Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Master's Thesis (8)
- Bachelor Thesis (3)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Physics (2)
- Accelerator (1)
- Activation experiment (1)
- Aktivierungsmethode (1)
- Coulombspaltung (1)
- Cross section (1)
- Gammakalorimeter (1)
- Gammaspektroskopie (1)
- Inverse Kinematics (1)
- Kupfer-63 (1)
Institute
- Physik (31)
- Biowissenschaften (1)
Das Hauptziel der vorliegenden Arbeit war es, die energieabhängigen Wirkungsquerschnitte von (γ,n)-Reaktionen für 169Tm, 170Yb, 176Yb und 130Te mittels der Photoaktivierungsmethode zu bestimmen.
Dazu wurden zunächst die Effizienzen der verwendeten Detektoren mithilfe von Simulationen korrigiert, da die verwendeten Targets eine ausgedehnte Geometrie aufweisen im Gegensatz zu den punktförmigen Eichquellen. Es hat sich herausgestellt, dass mit den Simulationen die Effizienzen der MCA-Detektoren energieabhängig korrigiert werden konnten, da die Simulationen die Form der gemessenen Effizienzen gut reproduzieren konnten. Bei den Effizienzen der LEPS-Detektoren hingegen konnte keine energieabhäangige Korrektur vorgenommen werden, da die LEPS-Detektoren aufgrund des geringen Abstandes zu den Detektoren hohe Summeneffekte zeigten. Im Rahmen dieser Arbeit konnten diese Summeneffekte jedoch nicht korrigiert bzw. berücksichtigt werden.
In dieser Arbeit wurde der langsame Neutroneneinfang (s-Prozess) mit dem Nukleosynthese-Programm NETZ simuliert. Ziel solcher Programme ist es, die solare Häufigkeitsverteilung zu reproduzieren.
Der s-Prozess dient der Synthese von Elementen schwerer als Eisen und ereignet sich in astrophysikalischen Szenarien mit relativ geringen Neutronendichten. Dadurch sind die Neutroneneinfangzeiten meist größer als die Betazerfallszeiten und der Prozesspfad folgt dem Stabilitätstal in der Nuklidkarte. Aus diesem Grund sind die Reaktionsraten gut messbar und es steht ein umfangreiches Daten-Netzwerk zur Verfügung, welches in die Simulationen einfließen kann.
Man unterschiedet zwischen der schwachen- und der Hauptkomponente des s-Prozesses. Die schwache Komponente findet in massereichen Sternen (M > 8M⊙) beim Helium-Kernbrennen und Kohlenstoff-Schalenbrennen statt. Bei Temperaturen über 2.5 × 108 K wird die Reaktion 22Ne(α ,n)25Mg aktiviert, welche Neutronen liefert, die von der Eisensaat eingefangen werden. Bei einer mittleren Neutronendichte von 106/cm3 reicht die Neutronenbestrahlung jedoch nicht aus, um den Synthesefluss über die abgeschlossene Neutronenschale bei N = 50 hinweg zu treiben. Folglich werden nur Isotope zwischen Eisen und Yttrium (56 < A < 90) aufgebaut.
Schwerere Isotope (90 ≤ A ≤ 208) werden dagegen in der Hauptkomponente synthetisiert. Diese findet in thermisch pulsierenden AGB-Sternen statt, in denen während des Helium-Schalenbrennens Neutronen hauptsächlich über die Reaktion 13C(α ,n)16O zur Verfügung gestellt werden.
Am Ende der jeweiligen Brennphasen gibt es einen Anstieg von Temperatur und Neutronendichte, welche jedoch nicht die globale Häufigkeitsverteilung, wohl aber Verzweigungspunkte beeinflussen können. An diesen Punkten liegen die Neutroneneinfang- und Betazerfallszeiten in der gleichen Größenordnung, sodass der s-Prozesspfad aufspaltet.
Hinzu kommt, dass unter stellaren Bedingungen die Reaktionsraten starken Änderungen unterworfen sein können. Bei hohen Temperaturen und Dichten befinden sich die Kerne in angeregten Zuständen, die wie auch der Grundzustand Neutronen einfangen oder radioaktiv zerfallen können, jedoch bei veränderten Raten. Dieser Sachverhalt kann einen Einfluss auf die Häufigkeitsverteilung haben.
Das umfangreiche Reaktionsnetzwerk des s-Prozesses kann schnell und mit guter Genauigkeit mit dem Programm NETZ berechnet werden. Dabei muss dem Programm ein Neutronenpuls - der zeitliche Verlauf von Neutronendichte und Temperatur - vorgegeben werden. Ziel dieser Arbeit war es, einen geeigneten solchen Puls zu finden, um die bisherigen Ergebnisse von NETZ zu optimieren. Außerdem wurde eine Aktualisierung der Reaktionsraten und solaren Häufigkeitsverteilung durchgeführt.
Die neuen Neutronenpulse für die schwache- und Hauptkomponente liefern eine Verbesserung in der Übereinstimmung von berechneter und solarer Häufigkeit. Dabei konnte für die Hauptkomponente sowohl ein Profil mit einem rechteckigen als auch mit einem exponentiellen Verlauf der Neutronendichte gefunden werden.
Darüber hinaus bietet NETZ die Möglichkeit, den Einfluss veränderter Reaktionsraten auf die Häufigkeitsverteilung abzuschätzen. Dazu steht inzwischen auch ein Online-Interface zur Verfügung. Dies ist besonders interessant, wenn es neue Messungen z.B. für Neutroneneinfangreaktionen gibt und man die Relevanz für den s-Prozess bestimmen möchte. So konnte in dieser Arbeit die Bedeutung der kürzlich neu gemessenen Raten für 63,65Cu(n,γ) und 69,71Ga(n,γ) beurteilt werden.
Der Verzehr von radioaktiv belasteten Pilzfruchtkörpern stellt ein Gesundheitsrisiko für den Menschen dar und auch fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 sind Pilze aus Waldökosystemen zum Teil noch stark durch das ausgetretene radioaktive 137Cs belastet. Die Einschätzung der Belastung und somit des Gesundheitsrisikos ist aufgrund einer Vielzahl von Einflussfaktoren, wie z. B. der Pilzart, der Tiefe des Myzels, der Bodenkontamination und der Feuchtigkeit des Bodens, schwierig. Ziel dieser Arbeit war es die Variabilität, den Einfluss verschiedener Faktoren sowie die effektive Halbwertszeit der 137Cs-Aktivität in Pilzfruchtkörpern zu ermitteln. Des Weiteren wurde überprüft, ob die Bodenkontamination für eine Abschätzung der 137Cs-Aktivität von Pilzfruchtkörpern herangezogen werden kann. Für die Untersuchungen wurden über mehrere Jahre Proben von Maronenröhrlingen (Imleria badia) und Steinpilzen (Boletus edulis) aus vier Waldgebieten in Mittel- und Süddeutschland mit unterschiedlichem Aktivitätseintrag nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986 analysiert. Die Gebiete waren Eichenzell, Wülfersreuth, Oberschönenfeld und der Nationalpark Bayerischer Wald. Als Ergänzung dienten zugesendete Proben derselben Pilzarten von Mitgliedern aus Pilzvereinen aus ganz Deutschland. Zusätzlich zu den Pilzproben wurden Bodenproben gemessen, um zum einen die aktuelle Bodenkontamination zu bestimmen und zum anderen zu überprüfen, ob der Großteil des 137Cs weiterhin im Bereich des Pilzmyzels zu finden ist.
Für die Untersuchung der örtlichen Variabilität der 137Cs-Aktivität wurden Maronenröhrlinge (Imleria badia) aus dem Waldgebiet Eichenzell in den Jahren 2017 bis 2019 analysiert. Innerhalb eines Sammeltages variierten die Messwerte verschiedener Proben innerhalb des Waldgebietes teilweise um den Faktor sechs. Dabei ist die Variabilität innerhalb eines Teilgebietes größer als zwischen beiden Teilgebieten des Waldgebietes Eichenzell. Für ein repräsentatives Ergebnis eines Gebietes ist es aufgrund der Variabilität erforderlich, eine ausreichende Menge an Fruchtkörpern zu analysieren.
Um die effektive Halbwertszeit der 137Cs-Aktivität in Maronenröhrlingen (Imleria badia) zu ermitteln, wurden Proben aus drei Waldgebieten über fünf bis neun Jahre analysiert. Die Wahl der drei Waldgebiete erfolgte anhand des 137Cs-Aktivitätseintrags nach der Reaktorkatastrophe von Tschernobyl im Jahr 1986. Die Bodenkontaminationswerte variieren von 3.000 Bq/m² in Eichenzell über 12.500 Bq/m² in Wülfersreuth bis 35.000 Bq/m² in Oberschönenfeld. Die effektiven Halbwerts-zeiten liegen in einem engen Bereich von 5,2 bis 5,8 Jahre mit einem Mittelwert von 5,4 ± 0,3 Jahren. Damit reduziert sich die radioaktive Belastung der Pilzfruchtkörper in etwa fünfmal schneller als durch die rein physikalische Halbwertszeit des 137Cs von 30,08 Jahren. Durch die Hinzunahme von bereits im Jahr 1990 veröffentlichten Daten ergab sich eine längere effektive Halbwertszeit von 7,7 ± 0,6 Jahren.
Für die Untersuchung der zwei Einflussfaktoren Exposition des Sammelgebiets (Hangausrichtung nach Ost oder West) und Höhenlage wurden sowohl Maronenröhrlinge (Imleria badia) als auch Steinpilze (Boletus edulis) hinsichtlich der 137Cs-Aktivität gemessen, um die Auswirkung auf Pilzarten mit unterschiedlichem Akkumulationsvermögen zu analysieren. Als Untersuchungsgebiet diente der Nationalpark Bayerischer Wald, da dieser ein großes Gebiet umfasst und verschiedene Ausprägungen der beiden Faktoren abbildet. Zudem wurde das Gebiet in Folge der Reaktorkatastrophe von Tschernobyl stark kontaminiert und der Park ist ein beliebtes Pilzsammelgebiet. Anhand der 137Cs-Aktivität von Bodenproben konnte das Gebiet in zwei Regionen (Cluster) eingeteilt werden: eine Region mit hohem und eine mit niedrigem Aktivitätseintrag. Im Vergleich wiesen Maronenröhrlinge (Imleria badia) durchschnittlich eine um den Faktor fünf höhere 137Cs-Aktivität als Steinpilze (Boletus edulis) auf. Der Faktor Höhenlage zeigte im Gegensatz zur Exposition einen Einfluss auf die Kontamination der Pilzfruchtkörper. In Bezug auf die Höhenlage war der Einfluss nur im Falle eines hohen Aktivitätseintrags signifikant, wobei die Pilzproben aus der niedrigsten Höhenlage am höchsten belastet waren.
Zur Ermittlung der vertikalen Verteilung des 137Cs im Boden wurden in den Waldgebieten Eichenzell und Nationalpark Bayerischer Wald Proben bis zu einer Tiefe von 24 cm entnommen und anschließend in 2 cm Schichten analysiert. Alle Verteilungen konnten mit einem Gauß-Fit oder einem multiplen Gauß-Fit mit 2 bis 3 Maxima abgebildet werden. Das erste Maximum lag in allen Fällen in den organischen Horizonten oder im Übergangsbereich zum Ah-Horizont. Folglich befindet sich der Großteil des 137Cs fast 35 Jahre nach der Reaktorkatastrophe von Tschernobyl immer noch im Bereich des Pilzmyzels und kann somit von den Pilzen aufgenommen und in den Fruchtkörpern angereichert werden.
Der Vergleich der 137Cs-Aktivität der Pilz- und Bodenproben aus dem Nationalpark Bayerischer Wald ergab sowohl für Maronenröhrlinge (Imleria badia) als auch für Steinpilze (Boletus edulis) eine positive Korrelation. Nach Unterteilung der Proben anhand der Höhenlage zeigte sich eine noch stärkere Korrelation. Dies zeigt, dass neben der Bodenkontamination auch die Höhenlage einen Einfluss auf die 137Cs-Aktivität der Fruchtkörper hat.
...
This work derives the value of the neutron capture cross section of 60Fe at the energy of kT = 25 meV. Iron plays an important role in stellar nucleosynthesis, because it is a seed material for the s-process, a neutron capture process in which the elements between iron and bismuth are synthesized.
To determine the thermal neutron cross section of 60Fe, an iron sample produced in the framework of the ERAWAST1 program at the Paul Scherrer Institute in Switzerland was irradiated at the research reactor TRIGA2 at Johannes Gutenberg University in Mainz, Germany. Before the irradiation, the number of 60Fe particles in the sample was calculated using the decay scheme of 60Fe. There were (8.207 ± 0:066 stat 0:298 syst) * 10 14 60Fe particles in the sample.
The irradiation of the sample took place in May 2012. The counting of the reaction product, 61Fe, was undertaken using a HPGe detector located in a laboratory at Johannes Gutenberg University in Mainz. Knowing the number of 60Fe particles in the sample, the number of produced 61Fe particles and the neutron flux from the reactor, the thermal neutron capture cross section of ρth60Fe = (0.203 ± 0:021 stat 0:024 syst) b could be determined.
The determination of the thermal neutron capture cross section at the energy of kT = 25 meV constitutes to the first at this energy. There was already a measurement of the neutron capture cross section of 60Fe at the energy of kT = 25 keV in Karlsruhe in Germany. The result of the measurement was 25 keV = (9.9 ± 2:8 syst 1:4 stat) mb and was published in the year 2009 [14].
Adding datapoints for the cross section at different energies improves extarpolation and helps verification of theoretical models for elemental synthesis. For this reason, a measurement of the 60Fe neutron capture cross section at the energy of kT = 90 keV is planned at Goethe University Frankfurt, Germany.
Having the neutron capture cross section of 60Fe at the energy of kT = 25 keV measured in the year 2009 in Karlsruhe [14], at the energy of kT = 25 meV measured in May 2012 at Johannes Gutenberg University in Mainz and at the planned energy of kT = 90 keV at Goethe University Frankfurt, there will be three points for the extrapolation of the values for the neutron capture cross section of 60Fe. This will lead to a significant reduction in uncertainty with respect to existing theoretical discrepancies.
Within the nucleosynthetic processes of the slow neutron-capture reaction network (called the s process) the so called branching points, unstable isotopes where different nuclear reactions are competing, are important to understand . For modeling and calculating the nucleosynthesis and compare the resulting abundances to the observed ones, it is indispensable to know the branching ratios as well as the corresponding cross sections.
A great challenge in measuring those rates in experiments may be the radioactivity of the isotopes involved, which can make it nearly impossible to manufacture the needed targets. In addition, in stellar environments the excited states of isotopes can be in equilibrium with the ground state, affecting the half-lives and the branching ratios significantly. The isotope 152Eu is such a branching point, with neutron captures and β-decays competing. Those challenges were approached in the s405 experiment performed at the GSI Helmholtzzentrum für Schwerionenforschung GmbH: the challenge the challenge of the radioactivity can be approached by experiments carried out in inverse kinematics with radioactive beams, solving the problem of unstable targets. Also a reversed reaction was used to access the excited states of the studied isotope. The performed 152Sm(p,n)152Eu is a pioneering attempt to use those methods on heavy ions. The (p,n) reaction was used as a substitute for electron capture, the focus lies on reactions with low-momentum transfers, resulting in the emission of low-energy neutrons. The new developed low-energy detector array LENA was put to test for the fist time in the s405 experiment.
This thesis presents the first measurement of the proton capture reaction on the isotope 124Xe performed in inverse kinematics. The experiment was carried out in June 2016 at the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany.
124Xe is one of about 35 p-nuclei that cannot be produced via neutron-induced nucleo- synthesis as the vast majority of heavy elements. Its production and destruction provide important information about the nucleosynthesis of the p-nuclei. Measuring the 124Xe(p,g)125Cs reaction also gives strong constraints for its reverse 125Cs(g,p)124Xe reaction.
Fully stripped 124Xe ions repeatedly passed a H2 gas jet target at five different energies between 5.5 MeV/u and 8 MeV/u. An electron cooler compensated for the energy loss in the target and reduced the beam momentum spread. The reaction product 125Cs55+ has a smaller magnetic rigidity than 124Xe54+. Therefore 125Cs55+ was deflected towards smaller radii in the first dipole after the target area and thereby separated from 124Xe54+. It was detected with a position-sensitive Double-Sided Silicon Strip Detector (DSSSD). The novelty of this experiment was the installation of the DSSSD inside the ultra-high vacuum of the storage ring using a newly designed manipulator.
Three High-Purity Germanium X-ray detectors were used to measure the X-rays following the Radiative Electron Capture (REC) events into 124Xe53+. The REC cross sections are well-known and were used to determine the luminosity.
The 124Xe(p,g)125Cs cross sections at ion beam energies between 5.5 MeV/u and 8 MeV/u were determined relatively to the K-REC cross sections and finally compared to the theoretically predicted cross sections. While theoretical predictions of the TENDL database are lower than the measured ones by a factor of up to seven, the NON-SMOKER data are higher by a factor of up to two, except of the cross section at 7 MeV/u, where NON-SMOKER data are slightly lower than the experimental value.
For the first time, a proton capture cross section could be measured in inverse kinematics close to the astrophysically relevant Gamow window. This allows the direct determination of the (p,g) cross section of isotopes with half-lives down to several minutes, which is not possible with any other technique.
Im Rahmen dieser Arbeit wurden astrophysikalisch relevante, kernphysikalische Raten, die zum Verständnis der beobachteten Häufigkeit des langlebigen Isotopes 60Fe wichtig sind, am GSI Helmholtzzentrum für Schwerionenforschung GmbH und am Forschungsreaktor TRIGA in Mainz gemessen.
Zunächst wurde der Coulombaufbruch von 59Fe und 60Fe am GSI Helmholtzzentrum für Schwerionenforschung GmbH untersucht. Zur Produktion der radioaktiven Strahlen wurde ein 64Ni-Primärstrahl auf ein Spallationstarget geleitet. Im Fragmentseparator wurden die Isotope nach deren magnetischen Steifigkeit separiert und nur die gewünschte Spezies im LAND/R3B-Aufbau untersucht. Die Bestimmung von Impuls und Ladung der eingehenden Ionen erlaubte eine individuelle Identifikation. Der Coulombaufbruchwirkungsquerschnitt wurde mit einer Bleiprobe bestimmt. Die verschiedenen Untergrundkomponenten ergaben sich aus einer begleitenden Leermessung, sowie einer Messung mit einer Kohlenstoffprobe. Der Wirkungsquerschnitt der Reaktion Pb(60Fe,n+59Fe)Pb bei (530±5) MeV/u wurde zu σ(60Fe,n+59Fe) COULEX = (298±11stat±31syst) mb (0.1) bestimmt und für die Reaktion Pb(59Fe,n+58Fe)Pb ergab sich σ(59Fe,n+58Fe) COULEX = (410±11stat±41syst) mb. (0.2)
Außerdem konnten für beide einkommenden Strahlsorten die Wahrscheinlichkeiten für die Produktion von zwei Neutronen bestimmt werden.
Anschließend wurde der Neutroneneinfangsquerschnitt von 60Fe bei kT = 25,3 meV am Forschungsreaktor TRIGA in Mainz bestimmt. Hierfür wurde eine 60Fe Probe zunächst anhand des Anstieges der Aktivität der 60Co-Tochterkerne charakterisiert und anschließend im Reaktor bestrahlt. Die frisch erzeugte Aktivität des 61Fe wurde mit einem HPGe-Detektor nachgewiesen. Mit Hilfe der Cadmiumdifferenzmethode konnte daraus erstmals der thermische Neutroneneinfangsquerschnitt von 60Fe zu σ60Fe(n,γ) th = 0,22±0,02stat±0,02syst b. (0.3) bestimmt werden. Für das Resonanzintegral ergab sich die obere Schranke von I 60Fe(n,γ) res = 0,61 b. (0.4)
Asymptotic giant branch (AGB) stars are initially low and intermediate mass stars undergoing recurrent hydrogen and helium shell burning. During the advanced stage of stellar evolution AGB stars follow after the helium core burning ceased and are located in the AGB of the Hertzsprung-Russell Diagram. One characteristic is their ability of element synthesis, especially carbon and nitrogen, which they eject in large amounts into the interstellar medium. But AGB stars also feature a slow-neutron capture process called s-process which forms approximately 50 % of all elements between Fe and Bi. The initial mass function emphasizes the importance of the synthesized ejecta of AGB stars since they are much more abundant than massive stars. Therefore, the abundance evolution of many elements in the universe is drastically affected by AGB stars. In order to understand chemical evolution in the universe their behavior must be known since their first appearance. In previous times less heavy elements were produced and available. Hence AGB stars with lower heavy element content, which means lower metallicity, must be investigated. They appear to behave substantially differently than stars of higher metallicity. Another issue is that AGB stars have mass-dependent characteristics from which follows a division into low-mass, massive and super AGB stars. Super AGB stars have the most open issues due to their large masses and initial mass boundaries that separate them from massive stars. Due to large spectroscopic surveys in the last years, many low metallicity stars have been analyzed. These findings make it necessary to complement those studies through stellar modeling. This work makes a step in this direction. The AGB star masses under investigation are 1M⊙, 1.65M⊙, 2M⊙, 3M⊙, 4M⊙, 5M⊙, 6M⊙ and 7M⊙ which include low-mass, massive and super AGB stars. Metallicities of Z = 6 x 10 exp-3 and Z = 1 x 10 exp-4 (for comparison, solar Z ~ 0.02) were chosen. These results are an extension of already available data, covering solar and half-solar metallicity, but without super AGB stars. Therefore physics input includes mainly well-established approaches rather than new theories. New physical approaches are included due to the low metallicity which makes the results a unique set of models. Additionally, extensive s-process network calculations lead to production factors of all included elements and isotopes. The s-process signatures of those stars were analyzed. The stellar evolution simulations presented in this work have been utilized for rate and especially sensitivity studies. One approach done was to analyze s-process branchings at 95Zr and 85Kr for stars at 3M⊙ with Z = 1 x 10 exp-2 and Z = 1 x 10 exp-3 respectively.
Im Rahmen dieser Arbeit sollte ein bereits im Jahr 1989 gebauter Neutronenkollimator für den zukünftigen Einsatz an der Frankfurter Neutronenquelle am Stern Gerlach Zentrum (FRANZ) getestet und simuliert werden.
Hierfür wurde der Neutronenkollimator zunächst probeweise aufgebaut und die einzelnen Bauteile ausgemessen. Zunächst wurde die Zusammensetzung der Kollimatorbauteile überprüft und deren Dichte bestimmt. Zu diesem Zweck wurde mit einigen ausgesuchten Bauteilen des Kollimators eine Gammatransmissionsmessung mit Na-22 und Ba-133 als Gammaquelle durchgeführt. Die Messwerte dieser Messung wurden ausgewertet und mit entsprechend angefertigten Simulationen mit GEANT 3 verglichen.
Für die Simulationen wurden die Bauteile, mit denen die Messung durchgeführt wurde, detailgetreu und mit der zu bestätigenden Zusammensetzung sowie einer geschätzten Dichte programmiert. Über die Anpassung der Simulationsergebnisse an die experimentellen Werte, konnte so die Materialzusammensetzung bestätigt und für die jeweiligen Bauteile jeweils eine Dichte ermittelt werden. Für das Lithiumcarbonatrohr wurde eine Dichte von 1,422 g/cm³ ermittelt, für die drei Bauteile aus Borcarbid jeweils 1,169 g/cm³, 1,073 g/cm³, 0,832 g/cm³. Aufgrund von vielen produktionsbedingten, unterschiedlich stark ausgeprägten Lufteinschlüsse in den Borcarbidbauteilen des Kollimators, konnte keine identische Dichte für alle Bauteile gefunden werden.
Nach Untersuchung des Kollimators wurde der Neutronendurchgang mit dem Simulationspaket GEANT 3 simuliert. Die vollständige Geometrie des Kollimators wurde in GEANT 3 programmiert und dabei Bohrlöcher und Besonderheiten einzelner Bauteile berücksichtigt. Um die Simulationszeit zu verkürzen, wurde der Teilchendurchgang durch den gesamten Kollimator nicht in einem Durchgang simuliert, sondern stückweise in vier Stufen entlang des Kollimators. Um die Komplexität der Simulation zu beschränken wurde für alle Kollimatorbauteile aus Borcarbid ein Dichtewert eingesetzt, jedoch jede Simulationsreihe mit den drei verschiedenen Werten, die bei der Gammatransmissionsmessung ermittelt wurden, durchgeführt.
Beim anschließenden Vergleich der Simulationsergebnisse, konnte zwischen den einzelnen Dichtewerten kein signifikanter Unterschied erkannt werden. Die Unsicherheiten in der Dichtebestimmung sind daher vernachlässigbar.
Jede Simulationsreihe wurde mit zwei verschiedenen Neutronenverteilungen durchgeführt: eine Neutronenverteilung bei 1,92 MeV Protonenenergie und eine bei 2 MeV Protonenenergie.
Anhand der Simulationsergebnisse konnte ermittelt werden, dass die auf den Detektor eintreffende Neutronenintensität bis zu einem Abstand von etwa 20 cm vom Strahlachsenzentrum um Faktor 4·10-5 geschwächt wird. Ab 20 cm Strahlachsenabstand beträgt die Transmission der Neutronen etwa 10-3.
Die Bleiabschirmung, die an den Kollimator montiert wird und den Detektor vor den infolge von Neutroneneinfängen emittierten Gammaquanten vor dem Detektor abschirmen soll, reduziert die Zahl der Gammaquanten ebenfalls um Faktor 10-4.
Für den zukünftigen Einsatz des Neutronenkollimators an FRANZ müssen zunächst die fehlenden Kollimatorbauteile ersetzt oder nachgebaut werden. Dazu gehören zwei zylinderförmige innere Einsätze aus Borcarbid sowie eine Verlängerung des Innenrohrs aus Lithiumcarbonat. Neue Geometrien oder Materialzusammensetzungen können durch leichte Modifikation der bereits in GEANT 3 programmierten Kollimator-geometrie getestet und untersucht werden.
Für die Positionierung des Kollimators und Aufstellung vor dem 4 π BaF2-Detektor muss zusätzlich eine Platte angefertigt werden, an welche die Bleiabschirmung montiert und auf welcher der Kollimator stabil aufgebaut werden kann. Nach Fertigstellung der fehlenden Bauteile und der Platte, kann der Kollimator aufgebaut und in der Praxis getestet werden.
Most of the elements in the universe are produced via charged-particle fusion reactions during the primordial nucleosynthesis and different stellar burning stages, as well as via neutron-capture reactions. Around 35 heavy, proton-rich isotopes are bypassed by those reaction paths, the p nuclei. A series of photo-disintegration reactions occurring in supernovae, called the γ process, was suggested as a mechanisms to produce the p nuclei. Numerical simulations of the γ process have been unable to reproduce the observed abundances of the light p isotopes. Recent models showed that a series of proton capture reactions could provide the observed abundances. Hence, the cross sections of the crucial capture reactions have to be measured in order to test those assumptions.
Radiative proton captures in addition to the γ-process could reproduce the observed abundance pattern. This thesis presents preparations of a proton capture measurement on the radioactive 91Nb in standard kinematics with a calorimetric 4π setup. The 91Nb(p,γ)92Mo reaction might be the key to explain the production of one of the most abundant p-nuclei, 92Mo. So far, no experimental data for this reaction is available.
We produced a sample of 91Nb, with a half-life of 680 yr, at the Physikalisch Technische Bundesanstalt in Braunschweig, Germany, by irradiating 92Mo with protons in the energy range of 12 – 20MeV. 91Nb was produced via the reaction 92Mo(p,2p)91Nb and via 92Mo(p,pn)91Mo, where 91Mo decays to 91Nb with a half-life of 15.5min. To predict the amount of produced 91Nb the cross section of 92Mo(p, 2p) was measured. It was found to be higher than the value given by theoretical calculations with TALYS. Finally, 91Nb was chemically separated from the molybdenum carried at Paul-Scherrer- Institut, Villigen, Switzerland.
In-beam total absorption cross-section measurement of the reaction 91Nb(p,γ)92Mo with 2 MeV protons at FRANZ is planed with the produced 91Nb. A 4π BaF2 detector consisting of 41 crystals will be used. During this experiment we will measure the sum energy and the multiplicity of each event. The freshly produced 91Nb constitutes only a minor component of the sample material. The sum energy and multiplicity are crucial to distinguish the desired 91Nb(p,γ) from all the other more dominant reactions. The expected multiplicity and the efficiency of the setup were carefully simulated with DICEBOX and GEANT4. It was possible to show that background reactions can be effectively suppressed. The most important background contributions could be identified and result from 92Mo(p,γ), 19F(p,γ), and 19F(p,α).
In order to understand the origin of the elements in the universe, one must understand the nuclear reactions by which atomic nuclei are transformed. There are many different astrophysical environments that fulfill the conditions of different nucleosynthesis processes. Even though great progress has been made in recent decades in understanding the origin of the elements in the universe, some questions remain unanswered. In order to understand the processes, it is necessary to measure cross sections of the involved reactions and constrain theoretical model predictions. A variety of methods have been developed to measure nuclear reaction cross sections relevant for nuclear astrophysics. In this thesis, two different experiments and their results, both using the well-established activation method, are presented.
A measurement of the proton capture cross section on the p-nuclide 96Ru was performed at the Institute of Structure and Nuclear Astrophysics ISNAP - Notre Dame, USA. The main goal of this experiment was to compare the results with those obtained by Mei et al. in a pioneering experiment using the method of inverse kinematics at the GSI Helmholtzzentrum für Schwerionenforschung GmbH - Darmstadt, Germany. Therefore, the activations were taken out at the same center of mass energies of 9 MeV, 10 MeV and 11 MeV. Another activation was taken out at an energy of 3.2 MeV to compare the result to a measurement of Bork et al. who also used the activation method. While the results at 3.2 MeV agree quite well with those of Bork et al., the results at higher energies show significantly smaller cross sections than those measured by Mei et al.. Experimental details, the data analysis and sources of uncertainties are discussed.
The second part of this thesis describes a neutron capture cross section experiment. At the Institut für Kernphysik - Goethe Universtität Frankfurt an experimental setup allows to produce quasi maxwell-distributed neutron fields to measure maxwell-averaged cross sections (MACS) relevant for s-process nucleosynthesis. The setup was upgraded by a fast electric linear guide to transport samples from the activation to the detection site. The cyclic activation of the sample allows to increase the signal-to-noise ratio and to measure neutron captures that lead to nuclei with
half-lives on the order of seconds. In a first campaign, MACS of the reactions 51V(n,γ), 107,109Ag(n,γ) and 103Rh(n,γ) were measured. The new components of the setup aswell as the data analysis framework are described and the results of the measurements are discussed.
Ziel dieser Arbeit war, mittels einer (n,γ)-Aktivierung, 129Te zu erzeugen und eine Teilchenzahlbestimmung durchzuführen. Aktivierung der Probe am Forschungsreaktor TRIGA und Spektrenaufnahme mittels eines HPGe-Detektors erfolgten im Mai 2014 am Institut für Kernchemie der Johannes Gutenberg Universität in Mainz.
Die Teilchenzahl des Tochternuklids 129I kann anhand der Teilchenzahlen des Isomers und des Grundzustandes von 129Te berechnet werden. In den Aktivierungen #2 bis #6 wurden (14.27 ± 0.53)x10exp12 Iodnuklide erzeugt. Angegeben ist die maximal mögliche Anzahl von Iodteilchen bei unendlich langer Wartezeit und vollständigem Zerfall aller Tellurnuklide.
Beobachtet werden konnte die Abnahme der Grundzustandsaktivität bis zum Erreichen des Gleichgewichts aus Nachbevölkerung durch das Isomer und Zerfall. Die Grundzustandslinien der Energien von 459.60 keV, 487 keV, 1083 KeV und 1111 keV konnten zu dieser Untersuchung herangezogen werden. Diese 4 Linien erfüllen die erforderten Konsistenzkriterien bezüglich der Systematik und können daher zur Teilchenzahlbestimmung des Grundzustandes verwendet werden (Seite 31).
Der Einfluss der Eigenabsorption ist noch zu untersuchen, da die genaue Position der Probe im Polyethylenbehältnis nicht bestimmt werden konnte. Weiterhin ist die Datenanalyse der ersten Aktivierung aufgrund des Detektorwechsels noch nicht erfolgt. Der Austausch war wegen technischer Probleme notwendig. Ziel weiterführender Untersuchungen ist, eine erneute Halbwertszeitbestimmung des radioaktiven 129I vorzunehmen. Sie ist von Interesse, angesichts des Widerspruchs zweier Veröffentlichungen. Die Halbwertszeit des 129I kann Aufschluss über stellare Bedingungen des s-Prozesses geben.
Most of the elements heavier than iron are produced through neutron capture reactions in the s- and r -process. The overall path of the s-process is well understood and can be accurately reproduced in network simulations. However, there are still some neutron capture reactions of unstable nuclei involved in the s-process, which were not yet measured due to the difficulty in producing suitable targets. In those cases, theoretical models have to be used to estimate the missing cross section.
One example is the branching point nucleus 86Rb, whose neutron capture cross section cannot be directly measured due to its short half life of 18.86 days. It is, however, also possible to measure its inverse, the 87Rb(g,n) reaction in order to obtain the 86Rb(n,g) cross section through the principle of detailed balance.
Natural rubidium was irradiated with a quasi-monoenergetic photon beam in the energy range between 10.7 MeV and 16 MeV in order to investigate the photo-dissociation cross section of 87Rb. The results are presented in this thesis. Not only the total cross section of 87Rb(g,n), but also the partial production cross section of the ground and isomeric state of 84Rb through the 85Rb(g,n) reaction was measured.
Not all isotopes can be reached via neutron capture reaction, and are therefore bypassed by the s- and r -process. These 35 proton-rich isotopes are called p-nuclei and are produced in the γ-process by a chain of photo-disintegration reactions in Type II supernovae. Network calculations of Type II supernova show that the γ-process can explain the production of most p-nuclei, but some – especially 92/94Mo and 96/98Ru – are heavily underproduced. While this could be the result of deficiencies in the corresponding stellar models or insufficient knowledge of the involved reaction rates, it is also possible that the missing p-nuclei are synthesized in other production scenarios.
An alternative scenario for 92Mo is the production via a chain of proton capture reactions in Type Ia supernovae. One important reaction in this chain is the 90Zr(p,g) reaction. The reaction cross section was already measured several times, but the results were inconclusive. In the present work, the 90 Zr(p,g) reaction was measured using the in-beam gamma-ray spectroscopy technique and the discrepancies between the data sets could be largely explained.
This thesis presents experimental studies of proton capture and fragmentation reactions with heavy-ion storage rings. In one experiment, the 96Ru(p, γ)97Rh cross sections near the Gamow window have been measured at the ESR of GSI. In the other experiment, the measurement of the fragmentation yields has been carried out at the CSRe of IMP.
It is essential to determine the cross sections of (γ, p) or (p, γ) reactions for p-process network calculations. However, only very few of the required cross sections have been measured and thus most of them rely solely on Hauser-Feshbach model predictions. The predictions of the model have always very large uncertainties because of the not well-known input parameters. These parameters can be constrained by experiments. Compared to the traditional activation technique, a novel method using a storage ring has been developed to measure the cross sections of (p, γ) reactions in inverse kinematics.
This proton capture experiment has been performed at the ESR, where the circulating 96Ru44+ ions interacted with a hydrogen gas target at 9, 10 and 11 MeV/u. The nuclear reaction products of (p, p), (p, α), (p, n) and (p, γ) reactions were registered by position sensitive detectors. A Geant4 simulation code has been developed to distinguish the (p, γ) reaction products unambiguously from the background reactions. In this work, a relative normalization method has been utilized to accurately determine the cross sections of the (p, γ) reaction. The 96Ru(p, γ)97Rh cross section in the Gamow window of the p process is sensitive to two parameters, i.e., the γ-ray strength function and the optical model potential, while it is mainly sensitive to the γ-ray strength function in the energy region of our experiment. Therefore, our experimental (p, γ) cross sections near 10 MeV/u have been used to directly constrain the γ-ray strength function used in the model. Furthermore, the proton potential has also been constrained by combining our results with additional experimental data for this reaction in the lower energy region. The constrained model has been used to calculate the reaction rate over a wide temperature range, which is an extremely important input for astrophysical calculations.
The yields of fragments produced by 78Kr fragmentation reactions have been measured at the CSRe for the Tz = −1/2 and Tz = 1/2 nuclei along or close to the paths of αp- and rp-processes. The measured yields present a significant odd-even staggering effect for Tz = −1/2 nuclides but they are small for Tz = 1/2 nuclides.
The magnitude of this effect for four consecutive yields has been quantified using a third-order difference formula. It is found that the largest odd-even staggering is reached near the closed shells Z = 20 and Z = 28. Our experimental results could also compared with the data from other experiments with different projectile-target combinations. All these experimental data strongly support the closed shells Z = 20 and Z = 28 for the Tz = −1/2 nuclei.
Die Entstehung der Elemente im Universum wird auf eine Vielzahl von Prozessen zurückgeführt, die sowohl in Urknall - als auch in stellaren Szenarien angesiedelt werden. Die Kenntnis der dort ablaufenden Reaktionen und deren Raten ermöglicht es die zugrundeliegenden Modelle einzugrenzen und somit genauere Aussagen über die Plausibilität der Szenarien zu treffen. Ein Teil dieser Prozesse stützt sich auf Neutroneneinfänge an Atomkernen, wodurch die Massezahl des Ausgangskerns erhöht wird.
Die Aktivierungsmethode ermöglicht die Bestimmung der Wahrscheinlichkeit eines Neutroneneinfangs, sofern der Zielkern eine detektierbare Radioaktivität aufweist. Die experimentelle Untersuchung einer Reaktion mit einem kurzlebigen Produktkern ist eine besondere Herausforderung, da bei langen Aktivierungen zwar viele Einfänge stattfinden, die meisten Produktkerne jedoch schon während der Aktivierung zerfallen. Ein probates Mittel um genügend Zerfälle des Produktkerns beobachten zu können ist die zyklische Aktivierung, wobei die Probe in mehrfachen Wiederholungen kurz bestrahlt und ausgezählt wird.
Im Rahmen dieser Arbeit wurden zwei verschiedene Anwendungen der zyklischen Aktivierung behandelt.
Eine vom Paul Scherrer Institut Villigen bereitgestellte Probe von 10Be wurde am TRIGA Reaktor der Johannes Gutenberg - Universität Mainz mit Neutronen aktiviert. Über die Cadmiumdifferenzmethode konnte der thermische und der epithermische Anteil der Neutronen separiert werden und dadurch sowohl der thermische Wirkungsquerschnitt als auch das Resonanzintegral für die Reaktion 10Be(n,γ)11Be bestimmt werden.
Am Institut für Kernphysik der Goethe Universität Frankfurt wurde mit einem Van - de - Graaff - Beschleuniger über die 7Li(p,n)7Be Reaktion ein quasistellares Neutronenspektrum mit kBT ≈ 25 keV erzeugt. Für die zyklische Aktivierung von Proben wurde die Infrastruktur in Form einer automatisiert ablaufenden Vorrichtung zur Bestrahlung und Auszählung geplant und umgesetzt. In diesem Rahmen wurden die über das Spektrum gemittelten Neutroneneinfangsquerschnitte für verschiedene Reaktionen bestimmt. Für 19F(n,γ)20F konnte der Gesamteinfangsquerschnitt bestimmt werden. Für die Reaktion 45Sc(n,γ)46Sc wurde der partielle Wirkungsquerschnitt in den 142,5 keV Isomerzustand gemessen. Aus der 115In(n,γ)116In Reaktion konnten die partiellen Querschnitte in die Isomerzustände bei 289,7 keV, 127,3 keV sowie den Grundzustand bestimmt werden.
Außerdem wurde mit einer Hafniumprobe die partiellen Einfangsquerschnitte in den 1147,4 keV Isomerzustand von 178Hf und in den 375 keV Isomerzustand von 179Hf gemessen.
Ziel der nuklearen Astrophysik ist es, die solare Häufigkeitsverteilung der Elemente zu erklären (siehe Seite 10, Abb. 1.1). Die Elemente bis zur Eisengruppe sind dabei unmittelbar nach dem Urknall und während verschiedener Brennphasen in Sternen durch Kernfusion entstanden. Da die Bindungsenergie pro Nukleon der Elemente in der Eisengruppe am höchsten ist, ist für den Aufbau schwererer Elemente keine Energiegewinnung durch Fusion geladener Teilchen mehr möglich und Neutroneneinfänge und Betazerfälle spielen die entscheidende Rolle für die Nukleosynthese. In Abhängigkeit von der Neutronendichte und der Temperatur wird dabei zwischen dem langsamen Neutroneneinfangprozess, dem s-Prozess, und dem schnellen Neutroneneinfangprozess, dem r-Prozess, unterschieden. Während der r-Prozess weit abseits der stabilen Isotope an der Neutronenabbruchkante statt findet, verläuft der Reaktionspfad des s-Prozesses entlang der stabilen Isotope am "Tal der Stabilität".
Für das bessere Verständnis der Nukleosynthese der schweren Elemente im s-Prozess wurde im Rahmen dieser Arbeit die Messung zur Bestimmung der Neutroneneinfangsreaktion von 83Kr durchgeführt. Als Messinstrument wurde DANCE am LANL verwendet, ein 4pi-Kalorimeter zur Detektion der entstehenden g-Kaskaden bei (n,g)-Reaktionen. Darüber hinaus wurden außerdem noch Proben mit 85Kr und 86Kr vermessen.
Die Herausforderung an diesem Experiment bestand vor allem in der Probenherstellung. Das Edelgas Kr erforderte eine Neukonstruktion der normalerweise bei DANCE verwendeten Probenhalterung. Das Hauptaugenmerk lag auf der Maximierung der Kr-Exposition durch den Neutronenstrahl. Im Gegenzug wurde versucht das umgebende Material nach Möglichkeit keinen Neutronen auszusetzen. Für die Isotope 83,86Kr wurden Hochdruckgaskugeln verwendet, die an der Goethe-Universität Frankfurt gefüllt und in eine der neuen Probenhalterungen eingesetzt wurden. Zur Beachtung des bei der Messung entstehenden Untergrundes wurde eine Messung mit baugleicher Probenhalterung und leerer Gaskugel durchgeführt. Da bereits kleine Mengen 85Kr eine hohe Radioaktivität aufweisen, wurde eine in einen Stahlzylinder eingeschweißte, existierende Quelle verwendet.
Bei der Analyse zu 86Kr wurde schnell eine zu starke Verunreinigung der Kr-Probe mit Xe offensichtlich, einen signifikanten Anteil des Spektrums ausmachte. Aus diesem Grund kam es vor allem zu Problemen den korrekten Untergrund von den 86Kr Messdaten zu subtrahieren. Die weitere Bestimmung inklusive Streukorrekturen, Normierung anhand des Flussmonitors und DICEBOX/GEANT3 Effizienzbestimmung lieferte zwar einen energieabhängigen Wirkungsquerschnitt, dieser zeigte allerdings große Abweichungen von den evaluierten ENDF/B-VII.1 Daten, was besonders ersichtlich in der deutlichsten 86Kr Resonanz bei 5515 eV zu erkennen war. Aus diesem Grund konnte aus den Messdaten kein MACS extrahiert werden.
Bei einer Untersuchung der Aktivität der 85Kr-Probe mit Hilfe der einzelnen BaF2-Detektoren in der DANCE Kugel zeigte sich zunächst eine um fast einen Faktor vier geringere Aktivität als vom Hersteller angegeben. Auch bei der weiteren Analyse traten massive Untergrundprobleme auf. Die Form des Stahlzylinders, in dem das Kr-Gasgemisch eingeschweißt war, konnte aufgrund seiner Form nur schwer im Strahlrohr untergebracht werden. Beim Experiment selbst zeigte sich dann, dass Teile der Halterung vom Neutronenstrahl getroffen wurden, was einen Untergrund mit sehr hohem Q-Wert erzeugte, der nicht durch ein Esum Fenster entfernt werden konnte. Durch eine Beschädigung der Halterung mit der Probe kam es darüber hinaus zu Abweichungen mit der verwendeten Leerhalterung. All das führte trotz einer langen Messzeit von fast 18 d dazu, dass nur ein sehr schwaches Signal von der eigentlichen Kr-Probe zu erkennen war. Es wurde eine mögliche 85Kr Resonanz bei 675 eV gefunden, allerdings ist die endgültige Zuordnung aufgrund der nicht eindeutigen Untergrundsituation äußerst schwierig. Im Vorfeld des Kr-Experimentes wurde eine Messung von RbCl an DANCE durchgeführt, da ursprünglich zu erwarten war, dass bereits ein Teil des 85Kr zu 85Rb zerfallen war. Durch diese Messung sollte dieser Anteil leicht von der späteren Messung zu subtrahieren sein. Allerdings trat ein unerwartetes Problem während der Datenaufnahme auf. Die Verbindung der DAQ Boards wurde getrennt, wodurch ca. 3/4 der Detektoren nicht mehr zeitsynchron liefen. Im Zuge dieser Arbeit wurde eine Rekonstruktion dieser Daten angestrebt. Durch Modifikationen am FARE Code, der zur Auswertung verwendet wurde, konnte Flugzeitspektren für jeden Beschleunigerpuls erzeugt werden. Es zeigte sich zunächst ein offensichtlicher Trend einer Verschiebung der getrennten Boards zu späteren Zeiten. Durch mehrere Fits an die Abweichungsverteilung und anschließende Korrektur konnte zunächst ein Spektrum wiederhergestellt werden, das vergleichbar mit den unbeschädigten Daten war. Bei einer detaillierten Analyse dieser neu gewonnen Daten zeigte sich jedoch eine Nichtlinearität in der Zeitverschiebung. Dies resultierte letztlich in einer Korrektur des Spektrums, allerdings nicht in einem Koinzidenzfenster von 10 ns, das für eine Wirkungsquerschnittsanalyse notwendig ist. Es wurde geschlussfolgert, dass durch die geringe Statistik in den einzelnen Flugzeitspektren solch eine Genauigkeit nicht zu erreichen ist.
Die Messung des Neutroneneinfangsquerschnitts von 83Kr konnte im Zuge dieser Arbeit erfolgreich durchgeführt werden. Es wurden zwei Messungen mit verschiedenen Strömen kombiniert. Eine Messung mit 40 µA wurde durchgeführt, um Pile-Up in der größten Resonanz bei 28 eV zu reduzieren. Die zweite Messung diente dann dem Sammeln von ausreichend Statistik in den nicht resonanten Bereichen. Die eingesetzte Leerkugel erlaubte eine saubere Subtraktion des Untergrundes von Probenhalterung, Gaskugel und Umgebung. Für die Skalierung der Messergebnisse wurde eine weitere Messung mit einer 5000 Å dicken Goldfolie durchgeführt. Zur Bestimmung der Detektoreffizienz konnten zunächst die durch den Neutroneneinfang entstandenen Abregungskaskaden der 84Kr Kerne mit DICEBOX modelliert werden. Diese Kaskaden wurden dann anschließend in GEANT3 Simulationen verwendet, um die Effizienz bestimmen zu können. Mit diesen Methoden erhielt man die Maxwell-gemittelten Wirkungsquerschnitte von kT = 5 keV - 100 keV. Bei der für den s-Prozess wichtigen Temperatur von kT = 30 keV wurde der Querschnitt bestimmt zu: MACS (30 keV) = (256,6 +- 14,2 (stat) +- 18,1(sys)) mb.
Dieser Wert ist in guter Übereinstimmung mit dem in der KADoNIS v0.3 Datenbank angegebenen Wert von MACS;KADoNIS (30 keV) = (243 +- 15) mb. Mit den so gewonnenen Wirkungsquerschnitten wurden außerdem die Reaktionsraten berechnet. Bei den anschließenden Netzwerkrechnungen mit dem Programm NETZ wurden die Auswirkungen der in dieser Arbeit gewonnenen Wirkungsquerschnitte im Vergleich zu den KADoNIS v0.3 Werten betrachtet. Dabei zeigte sich eine leicht erhöhte Produktion der stabilen Isotope 84Kr, 86Kr, 85Rb und 87Rb, sowie eine leichte Unterproduktion der stabilen Isotope 86-88Sr in der Hauptkomponente des s-Prozess. Ein ähnliches Bild zeigte sich in der He-Brennphase der schwachen Komponente. Der in dieser Arbeit gemessene Wirkungsquerschnitt bei hohen Temperaturen ist geringer als der in KADoNIS v0.3 angegebene, weswegen es bei der Simulation mit NETZ zu einer stark erhöhten Produktion von 83Kr in der C-Brennphase kommt.
Mithilfe einer (n,γ)-Aktivierung von Germanium am Forschungsreaktor TRIGA in Mainz wurde zum einen in Hinblick auf zukünftige Experiment an der NIF eine Sensitivitätsstudie durchgeführt. Zum anderen wurden die thermischen Neutroneneinfangquerschnitte von 74Ge und 76Ge jeweils für den Einfang in den Isomer- und Grundzustand gemessen, um die Abweichungen der Daten von [Hol93] und [Mug06] zu klären. Zusätzlich wurden die Halbwertszeiten der betrachteten radioaktiven Ge-Isotope bestimmt.
The stellar nucleosynthesis of elements heavier than iron can primarily be attributed to neutron capture reactions in the s and r process. While the s process is considered to be well understood with regards to the stellar sites, phases and conditions where it occurs, nucleosynthesis networks still need accurate neutron capture cross sections
with low uncertainties as input parameters. Their quantitative outputs for the isotopic abundances produced in the s process, coupled with the observable solar abundances, can be used to indirectly infer the expected r process abundances. The two stable gallium isotopes, 69Ga and 71Ga, have been shown in sensitivity studies to have considerable impact on the weak s process in massive stars. The available experimental data, mostly derived from neutron activation measurements for quasi-stellar neutron spectra at kBT = 25 keV, show disagreements up to a factor of three.
Determining the differential neutron capture cross section can provide input data for the whole range of astrophysically relevant energies. To that end, a neutron time of flight experimental campaign at the n_TOF facility at CERN was performed for three months, using isotopically enriched samples of both isotopes. The data taken at the EAR1 experimental area covered a wide neutron energy range from thermal to several hundred keV. The respective differential and spectrum averaged neutron capture cross sections for 69Ga and 71Ga were determined in this thesis. They show good agreement with the evaluated cross sections for 71Ga, but reproduce the deviations from the evaluated data that other, more recent activation measurements showed for 69Ga.
Im Weltall existieren hunderte sehr helle Objekte, die eine hohe konstante Leuchtkraft im Wellenlängenbereich von Gammastrahlung besitzen. Die konstante Leuchtkraft mancher dieser Objekte wird in regelmäßigen Abständen von starken Ausbrüchen, den sogenannten X-Ray-Bursts, unterbrochen. Hauptenergiequelle dieser X-RayBursts ist der „rapid-proton-capture“-Prozess (rp-Prozess). Dieser zeichnet sich durch eine Abfolge von (p,γ)-Reaktionen und β+-Zerfällen aus, die die charakteristischen Lichtkurven produzieren. Für viele am Prozess beteiligte Reaktionen ist der Q-Wert sehr klein, wodurch die Rate der einzelnen Reaktionen von den resonanten Einfängen in die ungebundenen Zustände dominiert wird. Die Unsicherheiten in der Beschreibung der Lichtkurve sind derzeit aufgrund fehlender kernphysikalischer Informationen von vielen am Prozess beteiligten Isotopen sehr groß. Sensitivitätsstudien zeigen, dass dabei die Unsicherheiten der 23Al(p,γ)24Si-Reaktion eine der größten Auswirkungen auf die Lichtkurve hat. Diese werden durch ungenaue und widersprüchliche Informationen zu den ungebundenen Zuständen im kurzlebigen 24Si hervorgerufen.
Um Informationen über die Kernstruktur von 24Si zu erhalten, wurde am National Superconducting Cyclotron Laboratory (NSCL), Michigan, USA, die 23Al(d,n)24Si Transferreaktion untersucht. Der in dieser Form erstmals umgesetzte Versuchsaufbau bestand aus einem Gammadetektor zur Messung der Übergangsenergien des produzierten 24Si, einem Neutronendetektor zur Messung der Winkelverteilung der emittierten Neutronen und einem Massensprektrometer zur Identifikation des produzierten Isotops. Mit diesem Aufbau, der eine Detektion der kompletten Kinematik der (d,nγ)-Reaktion ermöglichte, konnten folgende Erkentnisse gewonnen werden:
Aus der Energie der nachgewiesenen Gammas konnten die Übergänge zwischen den Kernniveaus von 24Si bestimmt und daraus die Energien der einzelnen Zustände ermittelt werden. Dabei konnte neben dem bereits bekannten gebundenen 2+-Zustand (in dieser Arbeit gemessen bei 1874 ± 2,9keV) und dem ungebundenen 2+-Zustand (3448,8 ± 4,6keV), erstmals ein weiterer ungebundener (4+,0+)-Zustand bei 3470,6 ± 6,2 keV beobachtet werden. Zusätzlich konnte die Diskrepanz, die bezüglich der Energie des ungebundenen 2+-Zustands aufgrund früherer Messungen bestand, beseitigt und die Energieunsicherheit reduziert werden.
Aus der Anzahl der nachgewiesenen Gammas konnten ebenfalls die (d,n)-Wirkungsquerschnitte in die einzelnen Zustände von 24Si bestimmt werden. Unter Verwendung der Ergebnisse von DWBA-Rechnungen konnte mithilfe dieser die spektroskopischen Faktoren berechnet werden. Für die angeregten Zustände musste dabei zwischen verschiedenen Drehimpulsüberträgen unterschieden werden. Mittels der Winkelverteilung der nachgewiesenen Neutronen konnte gezeigt werden, dass die Gewichtung anhand der theoretischen spektroskopischen Faktoren zur Berechnung der Anteile des jeweiligen Drehimpulsübertrags am gesamten Wirkungsquerschnitt für den entsprechenden Zustand gute Ergebnisse liefert. Für eine quantitative Bestimmung der spektroskopischen Faktoren der Zustände anhand der Neutronenwinkelverteilungen in 24Si war allerdings die Statistik zu gering. Für den Fall der deutlich häufiger beobachteten 22Mg(d,n)23Al-Reaktion konnte hingegen ein spektroskopischer Faktor für den 23Al-Grundzustand von 0,29 ± 0,04 bestimmt werden. Abschließend wurden die Auswirkungen der gewonnenen Erkenntnisse zur Kernstruktur von 24Si auf die Rate der 23Al(p,γ)-Reaktion untersucht. Dabei konnte aufgrund der besseren Energiebestimmung zum einen die Diskrepanz zwischen den Raten die auf Grundlage der beiden früheren Untersuchungen berechnet wurden und bis zu einem Faktor von 20 voneinander abweichen, beseitigt werden. Zum anderen konnte aufgrund der kleineren Unsicherheit in der Energiebestimmung der Fehlerbereich der Rate verkleinert werden. Die Untersuchungen zeigen, dass die Unsicherheit in der neuen Rate von der Ungenauigkeit der Massenbestimmung der beiden beteiligten Isotope und damit dem Q-Wert der Reaktion dominiert wird. Durch eine bessere Bestimmung des Q-Werts könnte die Unsicherheit in der Rate aufgrund der neuen experimentellen Ergebnisse auf ein Zehntel gesenkt werden.
Starting from the first observation of the halo phenomenon 20 years ago, more and more neutron-rich light nuclei were observed. The study of unstable nuclear systems beyond the dripline is a relatively new branch of nuclear physics. In the present work, the results of an experiment at GSI (Darmstadt) with relativistic beams of the halo nuclei 8He, 11Li and 14Be with energies of 240, 280 and 305 MeV/nucleon, respectively, impinging on a liquid hydrogen target are discussed. Neutron/proton knockout reactions lead to the formation of unbound systems, followed by their immediate decay. The experimental setup, consisting of the neutron detector LAND, the dipole spectrometer ALADIN and different types of tracking detectors, allows the reconstruction of the momentum vectors of all reaction products measured in coincidence. The properties of unbound nuclei are investigated by reconstructing the relative-energy spectra as well as by studying the angular correlations between the reaction products. The observed systems are 9He, 10He, 10Li, 12Li and 13Li. The isotopes 12Li and 13Li are observed for the first time. They are produced in the 1H(14Be, 2pn)12Li and 1H(14Be, 2p)13Li knockout reactions. The obtained relative-energy spectrum of 12Li is described as a single virtual s-state with a scattering length of as = -22;13.7(1.6) fm. The spectrum of 13Li is interpreted as a resonance at an energy of Er = 1.47(13) MeV and a width of Gamma ~ 2 MeV superimposed on a broad correlated background distribution. The isotope 10Li is observed after one-neutron knockout from the halo nucleus 11Li. The obtained relative-energy spectrum is described by a low-lying virtual s-state with a scattering length as = -22.4(4.8) fm and a p-wave resonance with Er = 0.566(14) MeV and Gamma = 0.548(30) MeV, in agreement with previous experiments. The observation of the nucleus 8He in coincidence with one or two neutrons, as a result of proton knockout from 11Li, allows to reconstruct the relative-energy spectra for the heavy helium isotopes, 9He and 10He. The low-energy part of the 9He spectrum is described by a virtual s-state with a scattering length as = -3.16(78) fm. In addition, two resonance states with l 6= 0 at energies of 1.33(8) and 2.4 MeV are observed. For the 10He spectrum, two interpretations are possible. It can be interpreted as a superposition of a narrow resonance at 1.42(10) MeV and a broad correlated background distribution. Alternatively, the spectrum is being well described by two resonances at energies of 1.54(11) and 3.99(26) MeV. Additionally, three-body energy and angular correlations in 10He and 13Li nuclei at the region of the ground state (0 < ECnn < 3 MeV) are studied, providing information about structure of these unbound nuclear systems.
Diese Arbeit beschäftigt sich mit dem Aufbau und der Kalibrierung eines Neutronendetektorarrays für niedrige Energien (Low Energy Neutron detector Array, kurz „LENA“) am kommenden R³B-Aufbau (Reactions with Relativistic Radioactive Beams) am FAIR (Facility for Antiproton and Ion Research) an der GSI in Darmstadt. Die Detektion niederenergetischer Neutronen im Bereich von 100 keV bis 1 MeV ist nötig, um Ladungsaustauschreaktionen, speziell (p,n)-Reaktionen in inverser Kinematik zu untersuchen. In diesem Energiebereich ist die Detektion äußerst schwierig, da Methoden für thermische als auch hochenergetische (100 MeV bis 1 GeV) Neutronen versagen. Neben dem Aufbau des Detektors wird die Bedeutung des Experiments für die nukleare Astrophysik verdeutlicht. Der theoretische Teil dieser Arbeit legt Grundlagen zum Verständnis für den Nachweis von Neutronen, die Funktionsweise des LENA-Detektors und den damit nachweisbaren Kernreaktionen. Des Weiteren wurde eine Simulation des Detektors mit GEANT4 (GEometry And Tracking), einer C++ orientierten Plattform für Simulationen von Wechselwirkungen von Detektormaterial mit Teilchen, durchgeführt. Die Ergebnisse wurden zur Auswertung von Messungen, die im Rahmen einer Strahlzeit im März 2011 an der Physikalisch Technischen Bundesanstalt (PTB) in Braunschweig durchgeführt wurden, herangezogen. Ziel der Arbeit ist es, die Effizienz des Detektors zu bestimmen.
Der langsame Neutronen-Einfangprozess (s-Prozess) ist weitgehend verstanden und erforscht. Dies liegt vor allem daran, dass er im Gegensatz zu r- und p- Prozess hauptsächlich an stabilen Nukliden abläuft. Auch ist die Anzahl relevanter Reaktionen (Netzwerk) vergleichsweise klein.
Dennoch gibt es im s-Prozess viele ungeklärte Fragen. Eine dieser Fragen ist die Häufigkeitsverteilung von 86Kr in Staubkörnern von Meteoriten. Mit bisherigen Berechnungen und Simulationen dieser Szenarien konnte die Häufigkeitsverteilung von 86Kr jedoch nicht erklärt werden.
In dieser Arbeit werden die besonderen Eigenschaften von 85Kr, insbesondere sein Isomerzustand, vorgestellt und genauer untersucht. Die Häufigkeitsverteilung von 86Kr im s-Prozess wird entscheidend durch die Eigenschaften 85Kr beeinflusst. Mit den gewonnenen Daten aus dieser Arbeit wurde eine erste Simulation erstellt, die einen möglichenWeg aufzeigt, das Rätsel um die Häufigkeitsverteilung zu lösen.
The 35 neutron deficient nuclides known as the p nuclei are sysnthesized mainly in the so-called γ process. Taking place in explosive supernova events, the existing seed distribution from prior nucleosynthesis is altered by photodisintegration reactions of the types (γ,n), (γ,p) and (γ,α).
The bulk of reaction rates needed in network calculations of the γ process are predicted by the Hauser-Feshbach Model. When using this theory, the largest uncertainties stem from the interaction between charged particles and nuclei described by optical model potentials.
An improvement of these potentials can be achieved by comparison to measured cross section data. However, because of the low energies of interest for nuclear astrophysics and the resulting low cross sections, suitable data are scarce.
This thesis extends the corresponding database by measurement of the reactions 165Ho(α, n), 166Er(α, n), 169Tm(p,n) and 175Lu(p,n) using the activation technique. While not particularly important for the γ process, the selected (α,n) and (p,n) reactions exhibit nearly exclusive sensitivity to the α- or proton-nucleus potential, respectively. Therefore, the results presented here are well suited to test and improve the predictive power of currently available parameterizations of these potentials
Der langsame Neutroneneinfang-Prozess (s-Prozess) ist für die Erzeugung von rund der Hälfte der Elemente zwischen Eisen und Blei verantwortlich. Sein Reaktionspfad enthält entlang des Stabilitätstals einige Verzweigungspunkte an instabilen Isotopen, deren Neutroneneinfangquerschnitte die Produktion schwererer Elemente und deren Isotopen-Verhältnisse beeinflussen. Kennt man ihre Zerfalls- und Neutroneneinfangraten unter den angenommenen stellaren Bedingungen ist es möglich, Rückschlüsse auf die physikalischen Umstände während des s-Prozesses zu ziehen. Einer dieser Verzweigungspunkte ist 63-Ni. Die experimentelle Bestimmung des differentiellen Wirkungsquerschnittes für den Neutroneneinfang an diesem Isotop ist das primäre Ergebnis der vorliegenden Arbeit. Der 63-Ni(n,gamma)- Wirkungsquerschnitt hat Einfluss auf die Häufigkeiten von 64-Ni, die Kupfer- und die Zink-Isotope. Die Sensitivität der Produktion dieser Nuklide in s-Prozess-Szenarien wurde ebenfalls im Rahmen dieser Arbeit anhand von Simulationen des entsprechenden Nukleosynthesenetzwerkes untersucht. Zudem wurde die Datenlage für s-Prozess-Modelle mit einer Flugzeit-Messung des 63-Cu(n,gamma)-Wirkungsquerschnitts erweitert.
Die beiden Experimente zur Querschnittsbestimmung von 63-Ni und 63-Cu fanden am Los Alamos Neutron Science Center in New Mexico, USA statt. Eine aus angereichertem 62-Ni hergestellte 63-Ni-Probe wurde im Rahmen einer Flugzeit-Messung gepulst mit Neutronen bestrahlt. Der Nachweis der prompten Gammastrahlung aufgrund von Neutroneneinfängen erfolgte mit dem 4π-BaF_2-Detektor DANCE. Die kalorimetrische Messung macht den Q-Wert der Reaktion für jedes Einfangereignis zugänglich und erlaubt die Unterscheidung von Ereignissen verschiedener Isotope. Es konnte gezeigt werden, dass diese Methode die Bestimmung von Querschnitten selbst mit Proben ermöglicht, die nur zu einem Bruchteil aus dem zu untersuchenden Isotop bestehen. Der 63-Ni(n,gamma)-Wirkungsquerschnitt wurde für den Energiebereich von 40 eV bis 500 keV mit einer maximalen Unsicherheit von 15% bestimmt. Es zeigte sich, dass theoretische Abschätzungen den Querschnitt bislang um etwa einen Faktor 2 unterschätzten. In demselben Energiebereich konnte der 63-Cu(n,gamma)-Wirkungsquerschnitt mit einer maximalen Unsicherheit von 8% vermessen werden.
Within the present work, photodissociation reactions on 100Mo, 93Mo and 92Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. Experimental data on these isotopes are important to explain the problem of the underproduction of the lighter p-nuclei - 92; 94Mo - within the models of the p-process nucleosynthesis. The reaction rates used in the nucleosynthesis calculations are usually obtained within the framework of the statistical model. In order to verify the model predictions and reduce the uncertainties, experimental measurements of the reaction cross sections are required. In particular, the data on (γ,n) reactions are of interest, since these reactions were shown to dominate the p-process flow in the molybdenum mass region.
As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the 100Mo(γ,n), 100Mo(γ,2n), 93Mo(γ,n) and 92Mo(γ,n) reactions were determined. The measurement of the 93Mo isotope is particularly important, since this nucleus is unstable, and the corresponding cross section has not been measured before.
It should be emphasized that Coulomb dissociation is a unique tool to study photoninduced reactions on unstable nuclei, which is especially relevant in the context of nucleosynthesis network calculations. However, because of to the complexity of the data analysis procedure and a number of model assumptions that are required in order to extract the Coulomb excitation cross section from the data, one of the main aspects of this thesis was to verify the method by comparing the results with the previously published data obtained with real photon beams. Integrated cross sections of the 100Mo(γ,n) and 100Mo(γ,2n) reactions were directly compared to the data by Beil et al., obtained at Saclay with photons from positron annihilation, while an indirect comparison could be performed with a recent photoactivation measurement by Erhard and co-workers. A reasonable agreement was observed for the 1n channel: a scaling factor of 0.8 ± 0.1 between our result and Beil et al. data is consistent with the scaling factor of 0.89±0.09 reported by Erhard et al. between their data and Beil et al. data. Both results are in agreement with the scaling factor of 0.85 ± 0.03 recommended by Berman et al. for the data measured at Saclay on nuclei in the respective mass region. A somewhat lower factor of 0.61 ± 0.09 between the present data and Beil et al. data was obtained for the 2n channel. The discrepancy might be explained by both the substantial efficiency correction that has to be applied to the LAND data in the two-neutron case, as well as by an insufficiently accurate assumption that the Saclay neutron detector efficiency is energy- and multiplicity- independent.
A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The calorimetric information that it delivers is essential to reconstruct the energy-differential cross section from the present measurement. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. This result is consistent with several independent investigations, which were performed using different methods. At the same time, a remarkable agreement between the simulated and experimental data was achieved under assumption that the inefficiency of the detector is explained by the loss of data from a number of crystals, which are randomly chosen in each event according to their averaged performance ratio (the ”on-off” effect). The reasons for the observed malfunction are yet not fully clear. Regardless of the exact reason, in the present conditions a deconvolution of the measured data from the CsI response is not possible. Consequently, within the framework of this thesis, the results are presented in terms of integrated cross sections. A search for alternative methods of data interpretation, allowing to extract energy-differential information out of the available data, in currently ongoing.
In the more recent experiments at the LAND setup, where the Crystal Ball gamma detector was used as a calorimeter, the reconstruction of the energy-differential cross section with a reasonable resolution was already shown to be feasible. It means that, even considering the uncertainties of the present experiment of the order of 10%, the uncertainties of the statistical model predictions, which are on average estimated to be within a factor of 1.5-2, can already be constrained.
The analysis of the present experiment is still in progress. As a next step, Coulomb excitation cross section for 94Mo will be obtained. The 94Mo(γ,n) reaction cannot be studied by photoactivation, since the life time of the daughter nucleus is too long (4000 y). At the same time, this reaction plays a key role in the p-process nucleosynthesis.
The future of the LAND setup - the R3B setup1 at FAIR2 - will take advantage of a three orders of magnitude higher intensity of the radioactive beams [85], as well as of a completely new detector system. High-resolution measurements of the energy-differential cross sections will be possible for exotic nuclei, which were never accessible in the laboratory before. Such measurements will open great opportunities for nuclear astrophysics, allowing to obtain high-quality experimental data even for regions of the nuclear chart where the statistical model calculations are not applicable.
The subject of this thesis aimed at a better understanding of the spectacular X-ray burst. The most likely astrophysical site is a very dense neutron star, which accretes H/He-rich matter from a close companion. While falling towards the neutron star, the matter is heated up and a thermonuclear runaway is ignited. The exact description of this process is dominated by the properties of a few proton-rich radioactive isotopes, which have a low interaction probability, hence a high abundance.
The topic of this thesis was therefore an investigation of the short-lived, proton-rich isotopes 31Cl and 32Ar. The Coulomb dissociation method is the modern technique of choice. Excitations with energies up to 20 MeV can be induced by the Lorentz contracted Coulomb field of a lead target. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt, Germany, a Ar beam was accelerated to an energy of 825 AMeV and fragmented in a beryllium target. The fragment separator was used to select the desired isotopes with a remaining energy of 650 AMeV. They were subsequently directed onto a 208 Pb target in the ALAND/LAND setup. The measurement was performed in inverse kinematics. All reaction products were detected and inclusive and exclusive measurements of the respective Coulomb dissociation cross sections were possible.
During the analysis of the experiment, it was possible to extract the energy-differential excitation spectrum of 31Cl, and to constrain astrophysically important parameters for the time-reversed 30S(p,γ)31Cl reaction. A single resonance at 0.443(37) MeV dominates the stellar reaction rate, which was also deduced and compared to previous calculations.
The integrated Coulomb dissociation cross section of this resonance was determined to 15(6) mb. The astrophysically important one- and two-proton emission channels were analyzed for 32Ar and energy-differential excitation spectra could be derived. The integrated Coulomb dissociation cross section for two proton emission were determined with two different techniques. The inclusive measurement yields a cross section of 214(29stat)(20sys) mb, whereas the exclusive reconstruction results in a cross section of 226(14stat)(23sys) mb. Both results are in very good agreement. The Coulomb dissociation cross section for the one-proton emission channel is extracted solely from the exclusive measurement and is 54(8stat)(6sys) mb.
Furthermore, the development of the Low Energy Neutron detector Array (LENA) for the upcoming R3B setup is described. The detector will be utilized in charge-exchange reactions to detect the low-energy recoil neutrons from (p,n)-type reactions. These reaction studies are of particular importance in the astrophysical context and can be used to constrain half lifes under stellar conditions. In the frame of this work, prototypes of the detector were built and successfully commissioned in several international laboratories.
The analysis was supported by detailed simulations of the detection characteristics.
Most elements heavier than iron are synthesized in stars during neutron capture reactions in the r- and s-process. The s-process nucleosynthesis is composed of the main and weak component. While the s-process is considered to be well understood, further investigations using nucleosynthesis simulations rely on measured neutron capture cross sections as crucial input parameters. Neutron capture cross sections
relevant for the s-process can be measured using various experimental methods. A prominent example is the activation method relying on the 7Li(p,n)7Be reaction as a neutron source, which has the advantage of high neutron intensities and is able to create a quasi-stellar neutron spectrum at kBT = 25 keV. Other neutron sources able to provide quasi-stellar spectra at different energies suffer from lower neutron intensities. Simulations using the PINO tool suggest the neutron activation of samples with different neutron spectra, provided by the 7Li(p,n)7Be reaction, and a subsequent linear combination of the obtained spectrum-averaged cross sections
to determine the Maxwellian-averaged cross section (MACS) at various energies of astrophysical relevance. To investigate the accuracy of the PINO tool at proton energies between the neutron emission threshold at Ep = 1880.4 keV and 2800 keV,
measurements of the 7Li(p,n)7Be neutron fields are presented, which were carried out at the PTB Ion Accelerator Facility at the Physikalisch-Technische Bundesanstalt in Braunschweig. The neutron fields of ten different proton energies were measured.
The presented neutron fields show a good agreement at proton energies Ep = 1887, 1897, 1907, 1912 and 2100 keV. For the other proton energies, E p = 2000, 2200, 2300, 2500, and 2800 keV, differences between measurement and simulation were found and discussed. The obtained results can be used to benchmark and adapt the PINO tool and provide crucial information for further improvement of the neutron activation method for astrophysics.
An application for the 7Li(p,n)7Be neutron fields is presented as an activation experiment campaign of gallium, an element that is mostly produced during the weak s-process in massive stars. The available cross section data for the 69,71Ga(n,γ)
reactions, mostly determined by activation measurements, show differences up toa factor of three. To improve the data situation, activation measurements were carried out using the 7Li(p,n)7Be reaction. The neutron capture cross sections for
a quasi-stellar neutron spectrum at kBT = 25 keV were determined for 69Ga and 71Ga.
The subject of this thesis is the experimental investigation of the neutron-capture cross sections of the neutron-rich, short-lived boron isotopes 13B and 14B, as they are thought to influence the rapid neutron-capture process (r process) nucleosynthesis in a neutrino-driven wind scenario.
The 13;14B(n,g)14;15B reactions were studied in inverse kinematics via Coulomb dissociation at the LAND/R3B setup (Reactions with Relativistic Radioactive Beams). A radioactive beam of 14;15B was produced via in-flight fragmentation and directed onto a lead-target at about 500 AMeV. The neutron breakup of the projectile within the electromagnetic field of the target nucleus was investigated in a kinematically complete measurement. All outgoing reaction products were detected and analyzed in order to reconstruct the excitation energy.
The differential Coulomb dissociation cross sections as a function of the excitation energy were obtained and first experimental constraints on the photoabsorption and the neutron-capture cross sections were deduced. The results were compared to theoretical approximations of the cross sections in question. The Coulomb dissociation cross section of 15B into 14B(g.s.) + n was determined to be s(15B;14B(g:s:)+n) CD = 81(8stat)(10syst) mb ; while the Coulomb dissociation cross section of 14B into a neutron and 13B in its ground state was found to be s(14B;13B(g:s:)+n) CD = 281(25stat)(43syst) mb: Furthermore, new information on the nuclear structure of 14B were achieved, as the spectral shape of the differential Coulomb dissociation cross section indicates a halolike structure of the nucleus.
Additionally, the Coulomb dissociation of 11Be was investigated and compared to previous measurements in order to verify the present analysis. The corresponding Coulomb dissociation cross section of 11Be into 10Be(g.s.) + n was found to be 450(40stat)(54syst ) mb, which is in good agreement with the results of Palit et al.