Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (8)
- Bachelor Thesis (3)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Physics (2)
- Accelerator (1)
- Activation experiment (1)
- Aktivierungsmethode (1)
- Coulombspaltung (1)
- Cross section (1)
- Gammakalorimeter (1)
- Gammaspektroskopie (1)
- Inverse Kinematics (1)
- Kupfer-63 (1)
Institute
- Physik (31)
- Biowissenschaften (1)
The stellar nucleosynthesis of elements heavier than iron can primarily be attributed to neutron capture reactions in the s and r process. While the s process is considered to be well understood with regards to the stellar sites, phases and conditions where it occurs, nucleosynthesis networks still need accurate neutron capture cross sections
with low uncertainties as input parameters. Their quantitative outputs for the isotopic abundances produced in the s process, coupled with the observable solar abundances, can be used to indirectly infer the expected r process abundances. The two stable gallium isotopes, 69Ga and 71Ga, have been shown in sensitivity studies to have considerable impact on the weak s process in massive stars. The available experimental data, mostly derived from neutron activation measurements for quasi-stellar neutron spectra at kBT = 25 keV, show disagreements up to a factor of three.
Determining the differential neutron capture cross section can provide input data for the whole range of astrophysically relevant energies. To that end, a neutron time of flight experimental campaign at the n_TOF facility at CERN was performed for three months, using isotopically enriched samples of both isotopes. The data taken at the EAR1 experimental area covered a wide neutron energy range from thermal to several hundred keV. The respective differential and spectrum averaged neutron capture cross sections for 69Ga and 71Ga were determined in this thesis. They show good agreement with the evaluated cross sections for 71Ga, but reproduce the deviations from the evaluated data that other, more recent activation measurements showed for 69Ga.
Die Entstehung der Elemente im Universum wird auf eine Vielzahl von Prozessen zurückgeführt, die sowohl in Urknall - als auch in stellaren Szenarien angesiedelt werden. Die Kenntnis der dort ablaufenden Reaktionen und deren Raten ermöglicht es die zugrundeliegenden Modelle einzugrenzen und somit genauere Aussagen über die Plausibilität der Szenarien zu treffen. Ein Teil dieser Prozesse stützt sich auf Neutroneneinfänge an Atomkernen, wodurch die Massezahl des Ausgangskerns erhöht wird.
Die Aktivierungsmethode ermöglicht die Bestimmung der Wahrscheinlichkeit eines Neutroneneinfangs, sofern der Zielkern eine detektierbare Radioaktivität aufweist. Die experimentelle Untersuchung einer Reaktion mit einem kurzlebigen Produktkern ist eine besondere Herausforderung, da bei langen Aktivierungen zwar viele Einfänge stattfinden, die meisten Produktkerne jedoch schon während der Aktivierung zerfallen. Ein probates Mittel um genügend Zerfälle des Produktkerns beobachten zu können ist die zyklische Aktivierung, wobei die Probe in mehrfachen Wiederholungen kurz bestrahlt und ausgezählt wird.
Im Rahmen dieser Arbeit wurden zwei verschiedene Anwendungen der zyklischen Aktivierung behandelt.
Eine vom Paul Scherrer Institut Villigen bereitgestellte Probe von 10Be wurde am TRIGA Reaktor der Johannes Gutenberg - Universität Mainz mit Neutronen aktiviert. Über die Cadmiumdifferenzmethode konnte der thermische und der epithermische Anteil der Neutronen separiert werden und dadurch sowohl der thermische Wirkungsquerschnitt als auch das Resonanzintegral für die Reaktion 10Be(n,γ)11Be bestimmt werden.
Am Institut für Kernphysik der Goethe Universität Frankfurt wurde mit einem Van - de - Graaff - Beschleuniger über die 7Li(p,n)7Be Reaktion ein quasistellares Neutronenspektrum mit kBT ≈ 25 keV erzeugt. Für die zyklische Aktivierung von Proben wurde die Infrastruktur in Form einer automatisiert ablaufenden Vorrichtung zur Bestrahlung und Auszählung geplant und umgesetzt. In diesem Rahmen wurden die über das Spektrum gemittelten Neutroneneinfangsquerschnitte für verschiedene Reaktionen bestimmt. Für 19F(n,γ)20F konnte der Gesamteinfangsquerschnitt bestimmt werden. Für die Reaktion 45Sc(n,γ)46Sc wurde der partielle Wirkungsquerschnitt in den 142,5 keV Isomerzustand gemessen. Aus der 115In(n,γ)116In Reaktion konnten die partiellen Querschnitte in die Isomerzustände bei 289,7 keV, 127,3 keV sowie den Grundzustand bestimmt werden.
Außerdem wurde mit einer Hafniumprobe die partiellen Einfangsquerschnitte in den 1147,4 keV Isomerzustand von 178Hf und in den 375 keV Isomerzustand von 179Hf gemessen.
In order to understand the origin of the elements in the universe, one must understand the nuclear reactions by which atomic nuclei are transformed. There are many different astrophysical environments that fulfill the conditions of different nucleosynthesis processes. Even though great progress has been made in recent decades in understanding the origin of the elements in the universe, some questions remain unanswered. In order to understand the processes, it is necessary to measure cross sections of the involved reactions and constrain theoretical model predictions. A variety of methods have been developed to measure nuclear reaction cross sections relevant for nuclear astrophysics. In this thesis, two different experiments and their results, both using the well-established activation method, are presented.
A measurement of the proton capture cross section on the p-nuclide 96Ru was performed at the Institute of Structure and Nuclear Astrophysics ISNAP - Notre Dame, USA. The main goal of this experiment was to compare the results with those obtained by Mei et al. in a pioneering experiment using the method of inverse kinematics at the GSI Helmholtzzentrum für Schwerionenforschung GmbH - Darmstadt, Germany. Therefore, the activations were taken out at the same center of mass energies of 9 MeV, 10 MeV and 11 MeV. Another activation was taken out at an energy of 3.2 MeV to compare the result to a measurement of Bork et al. who also used the activation method. While the results at 3.2 MeV agree quite well with those of Bork et al., the results at higher energies show significantly smaller cross sections than those measured by Mei et al.. Experimental details, the data analysis and sources of uncertainties are discussed.
The second part of this thesis describes a neutron capture cross section experiment. At the Institut für Kernphysik - Goethe Universtität Frankfurt an experimental setup allows to produce quasi maxwell-distributed neutron fields to measure maxwell-averaged cross sections (MACS) relevant for s-process nucleosynthesis. The setup was upgraded by a fast electric linear guide to transport samples from the activation to the detection site. The cyclic activation of the sample allows to increase the signal-to-noise ratio and to measure neutron captures that lead to nuclei with
half-lives on the order of seconds. In a first campaign, MACS of the reactions 51V(n,γ), 107,109Ag(n,γ) and 103Rh(n,γ) were measured. The new components of the setup aswell as the data analysis framework are described and the results of the measurements are discussed.
Der Verzehr von radioaktiv belasteten Pilzfruchtkörpern stellt ein Gesundheitsrisiko für den Menschen dar und auch fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 sind Pilze aus Waldökosystemen zum Teil noch stark durch das ausgetretene radioaktive 137Cs belastet. Die Einschätzung der Belastung und somit des Gesundheitsrisikos ist aufgrund einer Vielzahl von Einflussfaktoren, wie z. B. der Pilzart, der Tiefe des Myzels, der Bodenkontamination und der Feuchtigkeit des Bodens, schwierig. Ziel dieser Arbeit war es die Variabilität, den Einfluss verschiedener Faktoren sowie die effektive Halbwertszeit der 137Cs-Aktivität in Pilzfruchtkörpern zu ermitteln. Des Weiteren wurde überprüft, ob die Bodenkontamination für eine Abschätzung der 137Cs-Aktivität von Pilzfruchtkörpern herangezogen werden kann. Für die Untersuchungen wurden über mehrere Jahre Proben von Maronenröhrlingen (Imleria badia) und Steinpilzen (Boletus edulis) aus vier Waldgebieten in Mittel- und Süddeutschland mit unterschiedlichem Aktivitätseintrag nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 analysiert. Die Gebiete waren Eichenzell, Wülfersreuth, Oberschönenfeld und der Nationalpark Bayerischer Wald. Als Ergänzung dienten zugesendete Proben derselben Pilzarten von Mitgliedern aus Pilzvereinen aus ganz Deutschland. Zusätzlich zu den Pilzproben wurden Bodenproben gemessen, um zum einen die aktuelle Bodenkontamination zu bestimmen und zum anderen zu überprüfen, ob der Großteil des 137Cs weiterhin im Bereich des Pilzmyzels zu finden ist.
Für die Untersuchung der örtlichen Variabilität der 137Cs-Aktivität wurden Maronenröhrlinge (Imleria badia) aus dem Waldgebiet Eichenzell in den Jahren 2017 bis 2019 analysiert. Innerhalb eines Sammeltages variierten die Messwerte verschiedener Proben innerhalb des Waldgebietes teilweise um den Faktor sechs. Dabei ist die Variabilität innerhalb eines Teilgebietes größer als zwischen beiden Teilgebieten des Waldgebietes Eichenzell. Für ein repräsentatives Ergebnis eines Gebietes ist es aufgrund der Variabilität erforderlich, eine ausreichende Menge an Fruchtkörpern zu analysieren.
Um die effektive Halbwertszeit der 137Cs-Aktivität in Maronenröhrlingen (Imleria badia) zu ermitteln, wurden Proben aus drei Waldgebieten über fünf bis neun Jahre analysiert. Die Wahl der drei Waldgebiete erfolgte anhand des 137Cs-Aktivitätseintrags nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986. Die Bodenkontaminationswerte variieren von 3.000 Bq/m² in Eichenzell über 12.500 Bq/m² in Wülfersreuth bis 35.000 Bq/m² in Oberschönenfeld. Die effektiven Halbwerts-zeiten liegen in einem engen Bereich von 5,2 bis 5,8 Jahre mit einem Mittelwert von 5,4 ± 0,3 Jahren. Damit reduziert sich die radioaktive Belastung der Pilzfruchtkörper in etwa fünfmal schneller als durch die rein physikalische Halbwertszeit des 137Cs von 30,08 Jahren. Durch die Hinzunahme von bereits im Jahr 1990 veröffentlichten Daten ergab sich eine längere effektive Halbwertszeit von 7,7 ± 0,6 Jahren.
Für die Untersuchung der zwei Einflussfaktoren Exposition des Sammelgebiets (Hangausrichtung nach Ost oder West) und Höhenlage wurden sowohl Maronenröhrlinge (Imleria badia) als auch Steinpilze (Boletus edulis) hinsichtlich der 137Cs-Aktivität gemessen, um die Auswirkung auf Pilzarten mit unterschiedlichem Akkumulationsvermögen zu analysieren. Als Untersuchungsgebiet diente der Nationalpark Bayerischer Wald, da dieser ein großes Gebiet umfasst und verschiedene Ausprägungen der beiden Faktoren abbildet. Zudem wurde das Gebiet in Folge der Reaktorkatastrophe von Tschernobyl stark kontaminiert und der Park ist ein beliebtes Pilzsammelgebiet. Anhand der 137Cs-Aktivität von Bodenproben konnte das Gebiet in zwei Regionen (Cluster) eingeteilt werden: eine Region mit hohem und eine mit niedrigem Aktivitätseintrag. Im Vergleich wiesen Maronenröhrlinge (Imleria badia) durchschnittlich eine um den Faktor fünf höhere 137Cs-Aktivität als Steinpilze (Boletus edulis) auf. Der Faktor Höhenlage zeigte im Gegensatz zur Exposition einen Einfluss auf die Kontamination der Pilzfruchtkörper. In Bezug auf die Höhenlage war der Einfluss nur im Falle eines hohen Aktivitätseintrags signifikant, wobei die Pilzproben aus der niedrigsten Höhenlage am höchsten belastet waren.
Zur Ermittlung der vertikalen Verteilung des 137Cs im Boden wurden in den Waldgebieten Eichenzell und Nationalpark Bayerischer Wald Proben bis zu einer Tiefe von 24 cm entnommen und anschließend in 2 cm Schichten analysiert. Alle Verteilungen konnten mit einem Gauß-Fit oder einem multiplen Gauß-Fit mit 2 bis 3 Maxima abgebildet werden. Das erste Maximum lag in allen Fällen in den organischen Horizonten oder im Übergangsbereich zum Ah-Horizont. Folglich befindet sich der Großteil des 137Cs fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl immer noch im Bereich des Pilzmyzels und kann somit von den Pilzen aufgenommen und in den Fruchtkörpern angereichert werden.
Der Vergleich der 137Cs-Aktivität der Pilz- und Bodenproben aus dem Nationalpark Bayerischer Wald ergab sowohl für Maronenröhrlinge (Imleria badia) als auch für Steinpilze (Boletus edulis) eine positive Korrelation. Nach Unterteilung der Proben anhand der Höhenlage zeigte sich eine noch stärkere Korrelation. Dies zeigt, dass neben der Bodenkontamination auch die Höhenlage einen Einfluss auf die 137Cs-Aktivität der Fruchtkörper hat.
...
This thesis presents the first measurement of the proton capture reaction on the isotope 124Xe performed in inverse kinematics. The experiment was carried out in June 2016 at the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany.
124Xe is one of about 35 p-nuclei that cannot be produced via neutron-induced nucleo- synthesis as the vast majority of heavy elements. Its production and destruction provide important information about the nucleosynthesis of the p-nuclei. Measuring the 124Xe(p,g)125Cs reaction also gives strong constraints for its reverse 125Cs(g,p)124Xe reaction.
Fully stripped 124Xe ions repeatedly passed a H2 gas jet target at five different energies between 5.5 MeV/u and 8 MeV/u. An electron cooler compensated for the energy loss in the target and reduced the beam momentum spread. The reaction product 125Cs55+ has a smaller magnetic rigidity than 124Xe54+. Therefore 125Cs55+ was deflected towards smaller radii in the first dipole after the target area and thereby separated from 124Xe54+. It was detected with a position-sensitive Double-Sided Silicon Strip Detector (DSSSD). The novelty of this experiment was the installation of the DSSSD inside the ultra-high vacuum of the storage ring using a newly designed manipulator.
Three High-Purity Germanium X-ray detectors were used to measure the X-rays following the Radiative Electron Capture (REC) events into 124Xe53+. The REC cross sections are well-known and were used to determine the luminosity.
The 124Xe(p,g)125Cs cross sections at ion beam energies between 5.5 MeV/u and 8 MeV/u were determined relatively to the K-REC cross sections and finally compared to the theoretically predicted cross sections. While theoretical predictions of the TENDL database are lower than the measured ones by a factor of up to seven, the NON-SMOKER data are higher by a factor of up to two, except of the cross section at 7 MeV/u, where NON-SMOKER data are slightly lower than the experimental value.
For the first time, a proton capture cross section could be measured in inverse kinematics close to the astrophysically relevant Gamow window. This allows the direct determination of the (p,g) cross section of isotopes with half-lives down to several minutes, which is not possible with any other technique.
Most of the elements in the universe are produced via charged-particle fusion reactions during the primordial nucleosynthesis and different stellar burning stages, as well as via neutron-capture reactions. Around 35 heavy, proton-rich isotopes are bypassed by those reaction paths, the p nuclei. A series of photo-disintegration reactions occurring in supernovae, called the γ process, was suggested as a mechanisms to produce the p nuclei. Numerical simulations of the γ process have been unable to reproduce the observed abundances of the light p isotopes. Recent models showed that a series of proton capture reactions could provide the observed abundances. Hence, the cross sections of the crucial capture reactions have to be measured in order to test those assumptions.
Radiative proton captures in addition to the γ-process could reproduce the observed abundance pattern. This thesis presents preparations of a proton capture measurement on the radioactive 91Nb in standard kinematics with a calorimetric 4π setup. The 91Nb(p,γ)92Mo reaction might be the key to explain the production of one of the most abundant p-nuclei, 92Mo. So far, no experimental data for this reaction is available.
We produced a sample of 91Nb, with a half-life of 680 yr, at the Physikalisch Technische Bundesanstalt in Braunschweig, Germany, by irradiating 92Mo with protons in the energy range of 12 – 20MeV. 91Nb was produced via the reaction 92Mo(p,2p)91Nb and via 92Mo(p,pn)91Mo, where 91Mo decays to 91Nb with a half-life of 15.5min. To predict the amount of produced 91Nb the cross section of 92Mo(p, 2p) was measured. It was found to be higher than the value given by theoretical calculations with TALYS. Finally, 91Nb was chemically separated from the molybdenum carried at Paul-Scherrer- Institut, Villigen, Switzerland.
In-beam total absorption cross-section measurement of the reaction 91Nb(p,γ)92Mo with 2 MeV protons at FRANZ is planed with the produced 91Nb. A 4π BaF2 detector consisting of 41 crystals will be used. During this experiment we will measure the sum energy and the multiplicity of each event. The freshly produced 91Nb constitutes only a minor component of the sample material. The sum energy and multiplicity are crucial to distinguish the desired 91Nb(p,γ) from all the other more dominant reactions. The expected multiplicity and the efficiency of the setup were carefully simulated with DICEBOX and GEANT4. It was possible to show that background reactions can be effectively suppressed. The most important background contributions could be identified and result from 92Mo(p,γ), 19F(p,γ), and 19F(p,α).
Für das bessere Verständnis der Nukleosynthese der schweren Elemente im s-Prozess wurde im Rahmen dieser Arbeit die Messung zur Bestimmung der Neutroneneinfangsreaktion von 83Kr durchgeführt. Als Messinstrument wurde DANCE am LANL verwendet, ein 4pi-Kalorimeter zur Detektion der entstehenden g-Kaskaden bei (n,g)-Reaktionen. Darüber hinaus wurden außerdem noch Proben mit 85Kr und 86Kr vermessen.
Die Herausforderung an diesem Experiment bestand vor allem in der Probenherstellung. Das Edelgas Kr erforderte eine Neukonstruktion der normalerweise bei DANCE verwendeten Probenhalterung. Das Hauptaugenmerk lag auf der Maximierung der Kr-Exposition durch den Neutronenstrahl. Im Gegenzug wurde versucht das umgebende Material nach Möglichkeit keinen Neutronen auszusetzen. Für die Isotope 83,86Kr wurden Hochdruckgaskugeln verwendet, die an der Goethe-Universität Frankfurt gefüllt und in eine der neuen Probenhalterungen eingesetzt wurden. Zur Beachtung des bei der Messung entstehenden Untergrundes wurde eine Messung mit baugleicher Probenhalterung und leerer Gaskugel durchgeführt. Da bereits kleine Mengen 85Kr eine hohe Radioaktivität aufweisen, wurde eine in einen Stahlzylinder eingeschweißte, existierende Quelle verwendet.
Bei der Analyse zu 86Kr wurde schnell eine zu starke Verunreinigung der Kr-Probe mit Xe offensichtlich, einen signifikanten Anteil des Spektrums ausmachte. Aus diesem Grund kam es vor allem zu Problemen den korrekten Untergrund von den 86Kr Messdaten zu subtrahieren. Die weitere Bestimmung inklusive Streukorrekturen, Normierung anhand des Flussmonitors und DICEBOX/GEANT3 Effizienzbestimmung lieferte zwar einen energieabhängigen Wirkungsquerschnitt, dieser zeigte allerdings große Abweichungen von den evaluierten ENDF/B-VII.1 Daten, was besonders ersichtlich in der deutlichsten 86Kr Resonanz bei 5515 eV zu erkennen war. Aus diesem Grund konnte aus den Messdaten kein MACS extrahiert werden.
Bei einer Untersuchung der Aktivität der 85Kr-Probe mit Hilfe der einzelnen BaF2-Detektoren in der DANCE Kugel zeigte sich zunächst eine um fast einen Faktor vier geringere Aktivität als vom Hersteller angegeben. Auch bei der weiteren Analyse traten massive Untergrundprobleme auf. Die Form des Stahlzylinders, in dem das Kr-Gasgemisch eingeschweißt war, konnte aufgrund seiner Form nur schwer im Strahlrohr untergebracht werden. Beim Experiment selbst zeigte sich dann, dass Teile der Halterung vom Neutronenstrahl getroffen wurden, was einen Untergrund mit sehr hohem Q-Wert erzeugte, der nicht durch ein Esum Fenster entfernt werden konnte. Durch eine Beschädigung der Halterung mit der Probe kam es darüber hinaus zu Abweichungen mit der verwendeten Leerhalterung. All das führte trotz einer langen Messzeit von fast 18 d dazu, dass nur ein sehr schwaches Signal von der eigentlichen Kr-Probe zu erkennen war. Es wurde eine mögliche 85Kr Resonanz bei 675 eV gefunden, allerdings ist die endgültige Zuordnung aufgrund der nicht eindeutigen Untergrundsituation äußerst schwierig. Im Vorfeld des Kr-Experimentes wurde eine Messung von RbCl an DANCE durchgeführt, da ursprünglich zu erwarten war, dass bereits ein Teil des 85Kr zu 85Rb zerfallen war. Durch diese Messung sollte dieser Anteil leicht von der späteren Messung zu subtrahieren sein. Allerdings trat ein unerwartetes Problem während der Datenaufnahme auf. Die Verbindung der DAQ Boards wurde getrennt, wodurch ca. 3/4 der Detektoren nicht mehr zeitsynchron liefen. Im Zuge dieser Arbeit wurde eine Rekonstruktion dieser Daten angestrebt. Durch Modifikationen am FARE Code, der zur Auswertung verwendet wurde, konnte Flugzeitspektren für jeden Beschleunigerpuls erzeugt werden. Es zeigte sich zunächst ein offensichtlicher Trend einer Verschiebung der getrennten Boards zu späteren Zeiten. Durch mehrere Fits an die Abweichungsverteilung und anschließende Korrektur konnte zunächst ein Spektrum wiederhergestellt werden, das vergleichbar mit den unbeschädigten Daten war. Bei einer detaillierten Analyse dieser neu gewonnen Daten zeigte sich jedoch eine Nichtlinearität in der Zeitverschiebung. Dies resultierte letztlich in einer Korrektur des Spektrums, allerdings nicht in einem Koinzidenzfenster von 10 ns, das für eine Wirkungsquerschnittsanalyse notwendig ist. Es wurde geschlussfolgert, dass durch die geringe Statistik in den einzelnen Flugzeitspektren solch eine Genauigkeit nicht zu erreichen ist.
Die Messung des Neutroneneinfangsquerschnitts von 83Kr konnte im Zuge dieser Arbeit erfolgreich durchgeführt werden. Es wurden zwei Messungen mit verschiedenen Strömen kombiniert. Eine Messung mit 40 µA wurde durchgeführt, um Pile-Up in der größten Resonanz bei 28 eV zu reduzieren. Die zweite Messung diente dann dem Sammeln von ausreichend Statistik in den nicht resonanten Bereichen. Die eingesetzte Leerkugel erlaubte eine saubere Subtraktion des Untergrundes von Probenhalterung, Gaskugel und Umgebung. Für die Skalierung der Messergebnisse wurde eine weitere Messung mit einer 5000 Å dicken Goldfolie durchgeführt. Zur Bestimmung der Detektoreffizienz konnten zunächst die durch den Neutroneneinfang entstandenen Abregungskaskaden der 84Kr Kerne mit DICEBOX modelliert werden. Diese Kaskaden wurden dann anschließend in GEANT3 Simulationen verwendet, um die Effizienz bestimmen zu können. Mit diesen Methoden erhielt man die Maxwell-gemittelten Wirkungsquerschnitte von kT = 5 keV - 100 keV. Bei der für den s-Prozess wichtigen Temperatur von kT = 30 keV wurde der Querschnitt bestimmt zu: MACS (30 keV) = (256,6 +- 14,2 (stat) +- 18,1(sys)) mb.
Dieser Wert ist in guter Übereinstimmung mit dem in der KADoNIS v0.3 Datenbank angegebenen Wert von MACS;KADoNIS (30 keV) = (243 +- 15) mb. Mit den so gewonnenen Wirkungsquerschnitten wurden außerdem die Reaktionsraten berechnet. Bei den anschließenden Netzwerkrechnungen mit dem Programm NETZ wurden die Auswirkungen der in dieser Arbeit gewonnenen Wirkungsquerschnitte im Vergleich zu den KADoNIS v0.3 Werten betrachtet. Dabei zeigte sich eine leicht erhöhte Produktion der stabilen Isotope 84Kr, 86Kr, 85Rb und 87Rb, sowie eine leichte Unterproduktion der stabilen Isotope 86-88Sr in der Hauptkomponente des s-Prozess. Ein ähnliches Bild zeigte sich in der He-Brennphase der schwachen Komponente. Der in dieser Arbeit gemessene Wirkungsquerschnitt bei hohen Temperaturen ist geringer als der in KADoNIS v0.3 angegebene, weswegen es bei der Simulation mit NETZ zu einer stark erhöhten Produktion von 83Kr in der C-Brennphase kommt.
Most of the elements heavier than iron are produced through neutron capture reactions in the s- and r -process. The overall path of the s-process is well understood and can be accurately reproduced in network simulations. However, there are still some neutron capture reactions of unstable nuclei involved in the s-process, which were not yet measured due to the difficulty in producing suitable targets. In those cases, theoretical models have to be used to estimate the missing cross section.
One example is the branching point nucleus 86Rb, whose neutron capture cross section cannot be directly measured due to its short half life of 18.86 days. It is, however, also possible to measure its inverse, the 87Rb(g,n) reaction in order to obtain the 86Rb(n,g) cross section through the principle of detailed balance.
Natural rubidium was irradiated with a quasi-monoenergetic photon beam in the energy range between 10.7 MeV and 16 MeV in order to investigate the photo-dissociation cross section of 87Rb. The results are presented in this thesis. Not only the total cross section of 87Rb(g,n), but also the partial production cross section of the ground and isomeric state of 84Rb through the 85Rb(g,n) reaction was measured.
Not all isotopes can be reached via neutron capture reaction, and are therefore bypassed by the s- and r -process. These 35 proton-rich isotopes are called p-nuclei and are produced in the γ-process by a chain of photo-disintegration reactions in Type II supernovae. Network calculations of Type II supernova show that the γ-process can explain the production of most p-nuclei, but some – especially 92/94Mo and 96/98Ru – are heavily underproduced. While this could be the result of deficiencies in the corresponding stellar models or insufficient knowledge of the involved reaction rates, it is also possible that the missing p-nuclei are synthesized in other production scenarios.
An alternative scenario for 92Mo is the production via a chain of proton capture reactions in Type Ia supernovae. One important reaction in this chain is the 90Zr(p,g) reaction. The reaction cross section was already measured several times, but the results were inconclusive. In the present work, the 90 Zr(p,g) reaction was measured using the in-beam gamma-ray spectroscopy technique and the discrepancies between the data sets could be largely explained.
Im Weltall existieren hunderte sehr helle Objekte, die eine hohe konstante Leuchtkraft im Wellenlängenbereich von Gammastrahlung besitzen. Die konstante Leuchtkraft mancher dieser Objekte wird in regelmäßigen Abständen von starken Ausbrüchen, den sogenannten X-Ray-Bursts, unterbrochen. Hauptenergiequelle dieser X-RayBursts ist der „rapid-proton-capture“-Prozess (rp-Prozess). Dieser zeichnet sich durch eine Abfolge von (p,γ)-Reaktionen und β+-Zerfällen aus, die die charakteristischen Lichtkurven produzieren. Für viele am Prozess beteiligte Reaktionen ist der Q-Wert sehr klein, wodurch die Rate der einzelnen Reaktionen von den resonanten Einfängen in die ungebundenen Zustände dominiert wird. Die Unsicherheiten in der Beschreibung der Lichtkurve sind derzeit aufgrund fehlender kernphysikalischer Informationen von vielen am Prozess beteiligten Isotopen sehr groß. Sensitivitätsstudien zeigen, dass dabei die Unsicherheiten der 23Al(p,γ)24Si-Reaktion eine der größten Auswirkungen auf die Lichtkurve hat. Diese werden durch ungenaue und widersprüchliche Informationen zu den ungebundenen Zuständen im kurzlebigen 24Si hervorgerufen.
Um Informationen über die Kernstruktur von 24Si zu erhalten, wurde am National Superconducting Cyclotron Laboratory (NSCL), Michigan, USA, die 23Al(d,n)24Si Transferreaktion untersucht. Der in dieser Form erstmals umgesetzte Versuchsaufbau bestand aus einem Gammadetektor zur Messung der Übergangsenergien des produzierten 24Si, einem Neutronendetektor zur Messung der Winkelverteilung der emittierten Neutronen und einem Massensprektrometer zur Identifikation des produzierten Isotops. Mit diesem Aufbau, der eine Detektion der kompletten Kinematik der (d,nγ)-Reaktion ermöglichte, konnten folgende Erkentnisse gewonnen werden:
Aus der Energie der nachgewiesenen Gammas konnten die Übergänge zwischen den Kernniveaus von 24Si bestimmt und daraus die Energien der einzelnen Zustände ermittelt werden. Dabei konnte neben dem bereits bekannten gebundenen 2+-Zustand (in dieser Arbeit gemessen bei 1874 ± 2,9keV) und dem ungebundenen 2+-Zustand (3448,8 ± 4,6keV), erstmals ein weiterer ungebundener (4+,0+)-Zustand bei 3470,6 ± 6,2 keV beobachtet werden. Zusätzlich konnte die Diskrepanz, die bezüglich der Energie des ungebundenen 2+-Zustands aufgrund früherer Messungen bestand, beseitigt und die Energieunsicherheit reduziert werden.
Aus der Anzahl der nachgewiesenen Gammas konnten ebenfalls die (d,n)-Wirkungsquerschnitte in die einzelnen Zustände von 24Si bestimmt werden. Unter Verwendung der Ergebnisse von DWBA-Rechnungen konnte mithilfe dieser die spektroskopischen Faktoren berechnet werden. Für die angeregten Zustände musste dabei zwischen verschiedenen Drehimpulsüberträgen unterschieden werden. Mittels der Winkelverteilung der nachgewiesenen Neutronen konnte gezeigt werden, dass die Gewichtung anhand der theoretischen spektroskopischen Faktoren zur Berechnung der Anteile des jeweiligen Drehimpulsübertrags am gesamten Wirkungsquerschnitt für den entsprechenden Zustand gute Ergebnisse liefert. Für eine quantitative Bestimmung der spektroskopischen Faktoren der Zustände anhand der Neutronenwinkelverteilungen in 24Si war allerdings die Statistik zu gering. Für den Fall der deutlich häufiger beobachteten 22Mg(d,n)23Al-Reaktion konnte hingegen ein spektroskopischer Faktor für den 23Al-Grundzustand von 0,29 ± 0,04 bestimmt werden. Abschließend wurden die Auswirkungen der gewonnenen Erkenntnisse zur Kernstruktur von 24Si auf die Rate der 23Al(p,γ)-Reaktion untersucht. Dabei konnte aufgrund der besseren Energiebestimmung zum einen die Diskrepanz zwischen den Raten die auf Grundlage der beiden früheren Untersuchungen berechnet wurden und bis zu einem Faktor von 20 voneinander abweichen, beseitigt werden. Zum anderen konnte aufgrund der kleineren Unsicherheit in der Energiebestimmung der Fehlerbereich der Rate verkleinert werden. Die Untersuchungen zeigen, dass die Unsicherheit in der neuen Rate von der Ungenauigkeit der Massenbestimmung der beiden beteiligten Isotope und damit dem Q-Wert der Reaktion dominiert wird. Durch eine bessere Bestimmung des Q-Werts könnte die Unsicherheit in der Rate aufgrund der neuen experimentellen Ergebnisse auf ein Zehntel gesenkt werden.
Das Hauptziel der vorliegenden Arbeit war es, die energieabhängigen Wirkungsquerschnitte von (γ,n)-Reaktionen für 169Tm, 170Yb, 176Yb und 130Te mittels der Photoaktivierungsmethode zu bestimmen.
Dazu wurden zunächst die Effizienzen der verwendeten Detektoren mithilfe von Simulationen korrigiert, da die verwendeten Targets eine ausgedehnte Geometrie aufweisen im Gegensatz zu den punktförmigen Eichquellen. Es hat sich herausgestellt, dass mit den Simulationen die Effizienzen der MCA-Detektoren energieabhängig korrigiert werden konnten, da die Simulationen die Form der gemessenen Effizienzen gut reproduzieren konnten. Bei den Effizienzen der LEPS-Detektoren hingegen konnte keine energieabhäangige Korrektur vorgenommen werden, da die LEPS-Detektoren aufgrund des geringen Abstandes zu den Detektoren hohe Summeneffekte zeigten. Im Rahmen dieser Arbeit konnten diese Summeneffekte jedoch nicht korrigiert bzw. berücksichtigt werden.