Refine
Year of publication
Document Type
- Doctoral Thesis (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- inflammation (2)
- microtubule-targeting agents (2)
- vascular endothelial cells (2)
- AF4 (1)
- AMPK, nuclear receptors, PPAR, LXR, fatty acid oxidation, ABCA1, human macrophages (1)
- Acute leukemia, chromosomal translocation, MLL, KMT2A, AF4-MLL, reciprocal fusion protein, MLL-r leukemia, (1)
- DDX6 (1)
- HIV Humanized Mice (1)
- Leukemia (1)
- Metabolismus (1)
Institute
- Biochemie, Chemie und Pharmazie (21)
- Pharmazie (10)
- Biochemie und Chemie (3)
In Deutschland erhalten jährlich etwa 12.500 Patienten die Diagnose Leukämie. Unter ihnen befinden sich ca. 6 % Kinder, welche mit 33,8 % den größten Anteil der kindlichen Krebsneuerkrankungen repräsentieren. Die überwiegende Form im Kindesalter ist die akute lymphatische Leukämie (ALL), deren genetische Ursache meistens in einem hyperdiploiden Karyotyp oder einer chromosomalen Translokation zu finden ist. Bei 8 % der pädiatrischen ALLs ist ein Rearrangement des MLL-Gens involviert. Unter Beteiligung des häufigsten Translokationspartnergens (TPG) AF4 entsteht die t(4;11)(q21;q23)-Translokation mit den beiden Fusionsproteinen AF4•MLL sowie MLL•AF4. Die Therapie erfolgt in der Regel gemäß Hochrisikoprotokollen aufgrund der extrem schlechten Prognose und der mit hoher Therapieresistenz assoziierten Rezidivrate. Eine Studie zur Korrelation zwischen klinischen Merkmalen und molekularen Charakteristika belegte die Abhängigkeit des Outcomes von der Verteilung des Bruchpunkts im MLL-Gen. Bei älteren Patienten treten die Bruchpunkte überwiegend in MLL Intron 9 oder 10 auf und bedeuten eine signifikant bessere Prognose im Vergleich zu den besonders bei Säuglingen präsenten Bruchpunkten im MLL Intron 11. Die damit verbundene Verkürzung der Plant Homeodomain (PHD) 1 kann neben einer modifizierten Funktion des PHD1 auch in einer veränderten Konformation der gesamten PHD-Domäne resultieren. Besondere Bedeutung hat die PHD1-3-Domäne wegen der Fähigkeit des PHD3 einerseits H3K4me-Signaturen zu erkennen und auf der anderen Seite mit CYP33 zu interagieren. Die mit transkriptionell aktivem Chromatin assoziierten H3K4me-Signaturen sowie die CYP33-vermittelte repressive Aktivität bedingen einen ambivalenten Charakter des MLL-Proteins. Daneben ist der PHD3 allein interessant wegen des Vorkommens von 4 differenten Varianten mit keinen, 3, 11 oder 14 fehlenden Aminosäuren, welche durch alternatives Spleißen an der MLL Exon 15/16-Verknüpfung entstehen (PHD3-0, PHD3-3, PHD3 11 und PHD3-14). Semiquantitative Bestimmungen in verschiedenen Zelllinien verdeutlichen die nahezu ähnliche Transkription aller 4 Varianten. Weiterführende Untersuchungen mit dem Yeast Two-Hybrid (Y2H)-System sowie folgende Koimmunpräzipitations (CoIP)-Experimente zeigten, dass der PHD3-0 die beste Dimerisierungsfähigkeit aufweist. Dagegen ist der am schlechtesten dimerisierende PHD3-3 allein in der Lage, CYP33 bzw. dessen RRM-Domäne zu binden. Die Interaktion mit inhibitorischen Proteinen und die folgende Funktion als transkriptioneller Repressor sind allein mit der PHD3-3-Variante möglich. Bei Betrachtung der gesamten PHD1-3-Domäne sowie deren verkürzter Variante (ΔPHD1-3) fällt die reduzierte Bindungsfähigkeit der ΔPHD1-3-Domäne an die CYP33 RRM-Domäne sowie deren fehlende Dimerisierung auf. Über die resultierende geringere Bindung an inhibitorische Proteine kann die transkriptionell repressive Aktivität reduziert werden, während die transkriptionell aktive Funktion an Bedeutung gewinnt. Neben der Untersuchung der PHD-Domänen des MLL-Proteins wurde das Y2H-System zur weiteren Aufklärung der AF4- und AF4•MLL-Multiproteinkomplexe (MPC) verwendet. Ähnlich den Wildtypproteinen MLL und AF4 sind auch die beiden aus der t(4;11)(q21;q23)-Translokation resultierenden Fusionsproteine an der Assemblierung von MPCs beteiligt. Besonders das reziproke AF4•MLL scheint bezüglich des Therapieerfolgs für die Leukämogenese entscheidend zu sein. Die Identifizierung und Verifizierung sowohl bekannter als auch neuer Komponenten der AF4- und AF4•MLL-MPCs gelang in verschiedenen Experimenten. Allerdings wurde meist nur die Präsenz der Proteine im MPC nachgewiesen. Die Y2H-Untersuchungen konnten Interaktionen zwischen den verschiedenen Proteinen der Komplex identifizieren und damit die Kenntnis über die Zusammensetzung der MPCs wesentlich erweitern und vertiefen. Aufgrund der Beteiligung viraler Proteine an der Krebsentstehung sowie der Rekrutierung von Transkriptionsfaktoren der Wirtszelle für die virale Replikation erscheint auch die Nutzung der Superelongationskomplexe (SEC) durch virale Proteine plausibel. Die Funktion des AF4-Proteins als Kofaktor von viralen Proteinen, besonders der HCMV und EBV immediate early (IE)-Proteine, wurde bereits gezeigt. Außerdem konnte der Einfluss des HCMV IE1 auf AF4-abhängige Effekte sowie dessen Beteiligung am AF4-MPC nachgewiesen werden. Mithilfe der Y2H-Experimente konnten nicht nur Interaktionen des HCMV IE1 sondern auch Wechselwirkungen der Onkoproteine E6/E7 des HPV mit den Proteinen der AF4- und AF4•MLL-MPCs identifiziert werden.
Die eukaryotische RNA-Polymerase II (RNAPII) ist der zentrale Faktor für die Umsetzung des genetischen Codes in funktionelle Proteine. Durch die Transkription wird die statische Information der DNA in ein transient nutzbares RNA-Molekül umgewandelt. Bei diesem fundamentalen Prozess der Genexpression wird ein spezifischer DNA-Abschnitt des Genoms abgelesen und in die komplementäre RNA transkribiert, die entweder direkt regulatorische bzw. funktionelle Aufgaben in der Zelle übernimmt oder als Matrize für die Proteinbiosynthese dient. Zur Erhaltung der Funktionalität eines Organismus und zur schnellen und gezielten Reaktion auf exogene Reize ist eine strikte Regulation der Transkription und der zahlreichen beteiligten Faktoren notwendig. Aufgrund der zentralen Rolle in der Genexpression ist diese Regulation äußerst vielschichtig und erfordert eine feinabgestimmte Maschinerie an Enzymen und Transkriptionsfaktoren, deren genaue Wirkungsweise und Abhängigkeit noch nicht vollständig verstanden sind. Fehler in der Transkriptionsregulation werden mit einer Reihe von schwerwiegenden metabolischen Störungen und der möglichen malignen Transformation der betroffenen Zelle in Verbindung gebracht.
Während einige Regulationsmechanismen der RNAPII bereits seit längerer Zeit beschrieben sind, ist eine besondere Form der RNAPII-abhängigen Regulation erst in den letzten Jahren Gegenstand genauerer Untersuchungen geworden. So erfährt die RNAPII bei einer Vielzahl von Genen unmittelbar nach der Transkriptionsinitiation einen Arrest, der das Enzym nicht weiter über die DNA prozessieren lässt und somit die produktive Elongation des Gens blockiert. Die Aufhebung dieses promotornahen Arrests wird durch den positiven Transkriptions-Elongationsfaktor b (P-TEFb) dominiert, der durch distinkte post-translationale Modifikationen der C-terminalen Domäne der RNAPII und assoziierter Faktoren den Übergang in die produktive Transkriptionselongation ermöglicht. P-TEFb selbst unterliegt dabei einer strengen Regulation durch die Inkorporation in inhibierende Speicherkomplexe (7SK snRNPs), bestehend aus der 7SK snRNA und mehrerer assoziierter Proteine. Abseits des 7SK snRNP wurde P-TEFb als Bestandteil großer Multiproteinkomplexe identifiziert, die einen positiven Einfluss auf die Transkriptionselongation besitzen. Die Transition von P-TEFb aus dem 7SK snRNP in diese sogenannten Superelongationskomplexe (SECs) stellt einen der zentralen Regulationsmechanismen der eukaryotischen Transkription dar, ist jedoch noch nicht ausreichend verstanden.
Ein zentrales Element aller SECs bilden die Mitglieder der AF4/FMR2-Proteinfamilie, darunter das AF4 Protein, dem neben der Erhaltung der strukturellen Integrität mittlerweile auch eine Funktion in der Rekrutierung von P-TEFb zugeschrieben wird. Dabei scheint AF4 jedoch auf die Hilfe bislang noch nicht charakterisierter Faktoren angewiesen zu sein. AF4 ist über diese Rolle hinaus als Bestandteil des Fusionsproteins AF4-MLL eng mit der onkogenen Zelltransformation im Falle einer durch die Translokation t(4;11)(q21;q23) bedingten, akuten lymphoblastischen Leukämie assoziiert.
Das zentrale Thema dieser Arbeit stellen Untersuchungen zum Transfer von P-TEFb aus dem 7SK snRNP zum AF4-Protein dar. Dabei konnte zunächst die DEAD-Box RNA-Helikase DDX6 als Integraler Bestandteil der AF4-SECs identifiziert werden, der bereits eine Funktion in der Kontrolle des microRNA- wie auch des mRNA-Metabolismus zugeschrieben werden konnte. Aus diesem Grund wurde von uns eine mögliche Beteiligung von DDX6 an der Rekrutierung von P-TEFb zum AF4-SEC durch Modulationen der 7SK snRNA postuliert. Des Weiteren konnte eine Bindefähigkeit von DDX6 gegenüber der 7SK snRNA sowie eine direkte Korrelation zwischen des zellulären DDX6-Proteinlevel und der Akkumulation von P-TEFb im AF4-SEC nachgewiesen werden. Sowohl die Überexpression von DDX6 als auch die von AF4 resultierten in einer gesteigerten mRNA-Produktion, wobei die Ergebnisse auf einen kooperativen Mechanismus zwischen den beiden Proteinen in der Aktivierung der Transkription hindeuteten. Außerdem konnte die These einer DDX6-vermittelten Aktivierung von P-TEFb anhand von Expressionsanalysen des bekannten P-TEFb Zielgens HEXIM1, dessen Expression im Zusammenhang eines negativen Rückkopplungsmechanismus gesteigert wird, bestätigt werden. Damit konnte der DEAD-Box RNA-Helikase DDX6 in dieser Arbeit das erste Mal eine entscheidende Funktion in der Rekrutierung von P-TEFb aus dem 7SK snRNP in den AF4-SEC, und somit an der Kontrolle der eukaryotischen Transkription, zugeschrieben werden.
Das natürlich vorkommende Polyphenol Resveratrol (3,4‘,5-(E)-Trihydroxystilben) ist eine potente chemopräventive Substanz, die in vielen verschiedenen Krebszelllinien wirksam ist. Außerdem verfügt sie über anti-inflammatorische, anti-oxidative und pro-apoptotische Wirkungen. Da Resveratrol auch in Tiermodellen des Typ-2-Diabetes und der nicht-alkoholischen Fettlebererkrankung gute Effekte gezeigt hat, wird in Erwägung gezogen es zur Prävention und Behandlung von metabolischen Erkrankungen einzusetzen. Allerdings liegen, aufgrund von schneller Metabolisierung und geringer Bioverfügbarkeit, die wirksamen Konzentrationen im mikromolaren Bereich. Eine geeignete Strategie, um die anti-tumorale Wirkung und die Bioverfügbarkeit von Resveratrol zu verbessern, scheint die Methylierung der freien Hydroxylgruppen zu sein. Allerdings liefern einige Studien Hinweise darauf, dass diese strukturelle Modifikation der Stilbengrundstruktur zu einer Veränderung des antiproliferativen Wirkmechanismus der methylierten Substanzen führt. Daher führten wir im ersten Teil dieser Arbeit genauere Untersuchungen durch, um die Veränderungen der biologischen Wirkung, die durch die Methylierung der freien Hydroxylgruppen von (E)- und (Z)-Resveratrol verursacht werden, zu charakterisieren. Einen Schwerpunkt bildete die Bestimmung der metabolischen Effekte der methylierten Substanzen. Dabei sollte aufgeklärt werden, ob die Analoga noch immer in der Lage sind bekannte Resveratrol-Targets, wie AMPK, SIRT1 und Phosphodiesterasen, zu modulieren. Zunächst bestätigten wir, dass die methylierten Resveratrolanaloga ST911 (3,4‘,5-Z)-Trimethoxystilben) und ST912 (3,4‘,5-(E)-Trimethoxystilben) einen starken antiproliferativen Effekt auf verschiedene Krebszelllinien ausüben. Wie bereits zuvor beschrieben, konnten wir beobachten, dass ST911 und ST912 das Wachstum von Tumorzellen stärker beeinflussen, als die hydroxylierten Substanzen (E)- und (Z)-Resveratrol. Dies, in Verbindung mit einer vernachlässigbaren zytotoxischen Wirkung und einer deutlich geringeren antiproliferativen Wirkung auf Primärzellen, legt nahe, dass ST911 als potentielles neues Chemotherapeutikum weiter untersucht werden sollte. Zudem zeigten ST911 und ST912 signifikante pro-apoptotische Wirkungen in CaCo-2-Zellen. Auch Resveratrol konnte in diesen Zellen Apoptose auslösen, allerdings erst nach Behandlung mit deutlich höheren Konzentrationen, verglichen mit ST911 und ST912. Eine genauere Charakterisierung der antitumoralen Wirkung von ST911 in HT-29-Zellen zeigte, dass ST911 die Polymerisation von Tubulin zu Mikrotubuli beeinflusst und einen Arrest des Zellzyklus in der Mitose-Phase auslöst. Im Gegensatz dazu führt Resveratrol zu einem Zellzyklus-Arrest in der S-Phase und beeinflusst die Tubulinpolymerisation nicht. Diese Beobachtungen verstärkten die Annahme, dass ST911 ein Mitosehemmer ist und betonten noch einmal die mechanistischen Unterschiede zwischen Resveratrol und den methylierten Analoga. Interessanterweise konnte ST911 die hepatische Fettakkumulation in einem in-vitro-Steatosemodell nicht beeinflussen, während eine Behandlung mit Resveratrol zu einer signifikanten Reduktion der intrahepatischen Triglyzeride führte. Dieses Experiment lässt vermuten, dass die stärkere antiproliferative Wirkung von ST911, keine erhöhte Aktivität in metabolischen Krankheitsmodellen nach sich zieht. Die beobachteten Unterschiede im Steatosemodell führten zu der Frage, ob die methylierten Analoga noch immer in der Lage sind die gleichen metabolischen Targetgene zu modulieren, die in der Literatur für Resveratrol beschrieben sind. Vor kurzem wurden Phosphodiesterasen (PDEs) als direkte Targets von Resveratrol identifiziert. Die Inhibition von PDEs durch Resveratrol führt zu einem Anstieg der intrazellulären cAMP-Konzentration. Diese wiederum aktiviert die bekannten Resveratrol-Targetgene AMPK und SIRT1. Unsere Experimente zeigten, dass ST911 und ST912 keinen Einfluss auf die intrazelluläre cAMP-Konzentration haben. Zusätzlich konnten wir keine AMPK- oder SIRT1-abhängigen Veränderungen der Genexpression beobachten. Dies ist ein Hinweis darauf, dass die Substanzen ihre zellulären Effekte vermutlich nicht über eine Modulation von PDEs, AMPK oder SIRT1 vermitteln. Zusammenfassend liefert der erste Teil der Arbeit Beweise dafür, dass ST911 keine positiven Effekte in metabolischen Krankheitsmodellen ausübt. Dies liegt vermutlich in einem Aktivitätsverlust gegenüber den metabolischen Targetgenen von Resveratrol begründet. Des Weiteren unterstützen unsere Ergebnisse frühere Arbeiten, die zeigen konnten, dass ST911 an Tubulin bindet und die Polymerisation zu Mikrotubuli verhindert. Weiterhin bestätigen unsere Daten, dass die Methylierung von Resveratrol zu einer grundlegenden Veränderung des Wirkmechanismus dieser Substanzen führt, die von einem kompletten Verlust der metabolischen Aktivität begleitet wird. Dies sollte bei zukünftigen Leitstrukturoptimierungen mit Resveratrol berücksichtigt werden. Im ersten Teil dieser Arbeit konnte außerdem gezeigt werden, dass Resveratrol die Gentranskription des nukleären Rezeptors SHP (aus dem Englischen: small heterodimer partner) stark induziert. Der Mechanismus dieser Induktion scheint von der Aktivität von AMPK und SIRT1 abhängig zu sein. Diese Ergebnisse konnten unser Verständnis der vielseitigen biologischen Wirkungen von Resveratrol erweitern. Dennoch sollte die Relevanz der SHP-Induktion für die Effekte von Resveratrol auf metabolische Krankheiten und Tumorwachstum noch weiter untersucht werden. Während der Experimente für den ersten Teil der Arbeit stellten wir fest, dass der AMPK-Inhibitor Compound C (CC) in der Lage war, die wachstumshemmende Wirkung von ST911 signifikant zu reduzieren. Die Untersuchung dieses sogenannten „Rescue-Effektes“ wird durch die Tatsache bestärkt, dass eine steigende Anzahl von Tumoren resistent gegenüber Chemotherapeutika ist. Außerdem fehlen spezifische Antidota für akute Intoxikationen mit Mitosehemmern. Daher zielten die folgenden Experimente darauf ab den Rescue-Effekt näher zu charakterisieren und die zugrundeliegenden Wirkmechanismen aufzuklären. Zunächst zeigten Knockdown-Experimente, dass der Rescue-Effekt unabhängig von der AMPK-inhibierenden Wirkung von CC vermittelt wird. Da CC ein ATP-kompetitiver Inhibitor der AMPK ist und zuvor bereits gezeigt wurde, dass es auch eine große Zahl anderer Kinasen inhibieren kann, vermuteten wir, dass der Rescue-Effekt mit diesen Off-Target-Effekten von CC zusammenhängt. Als nächstes testeten wir, ob die wachstumshemmenden Effekte von anderen Mitosehemmern auch durch CC aufgehoben werden können. Wir wählten verschiedene etablierte Substanzen, die dafür bekannt sind mit Mikrotubuli zu interagieren: Colchicin, das Vinca-Alkaloid Vinblastin, Disorazol A und das aus Taxus-Arten isolierte Paclitaxel. Die ersten drei dieser Substanzen haben eine depolymerisierende Wirkung auf die Mikrotubuli, während Paclitaxel zu einer stärkeren Polymerisierung führt. Zudem binden diese Substanzen an drei verschiedenen Bindestellen am Tubulin. Interessanterweise zeigten unsere Versuche, dass CC die antiproliferative Wirkung aller getesteten Mitosehemmer auf HT-29-Zellen, unabhängig von der Bindestelle, abschwächen kann. Des Weiteren konnte CC die Wirkung der pro-apoptotischen Substanz Staurosporin nicht reduzieren. Diese Ergebnisse weisen darauf hin, dass eher die tubulinbindenden, als die pro-apoptotischen Eigenschaften, von ST911 für den Rescue-Effekt verantwortlich sind. Um zu untersuchen, ob der Rescue-Effekt mit einer kompetitiven Bindung von CC und Mitosehemmern an Mikrotubuli erklärt werden kann, führten wir eine Immunfluoreszenzfärbung von ?-Tubulin durch. Wir konnten beobachten, dass die Tubulinpolymerisation und die Funktion des Spindelapparates in Zellen, die mit Mitosehemmern behandelt wurden, deutlich eingeschränkt waren. Außerdem stellten wir fest, dass CC nicht in der Lage ist die Zerstörung des Tubulingerüstes durch die Mitosehemmer zu verhindern. Eine Einzelbehandlung mit CC hatte keine Wirkung auf die Polymerisation des Tubulin zu Mikrotubuli. Insgesamt legen diese Daten nahe, dass CC nicht direkt an Mikrotubuli binden kann, um mit den Mitosehemmern um eine Bindung zu kompetitieren. Um diese Hypothese zu stärken, führten wir, in Kooperation mit Dr. Jennifer Herrmann (Helmholtz Institut für Pharmazeutische Forschung, Saarbrücken) SPR-Experimente mit Chips durch, auf denen Tubulin immobilisiert wurde. Die Messungen zeigten, das CC nicht in der Lage war gebundenes Disorazol A von der Bindestelle am Tubulin zu verdrängen. Dies zeigte nun deutlich, dass der Rescue-Effekt nicht auf einer Kompetition von CC und Mitosehemmern um Tubulinbindestellen beruht. Zellzyklusanalysen zeigten, dass die kombinierte Behandlung mit ST911 und CC zu einer Abschwächung des durch ST911 verursachten G2/M-Arrestes führt. Da wir zuvor bereits eine Beeinflussung der direkten Targets von CC und Mitosehemmern, AMPK oder Tubulin, ausgeschlossen hatten, schlussfolgerten wir, dass CC vermutlich mit anderen zellulären Signalwegen interagiert, die zu den beschriebenen Veränderungen des Zellwachstums und der Zellzyklusprogression führen. Eine Literaturrecherche ergab, dass ein erhöhter intrazellulärer Polyaminspiegel, die Aktivierung des PI3K/Akt-Signalweges oder eine erhöhte Aktivität des Transkriptionsfaktors c-Myc zu einer Abschwächung eines G2/M-Arrestes führen können. Daher fokussierten wir die weiteren Experimente auf die Untersuchung einer möglichen Beteiligung dieser Targets an der Vermittlung des Rescue-Effektes. Wir zeigten, dass CC die Expression der Spermidin/Spermin-N1-Acetyltransferase (SSAT) erhöhen kann. Die SSAT ist ein Enzym, das an der Biosynthese der Polyamine beteiligt ist. Zusätzlich beobachteten wir, dass die Behandlung mit CC nach 4 h zu einer Erhöhung von phosphoryliertem und damit aktiviertem Akt (pAkt) führt. Die zusätzliche Behandlung mit Wortmannin, einer Substanz, welche die Phosphorylierung von Akt hemmen kann, führte zu einer Abschwächung des Rescue-Effektes. Insgesamt weisen diese Ergebnisse darauf hin, dass eine Aktivierung von Akt-Signalwegen und ein Einfluss auf die Polyaminbiosynthese, zumindest teilweise, mit dem Rescue-Effekt zusammenhängen können. Die Überexpression von c-Myc, einem Transkriptionsfaktor, der eng mit dem Akt-Signalweg und der Biosynthese von Polyaminen zusammenhängt, ist oft mit einer erhöhten Zellproliferation verbunden. Wir untersuchten die zellulären Proteinmengen von c-Myc mittels Western Blot und entdeckten, dass nach der Behandlung mit Mitosehemmern zusätzliche Banden für c-Myc auf den Blots auftauchten. Diese Ergebnisse geben einen Hinweis auf eine posttranslationale Modifikation von c-Myc nach der Behandlung mit Mitosehemmern. Durch Kombination mit CC wurden die zusätzlichen Banden abgeschwächt und die Gesamtmenge an c-Myc-Protein nahm nach längeren Inkubationszeiten rapide ab. Dies legt nahe, dass die posttranslationale Modifikation von c-Myc zum Abbau des Proteins führt und, dass CC dies abschwächen kann. Verschiedene Arbeiten zeigten bereits, dass c-Myc phosphoryliert wird und nach Konjugation mit Ubiquitin vom Proteasom abgebaut wird. Daher überprüften wir, ob eine Inhibition des Proteasoms mit MG-132 zu einem ähnlichen Rescue-Effekt führt wie mit CC. Tatsächlich führte die Behandlung mit ST911 in Kombination mit MG-132 zu einer Zunahme der Zellproliferation, wie sie vorher bereits für CC beobachtet wurde. Dies bestärkte die Theorie, dass der proteasomale Abbau von c-Myc eine Rolle beim Rescue-Effekt spielen kann. Als nächstes untersuchten wir die Phosphorylierungen von c-Myc am Ser62 und Thr58. Diese Phosphorylierungen spielen eine wichtige Rolle beim Abbau von c-Myc, indem Sie das Protein für die Konjugation mit Ubiquitin markieren. Die densitometrische Auswertung der Western Blots ergab, dass die Behandlung mit ST911 initial zu einem Anstieg von phospho-c-Myc führt, dem eine schnelle Abnahme zu späteren Zeitpunkten folgt. Außerdem konnte gezeigt werden, dass dieser Anstieg von phospho-c-Myc durch Kombination mit CC reduziert wurde. Dies unterstützt die Hypothese, dass ST911 den proteasomalen Abbau von c-Myc begünstigt und CC dies verhindern kann. Dies ist eine mögliche Erklärung für die erhöhte Zellproliferation, die für die durch CC „geretteten“ Zellen beobachtet wurde. Allerdings konnte das direkte Target, das für die Vermittlung des Rescue-Effektes durch CC verantwortlich ist, bisher nicht identifiziert werden. DYRKs (aus dem Englischen: Dual-specificity tyrosine-phosphorylation-regulated kinases) sind wichtige Regulatoren von Proteinstabilität und –abbau während der Zellzyklusprogression. Vor kurzem wurde gezeigt, dass DYRK1A und DYRK2 c-Myc am Ser62 phosphorylieren können und es dadurch für den proteasomalen Abbau markieren. Interessanterweise wurde CC bereits in einer früheren Publikation als potenter Inhibitor verschiedener DYRKs beschrieben. Allerdings wurde die Hemmung der DYRKs durch CC in diesem Artikel nur in einer einzelnen Konzentration getestet. Daher bestimmten wir in einem in-vitro-Kinaseassay in Kooperation mit Dr. Matthias Engel (Universität des Saarlandes, Saarbrücken) die IC50-Werte für CC gegenüber DYRK1A, DYRK1B und DYRK2. Unsere Ergebnisse zeigten deutlich, dass CC ein bevorzugter Inhibitor von DYRK1A und DYRK1B (IC50-Wert von etwa 1 µM) ist, aber auch DYRK2 hemmen kann (IC50-Wert von etwa 5 µM). Da sich die vermutete Bindestelle von CC in der stark konservierten Kinasedomäne befindet, ist eine unspezifische Inhibition verschiedener DYRKs nicht überraschend. Genexpressionsanalysen zeigten, dass HT-29 und HepG2 vergleichbare Mengen an DYRK1A exprimieren, während DYRK1B und DYRK2 deutlich weniger in HepG2 vorhanden sind. Vorige Experimente hatten gezeigt, dass HepG2 weniger sensitiv für ST911 und den durch CC vermittelten Rescue-Effekt waren. Wir schlussfolgerten, dass die unterschiedliche Expression der DYRK-Formen eine mögliche Erklärung für diese Unterschiede sein könnte. Daher entschieden wir uns für eine nähere Untersuchung von DRK1B und DYRK2. Experimente mit verschiedenen Inhibitoren der DYRKs zeigten, dass diese Substanzen, ähnlich wie CC, in der Lage waren die antiproliferative Wirkung von ST911 abzuschwächen. Diese Ergebnisse wurden in nachfolgenden Knockdown-Experimenten bestätigt. Dies legt nahe, dass die DYRKs zumindest teilweise für die Vermittlung des Rescue-Effektes verantwortlich sind. Zusammenfassend man kann sagen, dass der Rescue-Effekt vermutlich mit der Biosynthese von Polyaminen, dem Akt-Signalweg und dem proteasomalen Abbau von c-Myc zusammenhängt. Des Weiteren scheint die direkte Inhibition von DYRKs durch CC ein vielversprechender Ansatz für die Erklärung des Effektes zu sein. Allerdings konnte in keinem der Experimente eine kompletten Aufhebung des Rescue-Effektes durch CC gezeigt werden. Daher gehen wir davon aus, dass verschiedene Targets in die Vermittlung des Rescue-Effektes involviert sind. Dies ist höchstwahrscheinlich auf eine unspezifische, ATP-kompetitive Hemmung verschiedener Kinasen durch CC zurückzuführen. Nichtsdestotrotz, sind eine nähere Untersuchung von DYRKs im Rahmen der Therapieresistenz von Tumoren und eine genauere Aufklärung der am Rescue-Effekt beteiligten Signalwege eine interessantes Feld für weitere Untersuchungen.
In the recent years, myxobacteria have emerged as a novel source of natural compounds with structural diversity and biological activity for drug discovery. In this work, the two myxobacterial compounds archazolid and vioprolide were characterized for their potential pharmacological effects in vascular endothelial cells. Archazolid is a wellestablished v-ATPase inhibitor found in Archangium gephyra and Cystobacter spec. As the v-ATPase represents a promising target in cancer treatment, the effects of archazolid have been intensively studied in cancer cells, but rarely in endothelial cells. Vioprolide is an antifungal and cytotoxic metabolite obtained from Cystobacter violaceus. There are only few studies on vioprolide, most of them focusing on its biosynthesis. Preliminary studies revealed that it inhibited TNF-induced expression of ICAM-1, indicating possible anti-inflammatory properties. As the endothelium plays an important role in cancer and inflammation, it represents an attractive drug target. Therefore, the archazolid and vioprolide were investigated regarding their effects on endothelial cells.
V-ATPase inhibition by archazolid resulted in anti-tumor and anti-metastatic effects in vitro and in vivo. Archazolid was used to study the consequences of v-ATPase inhibition in endothelial cells that might contribute to the anti-metastatic activities observed in vivo. To analyze the impact of archazolid on the interaction endothelial and cancer cells, in vitro cell adhesion and transmigration assays were performed using primary HUVEC or immortalized HMEC-1 and different cancer cell types (MDA-MB-231, PC-3 and Jurkat cells). For these experiments, only the endothelial cells were treated with archazolid. VATPase inhibition by archazolid led to an increased adhesion of the metastatic breast cancer cell line MDA-MB-231 and prostate cancer cell line PC-3 onto endothelial cells whereas the adhesion of Jurkat cells was unaffected. Interestingly, archazolid treatment of HUVECs decreased the transendothelial migration of MDA-MB-231 cells. Endothelial ICAM-1, VCAM-1, E-selectin and N-cadherin are potential ligands of interacting cancer cells. Therefore, the mRNA and surface protein levels of these cell adhesion molecules were measured via qRT-PCR and flow cytometry, respectively. These adhesion molecules were not responsible for the archazolid-induced cancer cell adhesion, as archazolid treatment of HUVECs did not upregulate their mRNA or surface expression. Instead, cell adhesion assays using a monoclonal antibody against integrin subunit β1 showed that β1-integrins expressed on MDA-MB-231 and PC-3 cells mediated the archazolid-induced cancer cell adhesion. Cell adhesion assays onto plastic coated with ECM components which are the major ligands of β1-integrins, revealed that MDA-MB231 and PC-3 cells preferably interact with collagen. So next, we investigated the influence of archazolid on surface collagen levels in HUVECs by immunostaining, which demonstrated an increase of nearly 50 % upon archazolid treatment. We confirmed the hypothesis that the expression and activity of cathepsin B, a lysosomal enzyme that degrades extracellular matrix components including collagen, was inhibited by archazolid in endothelial cells. Finally, overexpression of cathepsin B reduced the cancer cell adhesion on archazolid-treated HUVECs, but also in control cells, indicating a negative correlation between cathepsin B expression and cancer cell adhesion.
The influence of vioprolide on the interaction of endothelial cells with leukocytes was analyzed by in vitro cell adhesion assays using HUVECs and primary monocytes, THP-1 or Jurkat cells. Vioprolide inhibited the adhesion of these cells onto TNF-activated HUVECs. In addition, the endothelial-leukocyte interaction was observed in vivo by intravital microscopy in the mouse cremaster muscle. Vioprolide prevented the TNFinduced firm adhesion and transmigration of leukocytes, while leukocyte rolling was not affected. ICAM-1, VCAM-1 and E-selectin are cell adhesion molecules, which are upregulated by TNF and mediate leukocyte adhesion onto endothelial cells. Therefore, flow cytometric analysis was performed to measure their surface expression. Vioprolide significantly decreased TNF-induced expression of surface ICAM-1, VCAM-1 and E-selectin, which was in line with the in vitro results. In vivo, vioprolide may act in a different way on E-selectin expression, so that leukocyte rolling, which is governed by E-selectin, remained unaffected. qRT-PCR experiments revealed that the mRNA expression of ICAM-1 and VCAM-1 were also reduced by vioprolide, indicating a regulation on transcriptional level. In contrast, the mRNA expression of E-selectin was not decreased at the timepoint when surface protein expression was diminished. The induction of these cell adhesion molecules is mainly mediated by the transcription factor NFκB. A Dual-Luciferase® reporter assay was used to study the impact of vioprolide on the TNF-induced NFκB promotor activity. Vioprolide blocked the TNF-induced NFκB promotor activity while the TNF-induced IκBα degradation and nuclear translocation of the NFκB subunit p65 was not altered by vioprolide. Western blot analysis revealed that vioprolide had no effect on the activation of MAPK (p38, JNK) and AKT by TNF, which could interfere with the NFκB-dependent gene expression.
Taken together, archazolid and vioprolide are interesting myxobacterial compounds with different modes of actions. The study suggests that the v-ATPase inhibitor archazolid impairs the expression and activity of cathepsin B in endothelial cells, which leads to a higher amount of collagen on the endothelial surface. As a result, the adhesion of β1-integrin expressing metastatic cancer cells onto archazolid-treated endothelial cells increased while transendothelial migration was reduced. Further, archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Vioprolide was able to prevent TNF-induced endothelial-leukocyte interaction in vitro and in vivo by interfering with NFκB-dependent gene expression. Further research is required to enlighten the underlying mechanism and the direct target of vioprolide.
Pretubulysin (PT), a biosynthetic precursor of the myxobacterial compound tubulysin D, was recently identified as a novel microtubule-targeting agent (MTA) causing microtubule destabilization. MTAs are the most frequently used chemotherapeutic drugs. They are well studied regarding their direct cytotoxic effects against various tumors as well as for their anti-angiogenic and vascular-disrupting action addressing endothelial cells of the tumor vasculature. However, the impact of MTAs on endothelial cells of the non-tumor vasculature has been largely neglected, although tumor cell interactions with the healthy endothelium play a crucial role in the process of cancer metastasis. Besides their use as potent anti-cancer drugs, some MTAs such as colchicine are traditionally used or recommended for the therapy of inflammatory diseases. Here, too, the role of endothelial cells has been largely neglected, although the endothelium is crucially involved in regulating the process of inflammation.
In the present study, the impact of PT on tumor-endothelial cell interactions was therefore analyzed in vitro to gain insights into the mechanism underlying its anti-metastatic effect that was recently confirmed in vivo. In the second part of this work, the influence of PT and other MTAs, namely the microtubule-destabilizing compounds vincristine (VIN) and colchicine (COL) and the microtubule-stabilizing drug paclitaxel (PAC), on leukocyte-endothelial cell interactions was investigated in vitro and in vivo (only PT). It is important to mention that in all in vitro experiments solely endothelial cells and not tumor cells or leukocytes were treated with the MTAs to strictly focus on the role of the endothelium in the action of these compounds.
The impact of PT on tumor-endothelial cell interactions was analyzed in vitro by cell adhesion and transendothelial migration assays as well as immunocytochemistry using the breast cancer cell line MDA-MB-231 and primary human umbilical vein endothelial cells (HUVECs). The treatment of HUVECs with PT increased the adhesion of MDA cells onto the endothelial monolayer, whereas their transendothelial migration was reduced by the compound. Thereafter, the influence of PT on the endothelial cell adhesion molecules (CAMs) E-selectin, N-cadherin, ICAM-1, VCAM-1 and galectin-3 and on the CXCL12/CXCR4 chemokine system was examined, since they might be involved in the PT-triggered tumor cell adhesion. Interestingly, although PT induced the upregulation of ICAM-1, VCAM-1, N-cadherin and CXCL12, cell adhesion assays using neutralizing antibodies or the CXCL12 inhibitor AMD3100 revealed that all these molecules were dispensable for the PT-evoked tumor cell adhesion. As PT induces the formation of interendothelial gaps and MDA cells might adhere onto components of the underlying extracellular matrix (ECM), the precise location of MDA cells attached to the PT-treated endothelial monolayer was investigated. Instead of a direct interaction between tumor and endothelial cells, this work showed that MDA cells preferred to adhere to the ECM component collagen that was exposed within PT-triggered endothelial gaps. Both the PT-evoked increase in tumor cell adhesion onto and the decrease in trans-endothelial migration were completely abolished when β1-integrins were blocked on MDA cells. Similar results were obtained when endothelial cells were treated with VIN and COL but not PAC, indicating that the observed effects of PT depend on its microtubule-destabilizing activity.
The impact of PT, VIN, COL and PAC on leukocyte-endothelial cell interactions was analyzed in vivo (only PT) by intravital microscopy of the mouse cremaster muscle and in vitro by cell adhesion assays using the monocyte-like cell line THP-1 and TNFα-activated human dermal microvascular endothelial cells (HMEC-1). While PT did not affect the rolling of leukocytes on the endothelium, their firm adhesion onto and transmigration through the activated endothelium was reduced by PT in vivo. In accordance, the treatment of HMEC-1 with PT, VIN and COL decreased the TNFα-induced adhesion of THP-1 cells onto the endothelial monolayer, whereas PAC had no influence on this process. Thereafter, the influence of PT, VIN, COL and PAC on endothelial ICAM-1 and VCAM-1 was examined, since these molecules are substantially involved in the firm adhesion of leukocytes onto the endothelium. The cell surface protein expression of ICAM-1 and VCAM-1 was reduced by PT, VIN and COL in activated endothelial cells, whereas PAC did only slightly affect the TNFα-induced upregulation of VCAM-1. As the pro-inflammatory transcription factor NFκB plays a crucial role in the TNFα-induced expression of these CAMs, the impact of the MTAs on the NFκB promotor activity was investigated. While PT, VIN and COL decreased the activation of NFκB in activated endothelial cells, PAC did not affect this process. However, in contrast to the strong effects regarding the cell surface protein expression of ICAM-1 and VCAM-1, the effects of PT, VIN and COL on the NFκB activity was rather low. Thus, the used MTAs might also affect other relevant signaling pathways and/or the intracellular transport of CAMs might be influenced by the impact of the MTAs on the microtubule network.
Taken together, the current study provides – at least in part – an explanation for the anti-metastatic potential of PT and gives first insights into the use of PT and VIN as anti-inflammatory drugs. Moreover, this work highlights the endothelium as an attractive target for the development of new anti-cancer and anti-inflammatory drugs.
Disturbances in lipid metabolism are responsible for many chronic disorders, such as type 2 diabetes and atherosclerosis. Regulation of lipid metabolism occurs by activated transcription factors peroxisome proliferator-activated receptor δ (PPARδ) and liver X receptor α (LXRα) mediating transcription of different target genes involved in regulation of fatty acid uptake and oxidation or cellular cholesterol homeostasis. This is especially relevant for the macrophages, since pathways regulated by PPARδ and LXRα affect foam cell formation, a process driving the progression of atherosclerotic lesion. AMP-activated protein kinase (AMPK) plays a central role in energy homeostasis in every type of eukaryotic cell, but its role in human macrophages, particularly with regard to lipid metabolism, is not precisely defined yet. Thus, I investigated the impact of AMPK activity on PPARδ and LXRα and the expression of their target genes involved in fatty acid oxidation (FAO) and cholesterol metabolism.
As PPARδ has been described as a potential target for prevention and treatment of several disorders and AMPK as interesting drug target for diabetes and metabolic syndrome, the aim of the first part of my studies was to investigate their interaction in primary human macrophages. Completing the first challenge successfully, I was able to establish a lentiviral transduction system for constitutively active AMPK (consisting of a truncated catalytic AMPKα1 subunit bearing an activating T198D mutation) in primary human macrophages.
Using genome-wide microarray analysis of gene expression, I demonstrate FAO as the strongest affected pathway during combined AMPKα1 overexpression and PPARδ activation.
The most influenced genes were validated by quantitative PCR as well as by Western analysis. I found that AMPK increases the expression of FAO-associated genes targeted by PPARδ. Corroborating the results obtained using AMPKα1 overexpression, PPARδ target gene expression was increased not only by PPARδ agonist GW501516, but also by pharmacological allosteric AMPK activator A-769662. Additional enhancement of target gene mRNA expression was achieved upon co-activation of PPARδ and AMPK. Silencing PPARδ expression increased basal expression of target genes, confirming the repressive nature of ligand-free PPARδ, abolishing the increased target gene expression upon AMPK or PPARδ activation. Measurements of triglyceride contents of human macrophages incubated with VLDL following PPARδ activation demonstrated a reduction of intracellular triglyceride accumulation in cells, which may reflect the enhancement of fat catabolism.
In the second part of my studies, I concentrated on the regulation of cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) expression by AMPK. ABCA1 facilitates
cholesterol efflux from macrophages thus, preventing atherosclerosis progression. For the first time, AMPK implication in the regulation of the ABCA1 pathway could be presented. Both AMPK overexpression and activation lead to significantly increased ABCA1 expression, whereas AMPKα1 knock-down strongly reduced this effect. Besides, I was able to prove an enhanced activity of ABCA1 during AMPK activation in human THP-1 macrophages by measuring cholesterol efflux into apolipoprotein AI-containing medium.
Previous findings showed regulation of ABCA1 by LXRα. I confirmed these results by silencing experiments indicating an essential role of LXRα in ABCA1 regulation pathway.
Here, ABCA1 mRNA as well as protein expression were positively mediated by LXRα. LXRα activation elevated ABCA1 levels, whereas its silencing down-regulated this effect.
Interestingly, ABCA1 was found to be regulated only by LXRα and not through LXRα. At the same time, knock-down of PPARδ, -γ or -δ, which may be also involved in the regulation of LXR/ABCA1 axis, did not influence the activation of ABCA1 expression by an AMPK activator. To confirm that LXRE on Abca1 promoter is essential for ABCA1 regulation, I performed luciferase reporter assay using constructs based on Abca1 promoter with or without LXRE mutation. Mutation of LXRE abolished reporter activity, whereas AMPK activation increased luciferase activity of wild-type LXRE construct. Furthermore, I demonstrate AMPK-dependent LXRα binding to the LXRE site of Abca1 promoter using the method of chromatin immunoprecipitation. AMPK activation significantly increased, whereas silencing of AMPK significantly attenuated LXRα binding, indicating AMPK as one of the most important regulators of ABCA1 expression.
In summary, I provided an evidence for AMPK involvement into lipid and cholesterol metabolism in human macrophages showing the regulation of PPARδ and LXRα target genes. The understanding of AMPK and PPARδ interaction allows the development of new approaches for treatment of metabolic syndrome and related diseases. Increased FAO during the activation of both proteins may exhibit better therapeutic benefit. On the other hand, I have shown the impact of AMPK activation on ABCA1 via LXRα up-regulation leading to increased cholesterol efflux in human macrophages for the first time. These findings thus may impact future improving of anti-atherosclerosis therapies.
Immune cells are key players in several physiological and pathophysiological events such as acute and chronic inflammation, atherosclerosis and cancer. Especially in acute inflammation, macrophages are indispensable for the switch from the acute inflammatory phase to the resolution phase. Not only the phagocytosis of apoptotic cells, but especially the surrounding cytokines and mediators are able to switch macrophage polarization from inflammatory- to anti-inflammatory phenotypes. Within this cytokine environment, sphingosine-1-phosphate (S1P) plays an important role for immune cell activation, polarization and migration.
Lange ging man davon aus, dass die Physiologie der Thyroidhormone weitestgehend erforscht ist und nahm an, dass sämtliche Thyroidhormon-Wirkungen auf einer Bildung von L-Thyroxin (T4) und einer anschließenden Deiodierung zu Triiodthyronin (T3) beruhen, welches an die nukleären Thyroidhormon Rezeptoren (THRs) bindet. Über die THRs werden genomische Signalwege vermittelt, die während der Wachstums- und Entwicklungsphase essentiell sind. Beim Erwachsenen werden zudem vorwiegend katabole Stoffwechsel-Prozesse induziert. Jedoch zeigte sich in den letzten 20 Jahren, dass die Signalwege der Thyroidhormone komplexer sind als bisher angenommen. Vor allem die Metabolite des in der Schilddrüse gebildeten T4s, zeigen ein breites Interaktions-Profil mit anderen molekularen Zielstrukturen. Thyronamine, die decarboxylierten Thyroidhormon-Metabolite, binden beispielsweise den G-Protein-gekoppelten Trace Amine Associated Receptor 1 (TAAR1). Wird dieser Rezeptor aktiviert, kommt es innerhalb kürzester Zeit zu einem rapiden Abfall der Köpertemperatur, sowie zu einer akuten Bradykardie. Die durch oxidative Deaminierung gebildeten Iodthyroacetate Tetraiodthyroacetat (TETRAC) und Triiodthyroacetat (TRIAC) sind Antagonisten des Membran-Rezeptors Integrin αVβ3 und besitzen antiproliferative und pro-apoptotische Eigenschaften.
In dieser Arbeit sollte die Hypothese untersucht werden, ob Thyroidhormone neben diesen neuen zumeist nicht-genomischen Signalwegen, auch THR-unabhängige genomische Wirkmechanismen besitzen.
Mit Hilfe eines Gal4-Luciferase-Reportergen-Assays wurde in einem Screening die Aktivität einiger Thyroidhormone und Thyroidhormon-Metabolite an elf THR-ähnlichen Rezeptoren und den drei Retinoid X Rezeptor (RXR)-Subtypen untersucht. Es konnte detektiert werden, dass Thyroidhormone, vor allem TETRAC, potente Peroxisom-Proliferator-aktivierter Rezeptor (PPAR)γ-Agonisten sind, die zum Teil zusätzlich dessen Heterodimer-Partner RXR aktivieren können. Diese PPARγ- und RXR-Aktivität wurde zunächst mit Hilfe eines Coaktivator-Rekrutierungs-Assays, einer Isothermen Titrationskalorimetrie (ITC) und einer Kristallstrukturanalyse genauer charakterisiert. Zum einen konnte nachgewiesen werden, dass sowohl PPARγ, als auch RXR in artifizielleren Testsystemen durch Thyroidhormone aktiviert werden. Zum anderen konnte die für permissive Heterodimere, wie das PPARγ/RXR-Heterodimer, typische additive Transaktivierungs-Effizienz nach Bindung beider Heterodimer-Partner bestätigt werden. Außerdem zeigte die Untersuchung der Kristallstruktur von TETRAC und PPARγ, dass Thyroidhormone einen abweichenden Bindungsmodus im Vergleich zu anderen PPARγ Agonisten, wie den Glitazonen und entsprechende Fettsäuren oder Fettsäuremimetika, besitzen.
Die Evaluation der biologischen Relevanz der PPARγ/RXR-Heterodimer-Aktivierung ergab zudem, dass TETRAC, als potentester PPARγ-Agonist, in der Lage ist die Differenzierung von Präadipocyten zu Adipocyten zu induzieren. Außerdem wurde die mRNA-Expression wichtiger PPARγ-regulierter Gene in Hepatozyten trotz knockdown beider THR-Isoformen signifikant durch Thyroidhormone induziert.
Für eine erste Abschätzung einer möglichen physiologischen Relevanz der PPARγ/RXR-Aktivierung durch Thyroidhormone, wurde die Bildung von TETRAC nach Inkubation von Hepatozyten mit T4 quantifiziert. Es konnte festgestellt werden, dass ausreichend TETRAC in den Hepatozyten gebildet werden kann, um PPARγ zu aktivieren. Auch in einem in vivo-Experiment, bei dem Mäusen ein mit Brom substituiertes T4-Analog (Br-T4) appliziert wurde, um Interferenzen mit der endogenen Thyroidhormon-Produktion zu verhindern, konnte gezeigt werden, dass die PPARγ-regulierte Genexpression in den Lebern der Tiere induziert wurde. Dies deutete auf eine physiologisch relevante Bildung von Br-TETRAC hin, da Br-TETRAC analog zu TETRAC eine hohe Bindungs-Aktivität an PPARγ besaß, während Br-T4 keine Aktivität an diesem Rezeptor aufwies.
Die Ergebnisse dieser Arbeit deuten darauf hin, dass Thyroidhormone neben den THR-vermittelten Effekten auch andere genomische Wirkmechanismen besitzen, indem sie das PPARγ/RXR-Heterodimer aktivieren. Diese biologische Aktivität könnte sowohl eine physiologische als auch eine pharmakologische Relevanz besitzen. Die beiden T4-Metabolite T3 und TETRAC sind in der Lage komplementäre Signalwege zu induzieren. Wird T4 deiodiert kommt es zur Bildung von T3, welches den THR aktiviert. Durch oxidative Deaminierung des T4s bildet sich TETRAC, das wiederum PPARγ bindet und aktiviert. Durch die vermehrte Bildung von TETRAC und anschließende Aktivierung von PPARγ könnte die katabole Wirkung der THR-Signalwege abgeschwächt werden und so eine Art negative Rückkopplung gewährleistet werden. Die physiologische Bedeutung der Interaktion von Thyroidhormonen mit PPARγ/RXR muss jedoch noch genauer untersucht werden.
Aber auch pharmakologisch könnte die Iodthyroacetat-Aktivität an PPARγ eine Rolle spielen. TETRAC könnte durch seinen individuellen Bindungsmodus als Leitstruktur für neue PPARγ-Partialagonisten mit verbessertem Nebenwirkungs-Profil dienen. Außerdem wird das Thyroidhormon-Derivat TRIAC schon jetzt als Leitstruktur für die Entwicklung von Thyroidhormon-Analoga mit THRβ-Selektivität verwendet. Durch die zusätzliche PPARγ-Aktivität könnte zukünftig ein dualer THRβ/PPARγ-Agonist bei Erkrankungen, die mit einer Insulinresistenz einhergehen, Verwendung finden.
Zusammenfassend stellt die Entdeckung der Aktivität von Thyroidhormonen an PPARγ und RXR einen weiteren Baustein im komplexen System der Thyroidhormone dar.
Während hohe Spiegel von reaktiven Sauerstoffspezies (reactive oxygen species, ROS) in Form von oxidativem Stress schädliche Auswirkungen auf den Körper haben können, zeigen aktuelle Forschungsarbeiten, dass Redox-Modifikationen an Thiolresten von Proteinen reversible Signalprozesse steuern können. Dieses Prinzip der posttranslationalen Proteinmodifikation durch Redox-Signale scheint auch bei der Verarbeitung und Chronifizierung von Schmerzen von Bedeutung zu sein. Über die potenziellen Redox-modulierten Zielstrukturen im nozizeptiven System ist jedoch bisher nur wenig bekannt.
Ein potentielles Redoxtarget im nozizeptiven System ist das kleine EF-Hand Ca2+-bindende Protein S100A4. Wie die anderen Familienmitglieder der S100-Proteinfamilie enthält S100A4 Cysteinreste, die in der Lage sind, redoxabhängig modifiziert zu werden. Studien an menschlichen Biopsien nach Gehirnverletzungen und an Mäusen in Verletzungsmodellen konnten zeigen, dass S100A4 neuroprotektiv wirkt. Darüber hinaus kann S100A4 sezerniert werden und vermittelt extrazellulär insbesondere regulatorische Funktionen innerhalb der Angiogenese, bei der Zellmigration sowie bei zellulären Differenzierungsprozessen. Die Funktionen von S100A4 im nozizeptiven System sind jedoch weitgehend unbekannt. In Vorarbeiten zu diesem Projekt wurde in einem Proteom-Screen beobachtet, dass S100A4 nach einer peripheren Nervenverletzung redoxabhängig im verletzten Nervengewebe hochreguliert wird. Darauf basierend wurde im Rahmen dieser Arbeit die Lokalisation von S100A4 innerhalb des nozizeptiven Systems sowie die funktionelle Bedeutung nach peripherer Nervenverletzung genauer untersucht.
Anhand von Immunfluoreszenzaufnahmen konnte gezeigt werden, dass S100A4 basal in Subpopulationen Peripherin- und NF200-positiver sensorischer Neurone lokalisiert ist. Interessanterweise führt eine Nervenverletzung nicht nur zu einer deutlichen Steigerung der S100A4-Expression im Bereich der Verletzungsstelle, sondern auch zu einer Änderung des neuronalen Verteilungsmusters. Die funktionelle Bedeutung von S100A4 für die Verarbeitung von Schmerzen wurde anhand von Verhaltenstests an Mäusen näher charakterisiert. Dafür wurden gewebsspezifische S100A4 Knockout Mäuse (Adv-S100A4-/-) und globale S100A4 Knockout Mäuse (S100A4-/-) generiert. In Modellen der akuten Nozizeption zeigten sowohl Adv-S100A4-/- als auch S100A4-/- Mäuse eine normale Reaktion auf thermische und mechanische Stimuli. Im „Spared Nerve Injury“ (SNI) Modell für periphere Neuropathien zeigten die S100A4-/- Mäuse eine im Vergleich zu wildtypischen (WT) Mäusen signifikant reduzierte mechanische Hyperalgesie, während bei den gewebsspezifischen Adv-S100A4-/- Mäusen kein verändertes Schmerzverhalten beobachtet werden konnte. Im „Crush Injury“ Modell für periphere Neuropathien war die mechanische Hyperalgesie der S100A4-/- Mäuse im Vergleich zu WT Tieren jedoch nicht verändert. Zusätzlich zur mechanischen Hyperalgesie wurden auch weitere Methoden der Quantifizierung des Schmerzverhaltens (Sciatic Functional Index, Brush Test und Wühlverhalten) etabliert. Allerdings war auch hier das Verhalten der S100A4-/- Mäuse mit dem der WT Mäuse vergleichbar. Darüber hinaus war das durch Applikation eines ROS-Donors induzierte nozizeptive Verhalten von S100A4-/- und WT Mäusen ähnlich. Man kann daher schlussfolgern, dass nach einer peripheren Nervenverletzung die S100A4-Expression insbesondere im Bereich der Verletzungsstelle hochreguliert wird. Dem gegenüber scheint S100A4 jedoch für die Schmerzverarbeitung funktionell nur von untergeordneter Bedeutung zu sein.
Ein weiteres potentielles Redoxtarget im nozizeptiven System ist die lösliche Epoxidhydrolase (soluble epoxide hydrolase, sEH). Die funktionelle Bedeutung von sEH für die Schmerzverarbeitung wurde bereits in früheren Studien belegt, da eine Behandlung mit sEH-Inhibitoren bei Ratten zu einer reduzierten Hypersensitivität in inflammatorischen und neuropathischen Schmerzmodellen führte. Während die analgetische Wirkung von sEH-Inhibitoren bereits gut bekannt ist, wurde eine redoxabhängige Modulation der sEH-Aktivität im nozizeptiven System in bisherigen Forschungsarbeiten kaum untersucht. Bestimmte Elektrophile können die sEH inhibieren, indem sie an das redoxaktive Cystein an Position 521 der sEH binden. Forschungsarbeiten konnten in diesem Zusammenhang bereits zeigen, dass die Cys521-vermittelte Inhibition von sEH durch das Prostaglandin 15d-PGJ2 oder 9-/10-Nitrooleonsäure (NO2-OA) im kardiovaskulären System zu einer Dilatation der Koronargefäße und einer Reduktion des Blutdrucks führt. Im Rahmen dieser Arbeit wurde untersucht, ob es durch eine redoxabhängige Hemmung der sEH-Funktion auch innerhalb des nozizeptiven Systems zu einer veränderten Schmerzreaktion bei Mäusen kommt. Um diese Fragestellung beantworten zu können, wurden sEH-Knockin (sEH-KI) Mäuse verwendet, deren redox-sensitives Cystein 521 durch ein Serin ersetzt wurde. Bei diesen Knockin-Mäusen können Elektrophile wie 15d-PGJ2 oder 9-/10-NO2-OA keine Enzyminhibition erzeugen. Die Charakterisierung der sEH-KI Mäuse zeigte sowohl in akuten als auch inflammatorischen Schmerzmodellen (Formalin Test und Zymosan-Pfotenentzündungsmodell) keinen Zusammenhang der Redoxmodifikation mit dem Schmerzverhalten der Mäuse. Auch in neuropathischen und viszeralen Schmerzmodellen (SNI-Modell und Modell der Zymosan-induzierten Peritonitis) konnte kein verändertes Schmerzverhalten der sEH-KI-Mäuse im Vergleich zu Kontrolltieren beobachtet werden. Darüber hinaus war das nozizpetive Verhalten nach Applikation von 15d-PGJ2 bei sEH-KI und WT Mäusen vergleichbar. Die redoxabhängige Modulation der sEH an Cystein 521 scheint demnach, im Gegensatz zum kardiovaskulären System, im nozizeptiven System keine Rolle zu spielen.
Investigating the inhibition of anti-apoptotic BCL-2 family proteins in pediatric cancer cells
(2020)
Cancer is amongst the leading causes of death in childhood. Rhabdomyosarcoma (RMS) is the most frequently occurring soft tissue sarcoma in children and adolescents. It presumably arises from mesenchymal progenitors of skeletal muscle cells and presents with different subtypes that differ both histologically and genetically. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most frequently diagnosed pediatric bone tumors. Even though the prognosis of these cancer entities improved significantly during recent decades, the survival rates are currently stagnating. Especially, dismal prognosis of relapsed and metastasizing cases of these malignancies urgently call for novel treatment options. BCL-2 proteins are vital guardians that control intrinsic apoptosis. Furthermore, it was shown that BCL-2 proteins critically regulate apoptosis in pediatric solid tumors. BH3 mimetics are small molecules that bind and inhibit anti-apoptotic BCL-2 proteins. They have already been investigated as cancer therapeutics for several years and show first encouraging clinical results. Therefore, we hypothesized that targeting BCL-2, MCL-1 and BCL-XL might be a promising approach to treat RMS, OS and ES.
In this study, we aimed to comprehensively evaluate the potential of anti-apoptotic BCL-2 family proteins as therapeutic targets for pediatric solid tumors such as RMS, OS and ES.
Notably, RMS, OS and ES cells largely expressed the most relevant BCL-2 family protein members. However, cells were widely insensitive to single pharmacological inhibition of either BCL-XL, BCL-2 or MCL-1 by A-1331852, ABT-199 and S63845, respectively. This finding was independent of their BCL-2 family protein expression levels. Significantly, co-administration of A-1331852 and S63845 induced cell death in RMS, OS and ES cell lines in a highly synergistic manner. Transient silencing of MCL-1 and/or BCL-XL verified the co-dependency of RMS cells on these proteins for survival. Importantly, A-1331852/S63845 co-treatment was more efficient in causing cell death in RMS, OS and ES cells than either inhibitor combined with ABT-199. Efficacy of A-1331852/S63845 co-treatment could be additionally demonstrated in a primary sample of pediatric malignant epithelioid mesothelioma.
Mechanistically, concomitant A-1331852/S63845 treatment mediated rapid intrinsic apoptosis involving swift loss of the mitochondrial outer membrane potential as well as activation of caspases-3, -8 and -9. An observed caspase dependent loss of MCL-1 might further amplify the A-1331852/S63845 triggered pro-death signaling. Furthermore, we identified BAX and BAK as key mediators of apoptosis caused by dual inhibition of MCL-1 and BCL-XL. A-1331852/S63845 induced cell death was relying on BAX and/or BAK in a cell line dependent manner. Interestingly, treatment with A-1331852 and S63845 liberated BAK from its interaction with MCL-1 and BCL-XL. Moreover, BAX and BAK were activated and interacted with each other to form a pore in the outer mitochondrial membrane. Further, in RD cells BIM and NOXA partially contributed to A-1331852/S63845 mediated cell death. Consistently, in this cell line BIM and NOXA were disrupted from their binding to BCL-XL and MCL-1 by A-1331852 and S63845, respectively. However, BH3 only proteins were not involved in A-1331852/S63845 induced cell death in Kym-1 cells. Therefore, we concluded that BH3 only proteins played only a marginal and cell line dependent role in mediating cell death caused by MCL-1 and BCL-XL co-repression.
Notably, A-1331852/S63845 co-treatment spared non-malignant fibroblasts, myoblasts and peripheral blood mononuclear cells, which suggests a therapeutic window for its application in vivo. Besides, we could demonstrate that sequential BH3 mimetic treatment still significantly induced cell death, albeit to minor extents compared to its dual administration. Importantly, we successfully evaluated concomitant treatment with A-1331852 and S63845 in multicellular RMS spheroids and in an in vivo embryonic chicken model of RMS. These findings stress the high transcriptional relevance of A-1331852/S63845 as an emerging novel cancer regimen.
Collectively, the thesis at hand explored the great potential of co-treatment with A-1331852 and S63845 in pediatric solid tumors and unveiled the underlying molecular mechanisms of cell death in RMS. Together, the current investigations support further preclinical and clinical studies to evaluate the effect of dual MCL-1 and BCL-XL targeting in pediatric solid tumors.