Refine
Year of publication
Document Type
- Doctoral Thesis (7)
- Master's Thesis (7)
- Bachelor Thesis (2)
Language
- German (16) (remove)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Gammakalorimeter (1)
- Kupfer-63 (1)
- Nickel-63 (1)
- Nukleosynthese (1)
- s-Prozess (1)
Institute
- Physik (15)
- Biowissenschaften (1)
Diese Arbeit beschäftigt sich mit dem Aufbau und der Kalibrierung eines Neutronendetektorarrays für niedrige Energien (Low Energy Neutron detector Array, kurz „LENA“) am kommenden R³B-Aufbau (Reactions with Relativistic Radioactive Beams) am FAIR (Facility for Antiproton and Ion Research) an der GSI in Darmstadt. Die Detektion niederenergetischer Neutronen im Bereich von 100 keV bis 1 MeV ist nötig, um Ladungsaustauschreaktionen, speziell (p,n)-Reaktionen in inverser Kinematik zu untersuchen. In diesem Energiebereich ist die Detektion äußerst schwierig, da Methoden für thermische als auch hochenergetische (100 MeV bis 1 GeV) Neutronen versagen. Neben dem Aufbau des Detektors wird die Bedeutung des Experiments für die nukleare Astrophysik verdeutlicht. Der theoretische Teil dieser Arbeit legt Grundlagen zum Verständnis für den Nachweis von Neutronen, die Funktionsweise des LENA-Detektors und den damit nachweisbaren Kernreaktionen. Des Weiteren wurde eine Simulation des Detektors mit GEANT4 (GEometry And Tracking), einer C++ orientierten Plattform für Simulationen von Wechselwirkungen von Detektormaterial mit Teilchen, durchgeführt. Die Ergebnisse wurden zur Auswertung von Messungen, die im Rahmen einer Strahlzeit im März 2011 an der Physikalisch Technischen Bundesanstalt (PTB) in Braunschweig durchgeführt wurden, herangezogen. Ziel der Arbeit ist es, die Effizienz des Detektors zu bestimmen.
Im Rahmen dieser Arbeit wurden astrophysikalisch relevante, kernphysikalische Raten, die zum Verständnis der beobachteten Häufigkeit des langlebigen Isotopes 60Fe wichtig sind, am GSI Helmholtzzentrum für Schwerionenforschung GmbH und am Forschungsreaktor TRIGA in Mainz gemessen.
Zunächst wurde der Coulombaufbruch von 59Fe und 60Fe am GSI Helmholtzzentrum für Schwerionenforschung GmbH untersucht. Zur Produktion der radioaktiven Strahlen wurde ein 64Ni-Primärstrahl auf ein Spallationstarget geleitet. Im Fragmentseparator wurden die Isotope nach deren magnetischen Steifigkeit separiert und nur die gewünschte Spezies im LAND/R3B-Aufbau untersucht. Die Bestimmung von Impuls und Ladung der eingehenden Ionen erlaubte eine individuelle Identifikation. Der Coulombaufbruchwirkungsquerschnitt wurde mit einer Bleiprobe bestimmt. Die verschiedenen Untergrundkomponenten ergaben sich aus einer begleitenden Leermessung, sowie einer Messung mit einer Kohlenstoffprobe. Der Wirkungsquerschnitt der Reaktion Pb(60Fe,n+59Fe)Pb bei (530±5) MeV/u wurde zu σ(60Fe,n+59Fe) COULEX = (298±11stat±31syst) mb (0.1) bestimmt und für die Reaktion Pb(59Fe,n+58Fe)Pb ergab sich σ(59Fe,n+58Fe) COULEX = (410±11stat±41syst) mb. (0.2)
Außerdem konnten für beide einkommenden Strahlsorten die Wahrscheinlichkeiten für die Produktion von zwei Neutronen bestimmt werden.
Anschließend wurde der Neutroneneinfangsquerschnitt von 60Fe bei kT = 25,3 meV am Forschungsreaktor TRIGA in Mainz bestimmt. Hierfür wurde eine 60Fe Probe zunächst anhand des Anstieges der Aktivität der 60Co-Tochterkerne charakterisiert und anschließend im Reaktor bestrahlt. Die frisch erzeugte Aktivität des 61Fe wurde mit einem HPGe-Detektor nachgewiesen. Mit Hilfe der Cadmiumdifferenzmethode konnte daraus erstmals der thermische Neutroneneinfangsquerschnitt von 60Fe zu σ60Fe(n,γ) th = 0,22±0,02stat±0,02syst b. (0.3) bestimmt werden. Für das Resonanzintegral ergab sich die obere Schranke von I 60Fe(n,γ) res = 0,61 b. (0.4)
Mithilfe einer (n,γ)-Aktivierung von Germanium am Forschungsreaktor TRIGA in Mainz wurde zum einen in Hinblick auf zukünftige Experiment an der NIF eine Sensitivitätsstudie durchgeführt. Zum anderen wurden die thermischen Neutroneneinfangquerschnitte von 74Ge und 76Ge jeweils für den Einfang in den Isomer- und Grundzustand gemessen, um die Abweichungen der Daten von [Hol93] und [Mug06] zu klären. Zusätzlich wurden die Halbwertszeiten der betrachteten radioaktiven Ge-Isotope bestimmt.
Der langsame Neutronen-Einfangprozess (s-Prozess) ist weitgehend verstanden und erforscht. Dies liegt vor allem daran, dass er im Gegensatz zu r- und p- Prozess hauptsächlich an stabilen Nukliden abläuft. Auch ist die Anzahl relevanter Reaktionen (Netzwerk) vergleichsweise klein.
Dennoch gibt es im s-Prozess viele ungeklärte Fragen. Eine dieser Fragen ist die Häufigkeitsverteilung von 86Kr in Staubkörnern von Meteoriten. Mit bisherigen Berechnungen und Simulationen dieser Szenarien konnte die Häufigkeitsverteilung von 86Kr jedoch nicht erklärt werden.
In dieser Arbeit werden die besonderen Eigenschaften von 85Kr, insbesondere sein Isomerzustand, vorgestellt und genauer untersucht. Die Häufigkeitsverteilung von 86Kr im s-Prozess wird entscheidend durch die Eigenschaften 85Kr beeinflusst. Mit den gewonnenen Daten aus dieser Arbeit wurde eine erste Simulation erstellt, die einen möglichenWeg aufzeigt, das Rätsel um die Häufigkeitsverteilung zu lösen.
Ziel der nuklearen Astrophysik ist es, die solare Häufigkeitsverteilung der Elemente zu erklären (siehe Seite 10, Abb. 1.1). Die Elemente bis zur Eisengruppe sind dabei unmittelbar nach dem Urknall und während verschiedener Brennphasen in Sternen durch Kernfusion entstanden. Da die Bindungsenergie pro Nukleon der Elemente in der Eisengruppe am höchsten ist, ist für den Aufbau schwererer Elemente keine Energiegewinnung durch Fusion geladener Teilchen mehr möglich und Neutroneneinfänge und Betazerfälle spielen die entscheidende Rolle für die Nukleosynthese. In Abhängigkeit von der Neutronendichte und der Temperatur wird dabei zwischen dem langsamen Neutroneneinfangprozess, dem s-Prozess, und dem schnellen Neutroneneinfangprozess, dem r-Prozess, unterschieden. Während der r-Prozess weit abseits der stabilen Isotope an der Neutronenabbruchkante statt findet, verläuft der Reaktionspfad des s-Prozesses entlang der stabilen Isotope am "Tal der Stabilität".
Ziel dieser Arbeit war, mittels einer (n,γ)-Aktivierung, 129Te zu erzeugen und eine Teilchenzahlbestimmung durchzuführen. Aktivierung der Probe am Forschungsreaktor TRIGA und Spektrenaufnahme mittels eines HPGe-Detektors erfolgten im Mai 2014 am Institut für Kernchemie der Johannes Gutenberg Universität in Mainz.
Die Teilchenzahl des Tochternuklids 129I kann anhand der Teilchenzahlen des Isomers und des Grundzustandes von 129Te berechnet werden. In den Aktivierungen #2 bis #6 wurden (14.27 ± 0.53)x10exp12 Iodnuklide erzeugt. Angegeben ist die maximal mögliche Anzahl von Iodteilchen bei unendlich langer Wartezeit und vollständigem Zerfall aller Tellurnuklide.
Beobachtet werden konnte die Abnahme der Grundzustandsaktivität bis zum Erreichen des Gleichgewichts aus Nachbevölkerung durch das Isomer und Zerfall. Die Grundzustandslinien der Energien von 459.60 keV, 487 keV, 1083 KeV und 1111 keV konnten zu dieser Untersuchung herangezogen werden. Diese 4 Linien erfüllen die erforderten Konsistenzkriterien bezüglich der Systematik und können daher zur Teilchenzahlbestimmung des Grundzustandes verwendet werden (Seite 31).
Der Einfluss der Eigenabsorption ist noch zu untersuchen, da die genaue Position der Probe im Polyethylenbehältnis nicht bestimmt werden konnte. Weiterhin ist die Datenanalyse der ersten Aktivierung aufgrund des Detektorwechsels noch nicht erfolgt. Der Austausch war wegen technischer Probleme notwendig. Ziel weiterführender Untersuchungen ist, eine erneute Halbwertszeitbestimmung des radioaktiven 129I vorzunehmen. Sie ist von Interesse, angesichts des Widerspruchs zweier Veröffentlichungen. Die Halbwertszeit des 129I kann Aufschluss über stellare Bedingungen des s-Prozesses geben.
Im Rahmen dieser Arbeit sollte ein bereits im Jahr 1989 gebauter Neutronenkollimator für den zukünftigen Einsatz an der Frankfurter Neutronenquelle am Stern Gerlach Zentrum (FRANZ) getestet und simuliert werden.
Hierfür wurde der Neutronenkollimator zunächst probeweise aufgebaut und die einzelnen Bauteile ausgemessen. Zunächst wurde die Zusammensetzung der Kollimatorbauteile überprüft und deren Dichte bestimmt. Zu diesem Zweck wurde mit einigen ausgesuchten Bauteilen des Kollimators eine Gammatransmissionsmessung mit Na-22 und Ba-133 als Gammaquelle durchgeführt. Die Messwerte dieser Messung wurden ausgewertet und mit entsprechend angefertigten Simulationen mit GEANT 3 verglichen.
Für die Simulationen wurden die Bauteile, mit denen die Messung durchgeführt wurde, detailgetreu und mit der zu bestätigenden Zusammensetzung sowie einer geschätzten Dichte programmiert. Über die Anpassung der Simulationsergebnisse an die experimentellen Werte, konnte so die Materialzusammensetzung bestätigt und für die jeweiligen Bauteile jeweils eine Dichte ermittelt werden. Für das Lithiumcarbonatrohr wurde eine Dichte von 1,422 g/cm³ ermittelt, für die drei Bauteile aus Borcarbid jeweils 1,169 g/cm³, 1,073 g/cm³, 0,832 g/cm³. Aufgrund von vielen produktionsbedingten, unterschiedlich stark ausgeprägten Lufteinschlüsse in den Borcarbidbauteilen des Kollimators, konnte keine identische Dichte für alle Bauteile gefunden werden.
Nach Untersuchung des Kollimators wurde der Neutronendurchgang mit dem Simulationspaket GEANT 3 simuliert. Die vollständige Geometrie des Kollimators wurde in GEANT 3 programmiert und dabei Bohrlöcher und Besonderheiten einzelner Bauteile berücksichtigt. Um die Simulationszeit zu verkürzen, wurde der Teilchendurchgang durch den gesamten Kollimator nicht in einem Durchgang simuliert, sondern stückweise in vier Stufen entlang des Kollimators. Um die Komplexität der Simulation zu beschränken wurde für alle Kollimatorbauteile aus Borcarbid ein Dichtewert eingesetzt, jedoch jede Simulationsreihe mit den drei verschiedenen Werten, die bei der Gammatransmissionsmessung ermittelt wurden, durchgeführt.
Beim anschließenden Vergleich der Simulationsergebnisse, konnte zwischen den einzelnen Dichtewerten kein signifikanter Unterschied erkannt werden. Die Unsicherheiten in der Dichtebestimmung sind daher vernachlässigbar.
Jede Simulationsreihe wurde mit zwei verschiedenen Neutronenverteilungen durchgeführt: eine Neutronenverteilung bei 1,92 MeV Protonenenergie und eine bei 2 MeV Protonenenergie.
Anhand der Simulationsergebnisse konnte ermittelt werden, dass die auf den Detektor eintreffende Neutronenintensität bis zu einem Abstand von etwa 20 cm vom Strahlachsenzentrum um Faktor 4·10-5 geschwächt wird. Ab 20 cm Strahlachsenabstand beträgt die Transmission der Neutronen etwa 10-3.
Die Bleiabschirmung, die an den Kollimator montiert wird und den Detektor vor den infolge von Neutroneneinfängen emittierten Gammaquanten vor dem Detektor abschirmen soll, reduziert die Zahl der Gammaquanten ebenfalls um Faktor 10-4.
Für den zukünftigen Einsatz des Neutronenkollimators an FRANZ müssen zunächst die fehlenden Kollimatorbauteile ersetzt oder nachgebaut werden. Dazu gehören zwei zylinderförmige innere Einsätze aus Borcarbid sowie eine Verlängerung des Innenrohrs aus Lithiumcarbonat. Neue Geometrien oder Materialzusammensetzungen können durch leichte Modifikation der bereits in GEANT 3 programmierten Kollimator-geometrie getestet und untersucht werden.
Für die Positionierung des Kollimators und Aufstellung vor dem 4 π BaF2-Detektor muss zusätzlich eine Platte angefertigt werden, an welche die Bleiabschirmung montiert und auf welcher der Kollimator stabil aufgebaut werden kann. Nach Fertigstellung der fehlenden Bauteile und der Platte, kann der Kollimator aufgebaut und in der Praxis getestet werden.
In dieser Arbeit wurde der langsame Neutroneneinfang (s-Prozess) mit dem Nukleosynthese-Programm NETZ simuliert. Ziel solcher Programme ist es, die solare Häufigkeitsverteilung zu reproduzieren.
Der s-Prozess dient der Synthese von Elementen schwerer als Eisen und ereignet sich in astrophysikalischen Szenarien mit relativ geringen Neutronendichten. Dadurch sind die Neutroneneinfangzeiten meist größer als die Betazerfallszeiten und der Prozesspfad folgt dem Stabilitätstal in der Nuklidkarte. Aus diesem Grund sind die Reaktionsraten gut messbar und es steht ein umfangreiches Daten-Netzwerk zur Verfügung, welches in die Simulationen einfließen kann.
Man unterschiedet zwischen der schwachen- und der Hauptkomponente des s-Prozesses. Die schwache Komponente findet in massereichen Sternen (M > 8M⊙) beim Helium-Kernbrennen und Kohlenstoff-Schalenbrennen statt. Bei Temperaturen über 2.5 × 108 K wird die Reaktion 22Ne(α ,n)25Mg aktiviert, welche Neutronen liefert, die von der Eisensaat eingefangen werden. Bei einer mittleren Neutronendichte von 106/cm3 reicht die Neutronenbestrahlung jedoch nicht aus, um den Synthesefluss über die abgeschlossene Neutronenschale bei N = 50 hinweg zu treiben. Folglich werden nur Isotope zwischen Eisen und Yttrium (56 < A < 90) aufgebaut.
Schwerere Isotope (90 ≤ A ≤ 208) werden dagegen in der Hauptkomponente synthetisiert. Diese findet in thermisch pulsierenden AGB-Sternen statt, in denen während des Helium-Schalenbrennens Neutronen hauptsächlich über die Reaktion 13C(α ,n)16O zur Verfügung gestellt werden.
Am Ende der jeweiligen Brennphasen gibt es einen Anstieg von Temperatur und Neutronendichte, welche jedoch nicht die globale Häufigkeitsverteilung, wohl aber Verzweigungspunkte beeinflussen können. An diesen Punkten liegen die Neutroneneinfang- und Betazerfallszeiten in der gleichen Größenordnung, sodass der s-Prozesspfad aufspaltet.
Hinzu kommt, dass unter stellaren Bedingungen die Reaktionsraten starken Änderungen unterworfen sein können. Bei hohen Temperaturen und Dichten befinden sich die Kerne in angeregten Zuständen, die wie auch der Grundzustand Neutronen einfangen oder radioaktiv zerfallen können, jedoch bei veränderten Raten. Dieser Sachverhalt kann einen Einfluss auf die Häufigkeitsverteilung haben.
Das umfangreiche Reaktionsnetzwerk des s-Prozesses kann schnell und mit guter Genauigkeit mit dem Programm NETZ berechnet werden. Dabei muss dem Programm ein Neutronenpuls - der zeitliche Verlauf von Neutronendichte und Temperatur - vorgegeben werden. Ziel dieser Arbeit war es, einen geeigneten solchen Puls zu finden, um die bisherigen Ergebnisse von NETZ zu optimieren. Außerdem wurde eine Aktualisierung der Reaktionsraten und solaren Häufigkeitsverteilung durchgeführt.
Die neuen Neutronenpulse für die schwache- und Hauptkomponente liefern eine Verbesserung in der Übereinstimmung von berechneter und solarer Häufigkeit. Dabei konnte für die Hauptkomponente sowohl ein Profil mit einem rechteckigen als auch mit einem exponentiellen Verlauf der Neutronendichte gefunden werden.
Darüber hinaus bietet NETZ die Möglichkeit, den Einfluss veränderter Reaktionsraten auf die Häufigkeitsverteilung abzuschätzen. Dazu steht inzwischen auch ein Online-Interface zur Verfügung. Dies ist besonders interessant, wenn es neue Messungen z.B. für Neutroneneinfangreaktionen gibt und man die Relevanz für den s-Prozess bestimmen möchte. So konnte in dieser Arbeit die Bedeutung der kürzlich neu gemessenen Raten für 63,65Cu(n,γ) und 69,71Ga(n,γ) beurteilt werden.
Der langsame Neutroneneinfang-Prozess (s-Prozess) ist für die Erzeugung von rund der Hälfte der Elemente zwischen Eisen und Blei verantwortlich. Sein Reaktionspfad enthält entlang des Stabilitätstals einige Verzweigungspunkte an instabilen Isotopen, deren Neutroneneinfangquerschnitte die Produktion schwererer Elemente und deren Isotopen-Verhältnisse beeinflussen. Kennt man ihre Zerfalls- und Neutroneneinfangraten unter den angenommenen stellaren Bedingungen ist es möglich, Rückschlüsse auf die physikalischen Umstände während des s-Prozesses zu ziehen. Einer dieser Verzweigungspunkte ist 63-Ni. Die experimentelle Bestimmung des differentiellen Wirkungsquerschnittes für den Neutroneneinfang an diesem Isotop ist das primäre Ergebnis der vorliegenden Arbeit. Der 63-Ni(n,gamma)- Wirkungsquerschnitt hat Einfluss auf die Häufigkeiten von 64-Ni, die Kupfer- und die Zink-Isotope. Die Sensitivität der Produktion dieser Nuklide in s-Prozess-Szenarien wurde ebenfalls im Rahmen dieser Arbeit anhand von Simulationen des entsprechenden Nukleosynthesenetzwerkes untersucht. Zudem wurde die Datenlage für s-Prozess-Modelle mit einer Flugzeit-Messung des 63-Cu(n,gamma)-Wirkungsquerschnitts erweitert.
Die beiden Experimente zur Querschnittsbestimmung von 63-Ni und 63-Cu fanden am Los Alamos Neutron Science Center in New Mexico, USA statt. Eine aus angereichertem 62-Ni hergestellte 63-Ni-Probe wurde im Rahmen einer Flugzeit-Messung gepulst mit Neutronen bestrahlt. Der Nachweis der prompten Gammastrahlung aufgrund von Neutroneneinfängen erfolgte mit dem 4π-BaF_2-Detektor DANCE. Die kalorimetrische Messung macht den Q-Wert der Reaktion für jedes Einfangereignis zugänglich und erlaubt die Unterscheidung von Ereignissen verschiedener Isotope. Es konnte gezeigt werden, dass diese Methode die Bestimmung von Querschnitten selbst mit Proben ermöglicht, die nur zu einem Bruchteil aus dem zu untersuchenden Isotop bestehen. Der 63-Ni(n,gamma)-Wirkungsquerschnitt wurde für den Energiebereich von 40 eV bis 500 keV mit einer maximalen Unsicherheit von 15% bestimmt. Es zeigte sich, dass theoretische Abschätzungen den Querschnitt bislang um etwa einen Faktor 2 unterschätzten. In demselben Energiebereich konnte der 63-Cu(n,gamma)-Wirkungsquerschnitt mit einer maximalen Unsicherheit von 8% vermessen werden.