Refine
Year of publication
Document Type
- Doctoral Thesis (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- vascular endothelial cells (2)
- AF4 (1)
- AMPK, nuclear receptors, PPAR, LXR, fatty acid oxidation, ABCA1, human macrophages (1)
- Acute leukemia, chromosomal translocation, MLL, KMT2A, AF4-MLL, reciprocal fusion protein, MLL-r leukemia, (1)
- DDX6 (1)
- HIV Humanized Mice (1)
- Leukemia (1)
- Metabolismus (1)
- Nukleäre Rezeptoren (1)
- P-TEFb (1)
Institute
- Biochemie, Chemie und Pharmazie (17)
- Pharmazie (10)
- Biochemie und Chemie (2)
Die Entstehung von Leukämien steht meist im Zusammenhang mit chromosomalen Translokationsereignissen, bei denen vor allem das MLL (Mixed Lineage Leukemia)-Gen auf Chromosom 11q23 involviert ist. Die häufigste Translokation, die eine Akute Lymphatische Leukämie (ALL) bei Kleinkindern auslöst, stellt die t(4;11)-Translokation dar. Die Rekombination der Chromosomen 11 und 4 führt hierbei zur Entstehung der beiden Fusionsproteine MLL-AF4 und AF4-MLL. Bisherige Studien, die den Krankheitsmechanismus hinter dieser ALL-Form untersuchten, identifizierten eine charakteristische Überexpression der HOXA-Gene als einen besonderen Treiber dieser Krankheitsentstehung. Durch die Deregulierung des HOX-Clusters durch das chimäre MLL-AF4-Protein wird ein Differenzierungs- und Apoptoseblock induziert und eine stetige Proliferation der Zellen gefördert. Arbeiten von Trentin et al. (2009) klassifizierten eine Subgruppe von t(4;11)-Patienten, die, im Gegensatz zu den bisher charakterisierten ALL-Leukämien, eine Reprimierung ihrer HOXA-Cluster aufwiesen und mit einer schlechteren Prognose assoziiert waren. Das Genexpressionsprofil dieser HOXAlow-Patienten sprach für einen neuen Krankheitsmechanismus. Allen HOXAlow-Patienten war zudem gemein, dass sie eine Überexpression des Transkriptionsfaktors IRX1 aufwiesen. Die Relevanz dieses Transkriptionsfaktors im Kontext einer t(4;11)-Leukämie wurde durch diese Doktorarbeit genauer untersucht. Durch Vorarbeiten mit transient exprimiertem IRX1 in HEK293T-Zellen wurde eine DNA-Microarray-Analyse durchgeführt, durch die ein Genexpressionsprofil (GEP) dieser Zellen im Vergleich zu Kontrollzellen (mit dem Leervektor transfiziert) erstellt wurde. Dies schuf die Grundlage für die Durchführung weiterer Experimente, die mit Hilfe von RT-PCR-, Chromatin-Immunpräzipitations-, Co-Immunpräzipitations- und Western Blot-Versuchen den Effekt und das Verhalten des IRX1-Proteins im Zusammenhang mit MLL-AF4, bzw. die Funktion von IRX1 alleine, charakterisieren sollten. Es zeigte sich, dass IRX1 eine Reprimierung der HOXA-Gene induziert und dieser Effekt über den aktivierenden Effekt des chimären MLL-AF4-Proteins dominiert. Dies geschah jedoch auf zwei unterschiedliche Wege, da zum einen das IRX1 in der Abwesenheit von MLL-AF4 nicht direkt an die HOXA-Gene binden kann und zum anderen durch MLL-AF4 eine Inkorporation des IRX1 in den Multiproteinkomplex des chimären Onkoproteins stattfindet und IRX1 dadurch direkt an die HOXA-Promotoren gelangt. Zudem wurden weitere direkte und indirekte Zielgene des IRX1 identifiziert. Zu ihnen zählen MEIS1, HOXB4 und EGR1-3. Durch die Erweiterung der Versuche durch Behandlungen mit dem pan-HDAC-Inhibitor Trichostatin A konnte belegt werden, dass MLL-AF4 vom Promotor seiner Zielgene dissoziiert und durch das endogene wt-MLL ersetzt werden kann. Trotz der inhibitorischen Wirkung des IRX1 auf das MLL-AF4 verursacht es eine Stabilisierung des MLL-AF4 an den Promotoren seiner Zielgene, was eine Dissoziation des Komplexes durch TSA verhindert. Die Applikation von TSA führt unabhängig von der vorherigen Konstitution (±IRX1) aber auch zu einer Normalisierung der HOXA-Expression. Die vorgelegten Daten verdeutlichen, dass IRX1 kausal für das GEP der HOXAlow-Patienten verantwortlich ist und durch seine Anwesenheit wichtige Regulatoren der Differenzierung und der Zellzyklusregulierung gestört werden. Zudem wurde der Benefit einer Histondeacetylaseinhibitor (HDACi)-Behandlung bei dieser Patientenkohorte hervorgehoben, da der inhibierende Effekt des IRX1 auf die HOXA-Gene aufgehoben und das wt-MLL in seiner Funktionsfähigkeit nicht beeinträchtigt wurde. Die Relevanz des IRX1 im Kontext einer t(4;11)-Leukämie wurde somit aufgeklärt und ein neuer Krankheits-mechanismus der HOXAlow-Patientenkohorte definiert. Ein weiterer Aspekt dieser Arbeit war die Etablierung eines Transfektionsprotokolls, um eine stabile Integrationen der Sleeping Beauty-Konstrukte in t(4;11)-Suspensionszellen zu ermöglichen. Bisher war es nur über lentivirale Methoden möglich, diese Zellen genetisch zu manipulieren. Durch die hier vorgestellte Methode können nun SEM-Zellen (B-Zell-Vorläuferzellen einer ALL mit t(4;11)) über Elektroporation stabil transfiziert und anschließend über Selektion zu einer homogenen Zellpopulation positiv transfizierter Zellen herangezogen werden. Hierdurch wird eine Übertragung bisheriger Methoden in ein leukämisches Zellsystem möglich, wodurch genetische Manipulationen in einer physiologischen Umgebung getestet werden können, ohne in S2-Laboratorien arbeiten zu müssen.
In Deutschland erkranken pro Jahr ~1800 Kinder neu an Krebs, wobei Leukämien mit 33,8 % die häufigste diagnostizierte Krebsform darstellen. Besonders Leukämien mit dem Phänotyp einer akuten lymphatischen Leukämie (ALL) sind mit der Erkrankung im Kindesalter assoziiert. Die häufigsten genetischen Ursachen kindlicher ALLs sind ein hyperdiploider Karyotyp oder chromosomale Translokationen. Unter Säuglingen im Alter von nur wenigen Monaten mit einer ALL treten hier oft reziproke chromosomale Translokationen mit Beteiligung des MLL-Gens auf. Die t(4;11)-assoziierte Leukämie, mit dem AF4-Gen als Translokationspartner, stellt den häufigsten Krankheits-Phänotyp dieser Patientengruppe dar. Die Erkrankung zeichnet sich durch eine stark erhöhte Leukozytenzahl im peripheren Blut bei Diagnose aus. Aufgrund immunphänotyperischer und morphologischer Analysen werden die Leukozyten und auch die Erkrankung durch einen pro B-Zell Phänotyp charakterisiert. Ein weiteres klinisches Merkmal ist das schnell auftretende Rezidiv, welches schlecht auf eine folgende Therapie anspricht und zu sehr geringen Überlebensraten führt, wodurch die t(4;11)-assoziierte Leukämie als Hochrisiko-Leukämie klassifiziert wird. Als genetische Grundlage des Mechanismus der t(4;11)-Leukämogenese wird die Expression der resultierenden Fusionsproteine MLL•AF4 und AF4•MLL angenommen. Durch die Expression beider Fusionsproteine wird die Funktion des Wildtyp MLL-Proteins gehemmt, welches als epigenetischer Regulator für die Hämatopoese und die Ausbildung des Körperbauplans während der Embryogenese essenziell ist. Weiterhin wird auch die Funktion des Wildtyp AF4-Proteins gehemmt, welches einen bedeutenden Bestandteil der zellulären Transkriptionsinitiations- und Elongationsmaschinerie darstellt. Außerdem beeinflussen beide Fusionsproteine zelluläre Mechanismen wie die Proliferation, das Überleben und die Differenzierung, weshalb die Erforschung des Pathomechanismus der Fusionsproteine essenziell für die Rekapitulation und damit für die Therapie und Heilung der Erkrankung ist.
Aktuell rekapitulieren Studien der beiden Fusionsproteine die humane Erkrankung jedoch nur unzureichend. Das MLL•AF4-Protein zeigte bisher eine Blockierung der Apoptose nach unterschiedlichsten Induktionen in zellbasierten Systemen. Allerdings konnte dem Fusionsprotein kein onkogenes Potenzial in vitro nachgewiesen werden und auch in vivo führte die Expression von MLL•AF4 zur Bildung von hauptsächlich myeloischen Neoplasien nach langen Latenzzeiten. Die Expression des reziproken AF4•MLL-Proteins führte in zellbasierten Systemen zu einem verstärkten Metabolismus durch die Steigerung der zellulären Transkription und beeinflusste so die Proliferation. Parallel trat eine hohe Apoptoserate auf, sodass die Proliferation nahezu unverändert schien. Da in vitro jedoch die Kontaktinhibition und Wachstumstransformation von Zellen gezeigt werden konnte und im Mausmodell der humane Phänotyp einer pro B-ALL ausgelöst wurde, scheint das AF4•MLL-Protein das treibende Onkogen der t(4;11)-assoziierten Leukämie zu sein. Allerdings wird die Erkrankung auch in diesem Modell erst nach einer langen Latenzzeit beobachtet und auch die zellulären Mechanismen, in welchen das onkogene Potenzial des reziproken Fusionsproteins entscheidend ist, bleiben weiter zu untersuchen. Deshalb sollten im Rahmen dieser Arbeit hauptsächlich die Auswirkungen der Expression des onkogenen AF4•MLL-Proteins unter verschiedenen Aspekten untersucht, und kooperierende Ereignisse analysiert werden.
Grundlegend sollte die Auswirkung des reziproken Fusionsproteins in humanen Zellen studiert, und auch Effekte des MLL•AF4-Proteins mit früheren Studien verglichen werden, um zellbiologisch relevante Mechanismen aufzudecken. Weiterhin sollte der Einfluss möglicher sekundärer Mutationen und die Wirkung von Koffein als Stimulans untersucht werden, um mögliche Ursachen der langen Latenzzeiten in t(4;11)-assoziierten Mausmodellen zu identifizieren. Da jedoch etwa 20 % aller t(4;11)-Patienten kein AF4•MLL-Protein bilden und als Reziprok oft der solitäre MLL C-Terminus exprimiert wird, sollte zudem der Effekt des MLL•C-Proteins im Mausmodell studiert werden. Insgesamt konnten alle erhobenen Daten mit Resultaten früherer Studien kombiniert werden, wodurch ein spezifisches Modell der t(4;11)-assoziierten Leukämogenese entstand. Das Modell diskutiert die onkogene Funktion des AF4•MLL-Proteins besonders während der hämatopoetischen Differenzierung. Durch die Ergebnisse dieser Arbeit zum klonogenen Wachstum der humanen Zellen nach Expression von AF4•MLL und der Ergebnisse im MLL•C-Mausmodell konnte ein Einfluss des Reziproks auf die Differenzierung von Leukozyten gezeigt werden.
Weiterhin konnte nach AF4•MLL-Expression in humanen Zellen die Steigerung des Metabolismus aber auch die einhergehende vermehrte Apoptose bestätigt werden, welche die lange Latenzzeit im AF4•MLL-Mausmodell begründen könnte. Durch Kooperation mit dem MLL•AF4-Protein, welches anti-apoptotische Effekte zeigt, könnte es jedoch zum frühen Ausbruch der Erkrankung im Säuglingsalter kommen. Allerdings konnte in dieser Arbeit auch eine Steigerung der Proliferation von MLL•AF4-exprimierenden Zellen beobachtet werden, wenn anti-apoptotische Mechanismen des Fusionsproteins inaktiv sind, welche aus der Aktivierung des RAS/RAF/MEK/ERK-Signalwegs resultiert. Werden neben der Translokation zusätzliche RAS-Mutationen aquiriert, die bei 26 % der Kinder mit einer t(4;11)-Leukämie auftreten, wird der Signalweg und somit die Proliferation der leukämischen Blasten zusätzlich stabilisiert. Dadurch kommt es zu höheren Leukozytenzahlen und einem noch früheren Ausbruch der Erkrankung. Weiterhin deckte die Analyse von sekundären Mutationen auch die Beteiligung des FLT3-Signalwegs an der Therapieresistenz durch Quieszenz auf. Ein besonderer Einfluss von Koffein als Stimulans in t(4;11)-Zellen konnte hingegen ausgeschlossen werden. So wurde der Pathomechanismus der t(4;11)-assoziierten Leukämie in dieser Arbeit weiterführend aufgeklärt, wodurch Strategien zur Therapie und Heilung der Erkrankung in Zukunft intensiviert werden können.
In Deutschland erhalten jährlich etwa 12.500 Patienten die Diagnose Leukämie. Unter ihnen befinden sich ca. 6 % Kinder, welche mit 33,8 % den größten Anteil der kindlichen Krebsneuerkrankungen repräsentieren. Die überwiegende Form im Kindesalter ist die akute lymphatische Leukämie (ALL), deren genetische Ursache meistens in einem hyperdiploiden Karyotyp oder einer chromosomalen Translokation zu finden ist. Bei 8 % der pädiatrischen ALLs ist ein Rearrangement des MLL-Gens involviert. Unter Beteiligung des häufigsten Translokationspartnergens (TPG) AF4 entsteht die t(4;11)(q21;q23)-Translokation mit den beiden Fusionsproteinen AF4•MLL sowie MLL•AF4. Die Therapie erfolgt in der Regel gemäß Hochrisikoprotokollen aufgrund der extrem schlechten Prognose und der mit hoher Therapieresistenz assoziierten Rezidivrate. Eine Studie zur Korrelation zwischen klinischen Merkmalen und molekularen Charakteristika belegte die Abhängigkeit des Outcomes von der Verteilung des Bruchpunkts im MLL-Gen. Bei älteren Patienten treten die Bruchpunkte überwiegend in MLL Intron 9 oder 10 auf und bedeuten eine signifikant bessere Prognose im Vergleich zu den besonders bei Säuglingen präsenten Bruchpunkten im MLL Intron 11. Die damit verbundene Verkürzung der Plant Homeodomain (PHD) 1 kann neben einer modifizierten Funktion des PHD1 auch in einer veränderten Konformation der gesamten PHD-Domäne resultieren. Besondere Bedeutung hat die PHD1-3-Domäne wegen der Fähigkeit des PHD3 einerseits H3K4me-Signaturen zu erkennen und auf der anderen Seite mit CYP33 zu interagieren. Die mit transkriptionell aktivem Chromatin assoziierten H3K4me-Signaturen sowie die CYP33-vermittelte repressive Aktivität bedingen einen ambivalenten Charakter des MLL-Proteins. Daneben ist der PHD3 allein interessant wegen des Vorkommens von 4 differenten Varianten mit keinen, 3, 11 oder 14 fehlenden Aminosäuren, welche durch alternatives Spleißen an der MLL Exon 15/16-Verknüpfung entstehen (PHD3-0, PHD3-3, PHD3 11 und PHD3-14). Semiquantitative Bestimmungen in verschiedenen Zelllinien verdeutlichen die nahezu ähnliche Transkription aller 4 Varianten. Weiterführende Untersuchungen mit dem Yeast Two-Hybrid (Y2H)-System sowie folgende Koimmunpräzipitations (CoIP)-Experimente zeigten, dass der PHD3-0 die beste Dimerisierungsfähigkeit aufweist. Dagegen ist der am schlechtesten dimerisierende PHD3-3 allein in der Lage, CYP33 bzw. dessen RRM-Domäne zu binden. Die Interaktion mit inhibitorischen Proteinen und die folgende Funktion als transkriptioneller Repressor sind allein mit der PHD3-3-Variante möglich. Bei Betrachtung der gesamten PHD1-3-Domäne sowie deren verkürzter Variante (ΔPHD1-3) fällt die reduzierte Bindungsfähigkeit der ΔPHD1-3-Domäne an die CYP33 RRM-Domäne sowie deren fehlende Dimerisierung auf. Über die resultierende geringere Bindung an inhibitorische Proteine kann die transkriptionell repressive Aktivität reduziert werden, während die transkriptionell aktive Funktion an Bedeutung gewinnt. Neben der Untersuchung der PHD-Domänen des MLL-Proteins wurde das Y2H-System zur weiteren Aufklärung der AF4- und AF4•MLL-Multiproteinkomplexe (MPC) verwendet. Ähnlich den Wildtypproteinen MLL und AF4 sind auch die beiden aus der t(4;11)(q21;q23)-Translokation resultierenden Fusionsproteine an der Assemblierung von MPCs beteiligt. Besonders das reziproke AF4•MLL scheint bezüglich des Therapieerfolgs für die Leukämogenese entscheidend zu sein. Die Identifizierung und Verifizierung sowohl bekannter als auch neuer Komponenten der AF4- und AF4•MLL-MPCs gelang in verschiedenen Experimenten. Allerdings wurde meist nur die Präsenz der Proteine im MPC nachgewiesen. Die Y2H-Untersuchungen konnten Interaktionen zwischen den verschiedenen Proteinen der Komplex identifizieren und damit die Kenntnis über die Zusammensetzung der MPCs wesentlich erweitern und vertiefen. Aufgrund der Beteiligung viraler Proteine an der Krebsentstehung sowie der Rekrutierung von Transkriptionsfaktoren der Wirtszelle für die virale Replikation erscheint auch die Nutzung der Superelongationskomplexe (SEC) durch virale Proteine plausibel. Die Funktion des AF4-Proteins als Kofaktor von viralen Proteinen, besonders der HCMV und EBV immediate early (IE)-Proteine, wurde bereits gezeigt. Außerdem konnte der Einfluss des HCMV IE1 auf AF4-abhängige Effekte sowie dessen Beteiligung am AF4-MPC nachgewiesen werden. Mithilfe der Y2H-Experimente konnten nicht nur Interaktionen des HCMV IE1 sondern auch Wechselwirkungen der Onkoproteine E6/E7 des HPV mit den Proteinen der AF4- und AF4•MLL-MPCs identifiziert werden.
Die größte Gruppe der Krebserkrankungen bei Kindern sind die Leukämien. Die größte Untergruppe stellen dabei die Leukämien unter Beteiligung des MLL-Gens auf Chromosom 11q23 dar. Die bei MLL-Translokationen gefundenen Partnergene sind äußerst vielfältig. Der häufigste Partner ist jedoch das AF4-Gen auf Chromosom 4. Die bei der t(4;11)-Translokation entstehenden Fusionsproteine MLL-AF4 und AF4-MLL sind die Auslöser der Leukämie, wobei in unterschiedlichen Forschungsarbeiten beiden Fusionsproteinen eine Transformatorische Wirkung bescheinigt werden konnte. Das Wildtyp MLL-Protein liegt in der Zelle in einem Multiproteinkomplex vor, der durch seine Histon-Methyltransferase-Aktivität an Lysin 4 des Histon H3, zu einer offenen Chromatinstruktur führt und dadurch für die Transkriptionsinitiierung essentiell ist. Eine besondere Rolle kommt den MLL-Protein bei der Aufrechterhaltung von epigenetischen Signaturen beispielsweise bei der Embryogenese oder dem Durchlaufen des Zellzyklus zu. Im Gegensatz dazu nimmt der F4-Multiproteinkomplex eine wichtige Stellung in der Transkriptionselongation ein und ermöglicht der RNA-Polymerase II zusammen mit seinen Komplexpartnern die Elongation der mRNA. Die Taspase1 wurde als das Protein entdeckt, dass für die Prozessierung des MLL-Proteins verantwortlich ist und es an den Schnittstellen CS1 bzw. CS2 proteolytisch spaltet. Die hierbei entstehenden Fragmente N320 und C180 können daraufhin dimerisieren und werden gegenüber einem proteasomalen Abbau stabilisiert. Diese Taspase1-Schnittstellen sind auch in dem Fusionsprotein AF4-MLL enthalten und ermöglichen die Stabilisierung des AF4-MLLs nach proteolytischer Spaltung gegenüber seinem proteasomalen Abbau. Die Taspase1 ist eine Threonin-Aspartase aus der Familie der Typ-2 Asparaginasen zu deren weiteren Vertretern die L-Asparaginase sowie die Glycosylasparaginase zählen. Als einziger Vertreter dieser Gruppe ist die Taspase1 jedoch eine Protease. Gemein ist allen Vertretern der Familie, die autoproteolytische Aktivierung des exprimierten Proenzyms hin zu einer katalytisch aktiven Form. Im Falle der Taspase1 kommt es dabei zu einer Spaltung in die als Heterodimer vorliegenden α- und β-Untereinheiten. Das katalytische Nukleophil der aktiven Taspase1 ist dabei das N-terminale Thr234 der β-Untereinheit. Neben ihrer Rolle als Protease des AF4-MLLs und der damit verbundenen Stabilisierung des Onkogens, wird der Taspase1 auch bei den soliden Tumoren eine Rolle als für die Transformation wichtiges Protein zugewiesen, was sich in ihrer häufigen Überexpression in verschiedenen Tumorarten widerspiegelt. Die Taspase1 ist demnach ein interessantes Ziel für die Wirkstoffentwicklung. Hierfür ist die Generierung eines quantitativen Aktivitätstest besonders wichtig und war Ziel dieser Arbeit. Der entwickelte Aktivitätstest basiert auf einem Reporter bestehend aus den beiden Fluoreszenzproteinen TagBFP sowie TagGFP2, die über eine Taspase1 Schnittstelle verbunden wurden. Dieses FRET-Paar lässt dabei die kontinuierliche Beobachtung der Reaktion zu und ermöglicht eine Auswertung der kinetischen Parameter der Reaktion. Von den beiden FRET-Reportern mit den unterschiedlichen Schnittstellen CS1 und CS2,konnte nur der mit der CS2 Schnittstelle exprimiert werden. Dieser Reporter konnte dann für die Validierung des Aktivitätstests eingesetzt werden und ließ die Bestimmung der kinetischen Parameter der Taspase1 für diese Reaktion zu. Die erhaltenen Parameter bewegen sich in einer ähnlichen Größenordnung wie schon publizierte kinetische Parameter eines Peptid-basierten Aktivitätstests. Ausgehend hiervon wurden die dnTaspase, eine dominant negative Taspase1-Mutante, kinetisch untersucht und ihre Inhibition der Taspase1-Aktivität beschrieben. Der Aktivitätstest ließ die Bestätigung der Konzentrationsabhängigen Inhibition der Taspase1-Aktivität durch die dnTaspase zu. Diese Beobachtung konnte auch in einer Zell-basierten Variante des Aktivitätstests bestätigt werden und zeigte sich ferner auch in einer Wachstumsverlangsamenden Wirkung der dnTaspase in der t(4;11)-Zelllinie SEM, wobei dieser Effekt nicht auf einer Zunahme der Apoptose der Zellen zurückzuführen war. Desweiteren wurde der Aktivitätstest benutzt, um eine Reihe von gegen das aktive Zentrum der Taspase1 gerichtete Substanzen auf ihre inhibitorische Wirksamkeit zu untersuchen.Hierbei gelang es einen Kandidat als Leitsubstanz zu identifizieren, der eine konzentrationsabhängige Inhibition der Taspase1 zeigte. Eine Bindung dieser Substanz an die Taspase1 konnte jedoch durch einen Thermal Shift Assay nicht nachgewiesen werden und ein Einfluss auf die Viabilität von proB-ALL Zelllinien konnte nicht beobachtet werden.
Die eukaryotische RNA-Polymerase II (RNAPII) ist der zentrale Faktor für die Umsetzung des genetischen Codes in funktionelle Proteine. Durch die Transkription wird die statische Information der DNA in ein transient nutzbares RNA-Molekül umgewandelt. Bei diesem fundamentalen Prozess der Genexpression wird ein spezifischer DNA-Abschnitt des Genoms abgelesen und in die komplementäre RNA transkribiert, die entweder direkt regulatorische bzw. funktionelle Aufgaben in der Zelle übernimmt oder als Matrize für die Proteinbiosynthese dient. Zur Erhaltung der Funktionalität eines Organismus und zur schnellen und gezielten Reaktion auf exogene Reize ist eine strikte Regulation der Transkription und der zahlreichen beteiligten Faktoren notwendig. Aufgrund der zentralen Rolle in der Genexpression ist diese Regulation äußerst vielschichtig und erfordert eine feinabgestimmte Maschinerie an Enzymen und Transkriptionsfaktoren, deren genaue Wirkungsweise und Abhängigkeit noch nicht vollständig verstanden sind. Fehler in der Transkriptionsregulation werden mit einer Reihe von schwerwiegenden metabolischen Störungen und der möglichen malignen Transformation der betroffenen Zelle in Verbindung gebracht.
Während einige Regulationsmechanismen der RNAPII bereits seit längerer Zeit beschrieben sind, ist eine besondere Form der RNAPII-abhängigen Regulation erst in den letzten Jahren Gegenstand genauerer Untersuchungen geworden. So erfährt die RNAPII bei einer Vielzahl von Genen unmittelbar nach der Transkriptionsinitiation einen Arrest, der das Enzym nicht weiter über die DNA prozessieren lässt und somit die produktive Elongation des Gens blockiert. Die Aufhebung dieses promotornahen Arrests wird durch den positiven Transkriptions-Elongationsfaktor b (P-TEFb) dominiert, der durch distinkte post-translationale Modifikationen der C-terminalen Domäne der RNAPII und assoziierter Faktoren den Übergang in die produktive Transkriptionselongation ermöglicht. P-TEFb selbst unterliegt dabei einer strengen Regulation durch die Inkorporation in inhibierende Speicherkomplexe (7SK snRNPs), bestehend aus der 7SK snRNA und mehrerer assoziierter Proteine. Abseits des 7SK snRNP wurde P-TEFb als Bestandteil großer Multiproteinkomplexe identifiziert, die einen positiven Einfluss auf die Transkriptionselongation besitzen. Die Transition von P-TEFb aus dem 7SK snRNP in diese sogenannten Superelongationskomplexe (SECs) stellt einen der zentralen Regulationsmechanismen der eukaryotischen Transkription dar, ist jedoch noch nicht ausreichend verstanden.
Ein zentrales Element aller SECs bilden die Mitglieder der AF4/FMR2-Proteinfamilie, darunter das AF4 Protein, dem neben der Erhaltung der strukturellen Integrität mittlerweile auch eine Funktion in der Rekrutierung von P-TEFb zugeschrieben wird. Dabei scheint AF4 jedoch auf die Hilfe bislang noch nicht charakterisierter Faktoren angewiesen zu sein. AF4 ist über diese Rolle hinaus als Bestandteil des Fusionsproteins AF4-MLL eng mit der onkogenen Zelltransformation im Falle einer durch die Translokation t(4;11)(q21;q23) bedingten, akuten lymphoblastischen Leukämie assoziiert.
Das zentrale Thema dieser Arbeit stellen Untersuchungen zum Transfer von P-TEFb aus dem 7SK snRNP zum AF4-Protein dar. Dabei konnte zunächst die DEAD-Box RNA-Helikase DDX6 als Integraler Bestandteil der AF4-SECs identifiziert werden, der bereits eine Funktion in der Kontrolle des microRNA- wie auch des mRNA-Metabolismus zugeschrieben werden konnte. Aus diesem Grund wurde von uns eine mögliche Beteiligung von DDX6 an der Rekrutierung von P-TEFb zum AF4-SEC durch Modulationen der 7SK snRNA postuliert. Des Weiteren konnte eine Bindefähigkeit von DDX6 gegenüber der 7SK snRNA sowie eine direkte Korrelation zwischen des zellulären DDX6-Proteinlevel und der Akkumulation von P-TEFb im AF4-SEC nachgewiesen werden. Sowohl die Überexpression von DDX6 als auch die von AF4 resultierten in einer gesteigerten mRNA-Produktion, wobei die Ergebnisse auf einen kooperativen Mechanismus zwischen den beiden Proteinen in der Aktivierung der Transkription hindeuteten. Außerdem konnte die These einer DDX6-vermittelten Aktivierung von P-TEFb anhand von Expressionsanalysen des bekannten P-TEFb Zielgens HEXIM1, dessen Expression im Zusammenhang eines negativen Rückkopplungsmechanismus gesteigert wird, bestätigt werden. Damit konnte der DEAD-Box RNA-Helikase DDX6 in dieser Arbeit das erste Mal eine entscheidende Funktion in der Rekrutierung von P-TEFb aus dem 7SK snRNP in den AF4-SEC, und somit an der Kontrolle der eukaryotischen Transkription, zugeschrieben werden.
The majority of B-cell precursor acute leukemias in infants are associated with the chromosomal translocation t(4;11)(q21;q23), resulting in the fusion of the mixed-lineage leukemia (MLL) and ALL1-fused gene of chromosome 4 (AF4) genes. While the fusion protein MLL-AF4 is expressed in all t(4;11) patients and essential for leukemia progression, the distinct role of the reciprocal fusion protein AF4-MLL, that is expressed in only 50-80% of t(4;11) leukemia patients (Meyer et al., 2018), remains unclear. In addition, t(4;11) leukemia could so far exclusively be generated in vivo in the presence of AF4-MLL and independent of the co-expression of MLL-AF4 (Bursen et al., 2010).
In a multifactorial approach inhibiting histone deacetylases (HDACs) and expressing the dominant negative mutation of Taspase1 (dnTASP1), both MLL fusion proteins were targeted simultaneously to evaluate a possible cooperative effect between MLL-AF4 and AF4-MLL during the progression of leukemia. Of note, neither HDACi nor dnTASP1 expression negatively affect endogenous MLL, but rather endorse its function hampered by the MLL fusion proteins (Ahmad et al., 2014; Bursen et al., 2004; Zhao et al., 2019). The mere expression of dnTASP1 failed to induce apoptosis, whereas dnTASP1 could elevate apoptosis levels significantly in HDACi-treated t(4;11) cells underlining the therapeutic potential of co-inhibiting both MLL fusion proteins.
Next, the impact of inhibiting either MLL-AF4 or AF4-MLL in vivo was resolved using whole transcriptome analysis. In PDX cells obtained by the Jeremias Laboratory (Völse, 2020) that co-expressed both t(4;11) fusion proteins, the knock-down of MLL-AF4 revealed the down-regulation of pivotal hemato-malignant factors. The expression of dnTASP1 led to massive deregulation of cell-cycle genes in vivo. Considering that the inhibition of particularly MLL-AF4 but not AF4-MLL impaired leukemic cell growth in vivo (Völse, 2020), the results of this work suggest a cooperative effect between both fusion proteins, while the loss of AF4-MLL during leukemia progression appears not essential.
Thereafter, a possible short-term role of AF4-MLL during the establishment of t(4;11) leukemia was analyzed. For this purpose, an in vitro t(4;11) model was constructed to investigate the transforming potential of transiently expressed AF4-MLL in cells constitutively expressing MLL-AF4, putatively reflecting the situation in vivo. Due to the lack of a leukemic background of the applied cell line, the aim was to investigate the long-term potential of AF4-MLL to significantly alter the epigenome rather than mimicking the development of leukemia. Strikingly, short-term-expressed AF4-MLL in cooperation with MLL-AF4 exerted durable epigenetic effects on gene transcription and chromatin accessibility. The here obtained in vitro data suggest a clonal evolutionary process initiated by AF4-MLL in a cooperative manner with MLL-AF4. Importantly, no long-term changes in chromatin accessibility could be observed by the transient expression of either MLL-AF4 or AF4-MLL alone.
All in all, considering endogenous MLL, MLL-AF4 and AF4-MLL in a targeted treatment is a promising approach for a more tailored therapy against t(4;11) leukemia, and AF4-MLL is suggested to act in a cooperative manner with MLL-AF4 especially during the development of a t(4;11) leukemia.
Das natürlich vorkommende Polyphenol Resveratrol (3,4‘,5-(E)-Trihydroxystilben) ist eine potente chemopräventive Substanz, die in vielen verschiedenen Krebszelllinien wirksam ist. Außerdem verfügt sie über anti-inflammatorische, anti-oxidative und pro-apoptotische Wirkungen. Da Resveratrol auch in Tiermodellen des Typ-2-Diabetes und der nicht-alkoholischen Fettlebererkrankung gute Effekte gezeigt hat, wird in Erwägung gezogen es zur Prävention und Behandlung von metabolischen Erkrankungen einzusetzen. Allerdings liegen, aufgrund von schneller Metabolisierung und geringer Bioverfügbarkeit, die wirksamen Konzentrationen im mikromolaren Bereich. Eine geeignete Strategie, um die anti-tumorale Wirkung und die Bioverfügbarkeit von Resveratrol zu verbessern, scheint die Methylierung der freien Hydroxylgruppen zu sein. Allerdings liefern einige Studien Hinweise darauf, dass diese strukturelle Modifikation der Stilbengrundstruktur zu einer Veränderung des antiproliferativen Wirkmechanismus der methylierten Substanzen führt. Daher führten wir im ersten Teil dieser Arbeit genauere Untersuchungen durch, um die Veränderungen der biologischen Wirkung, die durch die Methylierung der freien Hydroxylgruppen von (E)- und (Z)-Resveratrol verursacht werden, zu charakterisieren. Einen Schwerpunkt bildete die Bestimmung der metabolischen Effekte der methylierten Substanzen. Dabei sollte aufgeklärt werden, ob die Analoga noch immer in der Lage sind bekannte Resveratrol-Targets, wie AMPK, SIRT1 und Phosphodiesterasen, zu modulieren. Zunächst bestätigten wir, dass die methylierten Resveratrolanaloga ST911 (3,4‘,5-Z)-Trimethoxystilben) und ST912 (3,4‘,5-(E)-Trimethoxystilben) einen starken antiproliferativen Effekt auf verschiedene Krebszelllinien ausüben. Wie bereits zuvor beschrieben, konnten wir beobachten, dass ST911 und ST912 das Wachstum von Tumorzellen stärker beeinflussen, als die hydroxylierten Substanzen (E)- und (Z)-Resveratrol. Dies, in Verbindung mit einer vernachlässigbaren zytotoxischen Wirkung und einer deutlich geringeren antiproliferativen Wirkung auf Primärzellen, legt nahe, dass ST911 als potentielles neues Chemotherapeutikum weiter untersucht werden sollte. Zudem zeigten ST911 und ST912 signifikante pro-apoptotische Wirkungen in CaCo-2-Zellen. Auch Resveratrol konnte in diesen Zellen Apoptose auslösen, allerdings erst nach Behandlung mit deutlich höheren Konzentrationen, verglichen mit ST911 und ST912. Eine genauere Charakterisierung der antitumoralen Wirkung von ST911 in HT-29-Zellen zeigte, dass ST911 die Polymerisation von Tubulin zu Mikrotubuli beeinflusst und einen Arrest des Zellzyklus in der Mitose-Phase auslöst. Im Gegensatz dazu führt Resveratrol zu einem Zellzyklus-Arrest in der S-Phase und beeinflusst die Tubulinpolymerisation nicht. Diese Beobachtungen verstärkten die Annahme, dass ST911 ein Mitosehemmer ist und betonten noch einmal die mechanistischen Unterschiede zwischen Resveratrol und den methylierten Analoga. Interessanterweise konnte ST911 die hepatische Fettakkumulation in einem in-vitro-Steatosemodell nicht beeinflussen, während eine Behandlung mit Resveratrol zu einer signifikanten Reduktion der intrahepatischen Triglyzeride führte. Dieses Experiment lässt vermuten, dass die stärkere antiproliferative Wirkung von ST911, keine erhöhte Aktivität in metabolischen Krankheitsmodellen nach sich zieht. Die beobachteten Unterschiede im Steatosemodell führten zu der Frage, ob die methylierten Analoga noch immer in der Lage sind die gleichen metabolischen Targetgene zu modulieren, die in der Literatur für Resveratrol beschrieben sind. Vor kurzem wurden Phosphodiesterasen (PDEs) als direkte Targets von Resveratrol identifiziert. Die Inhibition von PDEs durch Resveratrol führt zu einem Anstieg der intrazellulären cAMP-Konzentration. Diese wiederum aktiviert die bekannten Resveratrol-Targetgene AMPK und SIRT1. Unsere Experimente zeigten, dass ST911 und ST912 keinen Einfluss auf die intrazelluläre cAMP-Konzentration haben. Zusätzlich konnten wir keine AMPK- oder SIRT1-abhängigen Veränderungen der Genexpression beobachten. Dies ist ein Hinweis darauf, dass die Substanzen ihre zellulären Effekte vermutlich nicht über eine Modulation von PDEs, AMPK oder SIRT1 vermitteln. Zusammenfassend liefert der erste Teil der Arbeit Beweise dafür, dass ST911 keine positiven Effekte in metabolischen Krankheitsmodellen ausübt. Dies liegt vermutlich in einem Aktivitätsverlust gegenüber den metabolischen Targetgenen von Resveratrol begründet. Des Weiteren unterstützen unsere Ergebnisse frühere Arbeiten, die zeigen konnten, dass ST911 an Tubulin bindet und die Polymerisation zu Mikrotubuli verhindert. Weiterhin bestätigen unsere Daten, dass die Methylierung von Resveratrol zu einer grundlegenden Veränderung des Wirkmechanismus dieser Substanzen führt, die von einem kompletten Verlust der metabolischen Aktivität begleitet wird. Dies sollte bei zukünftigen Leitstrukturoptimierungen mit Resveratrol berücksichtigt werden. Im ersten Teil dieser Arbeit konnte außerdem gezeigt werden, dass Resveratrol die Gentranskription des nukleären Rezeptors SHP (aus dem Englischen: small heterodimer partner) stark induziert. Der Mechanismus dieser Induktion scheint von der Aktivität von AMPK und SIRT1 abhängig zu sein. Diese Ergebnisse konnten unser Verständnis der vielseitigen biologischen Wirkungen von Resveratrol erweitern. Dennoch sollte die Relevanz der SHP-Induktion für die Effekte von Resveratrol auf metabolische Krankheiten und Tumorwachstum noch weiter untersucht werden. Während der Experimente für den ersten Teil der Arbeit stellten wir fest, dass der AMPK-Inhibitor Compound C (CC) in der Lage war, die wachstumshemmende Wirkung von ST911 signifikant zu reduzieren. Die Untersuchung dieses sogenannten „Rescue-Effektes“ wird durch die Tatsache bestärkt, dass eine steigende Anzahl von Tumoren resistent gegenüber Chemotherapeutika ist. Außerdem fehlen spezifische Antidota für akute Intoxikationen mit Mitosehemmern. Daher zielten die folgenden Experimente darauf ab den Rescue-Effekt näher zu charakterisieren und die zugrundeliegenden Wirkmechanismen aufzuklären. Zunächst zeigten Knockdown-Experimente, dass der Rescue-Effekt unabhängig von der AMPK-inhibierenden Wirkung von CC vermittelt wird. Da CC ein ATP-kompetitiver Inhibitor der AMPK ist und zuvor bereits gezeigt wurde, dass es auch eine große Zahl anderer Kinasen inhibieren kann, vermuteten wir, dass der Rescue-Effekt mit diesen Off-Target-Effekten von CC zusammenhängt. Als nächstes testeten wir, ob die wachstumshemmenden Effekte von anderen Mitosehemmern auch durch CC aufgehoben werden können. Wir wählten verschiedene etablierte Substanzen, die dafür bekannt sind mit Mikrotubuli zu interagieren: Colchicin, das Vinca-Alkaloid Vinblastin, Disorazol A und das aus Taxus-Arten isolierte Paclitaxel. Die ersten drei dieser Substanzen haben eine depolymerisierende Wirkung auf die Mikrotubuli, während Paclitaxel zu einer stärkeren Polymerisierung führt. Zudem binden diese Substanzen an drei verschiedenen Bindestellen am Tubulin. Interessanterweise zeigten unsere Versuche, dass CC die antiproliferative Wirkung aller getesteten Mitosehemmer auf HT-29-Zellen, unabhängig von der Bindestelle, abschwächen kann. Des Weiteren konnte CC die Wirkung der pro-apoptotischen Substanz Staurosporin nicht reduzieren. Diese Ergebnisse weisen darauf hin, dass eher die tubulinbindenden, als die pro-apoptotischen Eigenschaften, von ST911 für den Rescue-Effekt verantwortlich sind. Um zu untersuchen, ob der Rescue-Effekt mit einer kompetitiven Bindung von CC und Mitosehemmern an Mikrotubuli erklärt werden kann, führten wir eine Immunfluoreszenzfärbung von ?-Tubulin durch. Wir konnten beobachten, dass die Tubulinpolymerisation und die Funktion des Spindelapparates in Zellen, die mit Mitosehemmern behandelt wurden, deutlich eingeschränkt waren. Außerdem stellten wir fest, dass CC nicht in der Lage ist die Zerstörung des Tubulingerüstes durch die Mitosehemmer zu verhindern. Eine Einzelbehandlung mit CC hatte keine Wirkung auf die Polymerisation des Tubulin zu Mikrotubuli. Insgesamt legen diese Daten nahe, dass CC nicht direkt an Mikrotubuli binden kann, um mit den Mitosehemmern um eine Bindung zu kompetitieren. Um diese Hypothese zu stärken, führten wir, in Kooperation mit Dr. Jennifer Herrmann (Helmholtz Institut für Pharmazeutische Forschung, Saarbrücken) SPR-Experimente mit Chips durch, auf denen Tubulin immobilisiert wurde. Die Messungen zeigten, das CC nicht in der Lage war gebundenes Disorazol A von der Bindestelle am Tubulin zu verdrängen. Dies zeigte nun deutlich, dass der Rescue-Effekt nicht auf einer Kompetition von CC und Mitosehemmern um Tubulinbindestellen beruht. Zellzyklusanalysen zeigten, dass die kombinierte Behandlung mit ST911 und CC zu einer Abschwächung des durch ST911 verursachten G2/M-Arrestes führt. Da wir zuvor bereits eine Beeinflussung der direkten Targets von CC und Mitosehemmern, AMPK oder Tubulin, ausgeschlossen hatten, schlussfolgerten wir, dass CC vermutlich mit anderen zellulären Signalwegen interagiert, die zu den beschriebenen Veränderungen des Zellwachstums und der Zellzyklusprogression führen. Eine Literaturrecherche ergab, dass ein erhöhter intrazellulärer Polyaminspiegel, die Aktivierung des PI3K/Akt-Signalweges oder eine erhöhte Aktivität des Transkriptionsfaktors c-Myc zu einer Abschwächung eines G2/M-Arrestes führen können. Daher fokussierten wir die weiteren Experimente auf die Untersuchung einer möglichen Beteiligung dieser Targets an der Vermittlung des Rescue-Effektes. Wir zeigten, dass CC die Expression der Spermidin/Spermin-N1-Acetyltransferase (SSAT) erhöhen kann. Die SSAT ist ein Enzym, das an der Biosynthese der Polyamine beteiligt ist. Zusätzlich beobachteten wir, dass die Behandlung mit CC nach 4 h zu einer Erhöhung von phosphoryliertem und damit aktiviertem Akt (pAkt) führt. Die zusätzliche Behandlung mit Wortmannin, einer Substanz, welche die Phosphorylierung von Akt hemmen kann, führte zu einer Abschwächung des Rescue-Effektes. Insgesamt weisen diese Ergebnisse darauf hin, dass eine Aktivierung von Akt-Signalwegen und ein Einfluss auf die Polyaminbiosynthese, zumindest teilweise, mit dem Rescue-Effekt zusammenhängen können. Die Überexpression von c-Myc, einem Transkriptionsfaktor, der eng mit dem Akt-Signalweg und der Biosynthese von Polyaminen zusammenhängt, ist oft mit einer erhöhten Zellproliferation verbunden. Wir untersuchten die zellulären Proteinmengen von c-Myc mittels Western Blot und entdeckten, dass nach der Behandlung mit Mitosehemmern zusätzliche Banden für c-Myc auf den Blots auftauchten. Diese Ergebnisse geben einen Hinweis auf eine posttranslationale Modifikation von c-Myc nach der Behandlung mit Mitosehemmern. Durch Kombination mit CC wurden die zusätzlichen Banden abgeschwächt und die Gesamtmenge an c-Myc-Protein nahm nach längeren Inkubationszeiten rapide ab. Dies legt nahe, dass die posttranslationale Modifikation von c-Myc zum Abbau des Proteins führt und, dass CC dies abschwächen kann. Verschiedene Arbeiten zeigten bereits, dass c-Myc phosphoryliert wird und nach Konjugation mit Ubiquitin vom Proteasom abgebaut wird. Daher überprüften wir, ob eine Inhibition des Proteasoms mit MG-132 zu einem ähnlichen Rescue-Effekt führt wie mit CC. Tatsächlich führte die Behandlung mit ST911 in Kombination mit MG-132 zu einer Zunahme der Zellproliferation, wie sie vorher bereits für CC beobachtet wurde. Dies bestärkte die Theorie, dass der proteasomale Abbau von c-Myc eine Rolle beim Rescue-Effekt spielen kann. Als nächstes untersuchten wir die Phosphorylierungen von c-Myc am Ser62 und Thr58. Diese Phosphorylierungen spielen eine wichtige Rolle beim Abbau von c-Myc, indem Sie das Protein für die Konjugation mit Ubiquitin markieren. Die densitometrische Auswertung der Western Blots ergab, dass die Behandlung mit ST911 initial zu einem Anstieg von phospho-c-Myc führt, dem eine schnelle Abnahme zu späteren Zeitpunkten folgt. Außerdem konnte gezeigt werden, dass dieser Anstieg von phospho-c-Myc durch Kombination mit CC reduziert wurde. Dies unterstützt die Hypothese, dass ST911 den proteasomalen Abbau von c-Myc begünstigt und CC dies verhindern kann. Dies ist eine mögliche Erklärung für die erhöhte Zellproliferation, die für die durch CC „geretteten“ Zellen beobachtet wurde. Allerdings konnte das direkte Target, das für die Vermittlung des Rescue-Effektes durch CC verantwortlich ist, bisher nicht identifiziert werden. DYRKs (aus dem Englischen: Dual-specificity tyrosine-phosphorylation-regulated kinases) sind wichtige Regulatoren von Proteinstabilität und –abbau während der Zellzyklusprogression. Vor kurzem wurde gezeigt, dass DYRK1A und DYRK2 c-Myc am Ser62 phosphorylieren können und es dadurch für den proteasomalen Abbau markieren. Interessanterweise wurde CC bereits in einer früheren Publikation als potenter Inhibitor verschiedener DYRKs beschrieben. Allerdings wurde die Hemmung der DYRKs durch CC in diesem Artikel nur in einer einzelnen Konzentration getestet. Daher bestimmten wir in einem in-vitro-Kinaseassay in Kooperation mit Dr. Matthias Engel (Universität des Saarlandes, Saarbrücken) die IC50-Werte für CC gegenüber DYRK1A, DYRK1B und DYRK2. Unsere Ergebnisse zeigten deutlich, dass CC ein bevorzugter Inhibitor von DYRK1A und DYRK1B (IC50-Wert von etwa 1 µM) ist, aber auch DYRK2 hemmen kann (IC50-Wert von etwa 5 µM). Da sich die vermutete Bindestelle von CC in der stark konservierten Kinasedomäne befindet, ist eine unspezifische Inhibition verschiedener DYRKs nicht überraschend. Genexpressionsanalysen zeigten, dass HT-29 und HepG2 vergleichbare Mengen an DYRK1A exprimieren, während DYRK1B und DYRK2 deutlich weniger in HepG2 vorhanden sind. Vorige Experimente hatten gezeigt, dass HepG2 weniger sensitiv für ST911 und den durch CC vermittelten Rescue-Effekt waren. Wir schlussfolgerten, dass die unterschiedliche Expression der DYRK-Formen eine mögliche Erklärung für diese Unterschiede sein könnte. Daher entschieden wir uns für eine nähere Untersuchung von DRK1B und DYRK2. Experimente mit verschiedenen Inhibitoren der DYRKs zeigten, dass diese Substanzen, ähnlich wie CC, in der Lage waren die antiproliferative Wirkung von ST911 abzuschwächen. Diese Ergebnisse wurden in nachfolgenden Knockdown-Experimenten bestätigt. Dies legt nahe, dass die DYRKs zumindest teilweise für die Vermittlung des Rescue-Effektes verantwortlich sind. Zusammenfassend man kann sagen, dass der Rescue-Effekt vermutlich mit der Biosynthese von Polyaminen, dem Akt-Signalweg und dem proteasomalen Abbau von c-Myc zusammenhängt. Des Weiteren scheint die direkte Inhibition von DYRKs durch CC ein vielversprechender Ansatz für die Erklärung des Effektes zu sein. Allerdings konnte in keinem der Experimente eine kompletten Aufhebung des Rescue-Effektes durch CC gezeigt werden. Daher gehen wir davon aus, dass verschiedene Targets in die Vermittlung des Rescue-Effektes involviert sind. Dies ist höchstwahrscheinlich auf eine unspezifische, ATP-kompetitive Hemmung verschiedener Kinasen durch CC zurückzuführen. Nichtsdestotrotz, sind eine nähere Untersuchung von DYRKs im Rahmen der Therapieresistenz von Tumoren und eine genauere Aufklärung der am Rescue-Effekt beteiligten Signalwege eine interessantes Feld für weitere Untersuchungen.
Der Name Histamin hat seinen Ursprung aus dem griechischen Wort "histos" (Gewebe) und spielt auf sein breites Spektrum an Aktivitäten, sowohl unter physiologischen als auch unter pathophysiologischen Bedingungen an. Histamin ist eines der Moleküle mit welchem man sich im letzten Jahrhundert am intensivsten beschäftigt hat.
Im Jahr 1907 wurde das Histamin erstmals synthetisiert. Drei Jahre später gelang es, dieses Monoamin erstmals aus dem Mutterkornpilz Claviceps purpurea zu isolieren. Weitere 17 Jahre vergingen, ehe Best et al. Histamin aus der humanen Leber und der humanen Lunge isolieren konnten. Best konnte somit beweisen, dass dieses biogene Amin einen natürlichen Bestandteil des menschlichen Körpers darstellt. Nach der Entdeckung wurden dem Histamin mehrere Effekte zugeschrieben. Dale et al. beobachteten, dass Histamin einen stimulierenden Effekt auf die glatte Muskulatur des Darms und des Respirationstraktes hat, stimulierend auf die Herzkontraktion wirkt, Vasodepression und ein schockähnliches Syndrom verursacht.
Popielski demonstrierte, dass Histamin dosisabhängig einen stimulierenden Effekt auf die Magensäuresekretion von Hunden hat. Lewis wiederum beschrieb erstmals, dass Histamin einen Effekt auf der Haut hervorruft. Dies zeigte sich durch verschiedene Merkmale, wie geröteter Bereich aufgrund der Vasodilatation und Quaddeln aufgrund der erhöhten Gefäßpermeabilität. Des Weiteren wurde Histamin eine mediatorische Eigenschaft bei anaphylaktischen und allergischen Reaktionen zugeschrieben. Zusätzlich spielt das biogene Amin eine entscheidende Rolle im zentralen Nervensystem (ZNS), unter anderem beim Lernen, bei der Erinnerung, beim Appetit und beim Schlaf-Wach-Rhythmus. Von den zahlreichen physiologischen Effekten des Histamins ist seine Rolle bei Entzündungsprozessen, der Magensäuresekretion und als Neurotransmitter am besten verstanden.
The vascular endothelium is a monolayer of endothelial cells that builds the inner lining of the blood vessels and constitutes a regulatory organ within the physiological system to sustain homeostasis. Endothelial cells participate in physiological processes including inflammation and angiogenesis. Dysregulation of these processes, however, can evoke or maintain pathological disorders, including cardiovascular and chronic inflammatory diseases or cancer. Although pathological inflammation and angiogenesis represent treatable conditions, current pharmacotherapeutic approaches are frequently not satisfying since their long-term application can evoke therapy resistance and thus reduced clinical efficacy. Consequently, there is an ongoing demand for the discovery of new therapeutic targets and drug leads. Considering that endothelial cells play a critical role in both angiogenesis and inflammation, the vascular endothelium represents a promising target for the treatment of diseases.
Vioprolide A is a secondary metabolite isolated from the myxobacterium Cystobacter violaceus Cb. vi35. Recently, vioprolide A was identified to interact with NOP14, a nucleolar protein involved in ribosome biogenesis. Ribosome biogenesis is an indispensable cellular event that ensures adequate homeostasis. Abnormal alterations in the ribosome biogenesis, referred to as ribosomopathies, however, can lead to an overall increase in the risk of developing cancer. Accordingly, several studies have outlined the involvement of NOP14 in cancer progression and metastasis, and vioprolide A has been demonstrated to exert anti-cancer effects in vitro. However, the impact of vioprolide A and NOP14 on the endothelium has been neglected so far, although endothelial cells are crucially involved in inflammation and angiogenesis under both physiological and pathological conditions.
In the present study, the effect of vioprolide A on inflammatory and angiogenic actions was analysed. In vivo, the laser-induced choroidal neovascularization (CNV) assay outlined a strong inhibitory effect of vioprolide A on both inflammation and angiogenesis. Furthermore, intravital microscopy of the cremaster muscle in mice revealed that vioprolide A strongly impaired the TNF-induced leukocyte-endothelial cell interaction in vivo.
In further experiments, the specific effect of vioprolide A on activation processes of primary human umbilical vein endothelial cells (HUVECs) was examined. According to the in vivo results, vioprolide A decreased the leukocyte-endothelial cell interaction in vitro through downregulating the cell surface expression and total protein expression of ICAM-1, VCAM-1 and E-selectin. Vioprolide A evoked its anti-inflammatory actions via a dual mechanism: On the one hand, the expression of pro-inflammatory proteins, including TNFR1 and cell adhesion molecules, was lowered through a general downregulation of de novo protein synthesis. The inhibition of de novo protein synthesis is most likely linked to the interaction with and inhibition of NOP14 by vioprolide A in HUVECs. On the other hand, the natural product prevented the nuclear translocation and promotor activity of the pro-inflammatory transcription factor NF-ĸB. Interestingly, most anti-inflammatory compounds that interfere with the NF-ĸB signaling pathway prevent NF-ĸB nuclear translocation through recovering or stabilizing the inhibitory IĸB proteins. Vioprolide A, however, decreased rather than stabilized the IĸB proteins and prevented NF-ĸB nuclear translocation through interfering with its importin-dependent nuclear import. By performing siRNA-mediated knockdown experiments, we evaluated the role of NOP14 in inflammatory processes in HUVECs and could establish a causal link between the anti-inflammatory actions of vioprolide A and the deletion of NOP14.
Besides exerting anti-inflammatory actions, we found that vioprolide A potently decreased the angiogenic key features proliferation, migration and sprouting of endothelial cells. Mechanistically, the natural product interfered with pro-angiogenic signaling pathways. Vioprolide A reduced the protein level of growth factor receptors, including VEGFR2, which is the most prominent receptor responsible for angiogenic signaling in endothelial cells. This effect was based on the general inhibition of de novo protein synthesis by the natural product. Downregulation of growth factor receptors impaired the activation of downstream signaling intermediates, including the MAPKs ERK, JNK and p38. To our surprise, however, activation of Akt, another downstream effector of VEGFR2, was increased rather than decreased. Furthermore, vioprolide A lowered the nuclear translocation of the transcriptional coactivator TAZ, which is regulated by the evolutionary conserved Hippo signaling pathway. Interestingly, however, and in contrast to NF-ĸB, TAZ nuclear translocation in mammalian cells seems to be independent of importins. In this context, we found that vioprolide A reduced both the protein level and nuclear localization of MAML1, which is needed to retain TAZ in the nucleus after its successful translocation.
...