zunächst anhand des Anstieges der Aktivität der 60Co-Tochterkerne charakterisiert und anschließend im Reaktor bestrahlt. Die frisch erzeugte Aktivität des 61Fe wurde mit einem HPGe-Detektor nachgewiesen. Mit Hilfe der Cadmiumdifferenzmethode konnte daraus erstmals der thermische Neutroneneinfangsquerschnitt von 60Fe zu σ60Fe(n,γ) th = 0,22±0,02stat±0,02syst b. (0.3) bestimmt werden. Für das Resonanzintegral ergab sich die obere Schranke von I 60Fe(n,γ) res = 0,61 b. (0.4)
Asymptotic giant branch (AGB) stars are initially low and intermediate mass stars undergoing recurrent hydrogen and helium shell burning. During the advanced stage of stellar evolution AGB stars follow after the helium core burning ceased and are located in the AGB of the Hertzsprung-Russell Diagram. One characteristic is their ability of element synthesis, especially carbon and nitrogen, which they eject in large amounts into the interstellar medium. But AGB stars also feature a slow-neutron capture process called s-process which forms approximately 50 % of all elements between Fe and Bi. The initial mass function emphasizes the importance of the synthesized ejecta of AGB stars since they are much more abundant than massive stars. Therefore, the abundance evolution of many elements in the universe is drastically affected by AGB stars. In order to understand chemical evolution in the universe their behavior must be known since their first appearance. In previous times less heavy elements were produced and available. Hence AGB stars with lower heavy element content, which means lower metallicity, must be investigated. They appear to behave substantially differently than stars of higher metallicity. Another issue is that AGB stars have mass-dependent characteristics from which follows a division into low-mass, massive and super AGB stars. Super AGB stars have the most open issues due to their large masses and initial mass boundaries that separate them from massive stars. Due to large spectroscopic surveys in the last years, many low metallicity stars have been analyzed. These findings make it necessary to complement those studies through stellar modeling. This work makes a step in this direction. The AGB star masses under investigation are 1M⊙, 1.65M⊙, 2M⊙, 3M⊙, 4M⊙, 5M⊙, 6M⊙ and 7M⊙ which include low-mass, massive and super AGB stars. Metallicities of Z = 6 x 10 exp-3 and Z = 1 x 10 exp-4 (for comparison, solar Z ~ 0.02) were chosen. These results are an extension of already available data, covering solar and half-solar metallicity, but without super AGB stars. Therefore physics input includes mainly well-established approaches rather than new theories. New physical approaches are included due to the low metallicity which makes the results a unique set of models. Additionally, extensive s-process network calculations lead to production factors of all included elements and isotopes. The s-process signatures of those stars were analyzed. The stellar evolution simulations presented in this work have been utilized for rate and especially sensitivity studies. One approach done was to analyze s-process branchings at 95Zr and 85Kr for stars at 3M⊙ with Z = 1 x 10 exp-2 and Z = 1 x 10 exp-3 respectively.
Im Rahmen dieser Arbeit sollte ein bereits im Jahr 1989 gebauter Neutronenkollimator für den zukünftigen Einsatz an der Frankfurter Neutronenquelle am Stern Gerlach Zentrum (FRANZ) getestet und simuliert werden.
Hierfür wurde der Neutronenkollimator zunächst probeweise aufgebaut und die einzelnen Bauteile ausgemessen. Zunächst wurde die Zusammensetzung der Kollimatorbauteile überprüft und deren Dichte bestimmt. Zu diesem Zweck wurde mit einigen ausgesuchten Bauteilen des Kollimators eine Gammatransmissionsmessung mit Na-22 und Ba-133 als Gammaquelle durchgeführt. Die Messwerte dieser Messung wurden ausgewertet und mit entsprechend angefertigten Simulationen mit GEANT 3 verglichen.
Für die Simulationen wurden die Bauteile, mit denen die Messung durchgeführt wurde, detailgetreu und mit der zu bestätigenden Zusammensetzung sowie einer geschätzten Dichte programmiert. Über die Anpassung der Simulationsergebnisse an die experimentellen Werte, konnte so die Materialzusammensetzung bestätigt und für die jeweiligen Bauteile jeweils eine Dichte ermittelt werden. Für das Lithiumcarbonatrohr wurde eine Dichte von 1,422 g/cm³ ermittelt, für die drei Bauteile aus Borcarbid jeweils 1,169 g/cm³, 1,073 g/cm³, 0,832 g/cm³. Aufgrund von vielen produktionsbedingten, unterschiedlich stark ausgeprägten Lufteinschlüsse in den Borcarbidbauteilen des Kollimators, konnte keine identische Dichte für alle Bauteile gefunden werden.
Nach Untersuchung des Kollimators wurde der Neutronendurchgang mit dem Simulationspaket GEANT 3 simuliert. Die vollständige Geometrie des Kollimators wurde in GEANT 3 programmiert und dabei Bohrlöcher und Besonderheiten einzelner Bauteile berücksichtigt. Um die Simulationszeit zu verkürzen, wurde der Teilchendurchgang durch den gesamten Kollimator nicht in einem Durchgang simuliert, sondern stückweise in vier Stufen entlang des Kollimators. Um die Komplexität der Simulation zu beschränken wurde für alle Kollimatorbauteile aus Borcarbid ein Dichtewert eingesetzt, jedoch jede Simulationsreihe mit den drei verschiedenen Werten, die bei der Gammatransmissionsmessung ermittelt wurden, durchgeführt.
Beim anschließenden Vergleich der Simulationsergebnisse, konnte zwischen den einzelnen Dichtewerten kein signifikanter Unterschied erkannt werden. Die Unsicherheiten in der Dichtebestimmung sind daher vernachlässigbar.
Jede Simulationsreihe wurde mit zwei verschiedenen Neutronenverteilungen durchgeführt: eine Neutronenverteilung bei 1,92 MeV Protonenenergie und eine bei 2 MeV Protonenenergie.
Anhand der Simulationsergebnisse konnte ermittelt werden, dass die auf den Detektor eintreffende Neutronenintensität bis zu einem Abstand von etwa 20 cm vom Strahlachsenzentrum um Faktor 4·10-5 geschwächt wird. Ab 20 cm Strahlachsenabstand beträgt die Transmission der Neutronen etwa 10-3.
Die Bleiabschirmung, die an den Kollimator montiert wird und den Detektor vor den infolge von Neutroneneinfängen emittierten Gammaquanten vor dem Detektor abschirmen soll, reduziert die Zahl der Gammaquanten ebenfalls um Faktor 10-4.
Für den zukünftigen Einsatz des Neutronenkollimators an FRANZ müssen zunächst die fehlenden Kollimatorbauteile ersetzt oder nachgebaut werden. Dazu gehören zwei zylinderförmige innere Einsätze aus Borcarbid sowie eine Verlängerung des Innenrohrs aus Lithiumcarbonat. Neue Geometrien oder Materialzusammensetzungen können durch leichte Modifikation der bereits in GEANT 3 programmierten Kollimator-geometrie getestet und untersucht werden.
Für die Positionierung des Kollimators und Aufstellung vor dem 4 π BaF2-Detektor muss zusätzlich eine Platte angefertigt werden, an welche die Bleiabschirmung montiert und auf welcher der Kollimator stabil aufgebaut werden kann. Nach Fertigstellung der fehlenden Bauteile und der Platte, kann der Kollimator aufgebaut und in der Praxis getestet werden.