• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Al-Furoukh, Natalie (1)
  • Ammer, Stefan (1)
  • Barthel, Sebastian Robert (1)
  • Barthelme, Dominik (1)
  • Baum, Wiebke (1)
  • Bienko, Marzena (1)
  • Braner, Markus (1)
  • Bürger, Claudia (1)
  • Chen, Min (1)
  • Demirel, Özlem (1)
+ more

Year of publication

  • 2007 (8)
  • 2004 (5)
  • 2005 (5)
  • 2009 (4)
  • 2019 (4)
  • 2021 (4)
  • 2010 (3)
  • 2002 (2)
  • 2003 (2)
  • 2006 (2)
+ more

Document Type

  • Doctoral Thesis (56)

Language

  • English (36)
  • German (20)

Has Fulltext

  • yes (56)

Is part of the Bibliography

  • no (56)

Keywords

  • ABC-Transporter (5)
  • MHC Klasse I (2)
  • ABC transporter (1)
  • ABC-transporter (1)
  • ABCE1 (1)
  • ATP-Binding Cassette Transporter (ABC) (1)
  • ATPase (1)
  • Adenosintriphosphatasen (1)
  • Antigenprozessierung (1)
  • Apoptose (1)
+ more

Institute

  • Biochemie und Chemie (40)
  • Biochemie, Chemie und Pharmazie (12)
  • Biowissenschaften (2)
  • Pharmazie (2)
  • Georg-Speyer-Haus (1)

56 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Gentherapie : Etablierung und Optimierung retroviraler Vektoren für den T-Zell-spezifischen Gentransfer (2002)
Thaler, Sonja
Das Ziel von Gentherapie ist die Behandlung bzw. Heilung einer Erkrankung durch das Einbringen eines oder mehrerer Gene. Dazu werden Gentransfervektoren benötigt, die effizient therapeutische Gene in die zu behandelnden Zellen einbringen. Für eine systemische Applikation müssen Gentransfervektoren die Eigenschaft besitzen, ausschließlich die erkrankten Zellen zu transduzieren. Der Tropismus retroviraler Vektoren wird durch das Envelopeprotein (Env) festgelegt. Maus Leukämie Virus (MLV) basierende Kapsidpartikel können mit dem Envelopeprotein des humanen Immundefizienzvirus Typ-1 (HIV-1) pseudotypisiert werden. Diese MLV/HIV-1 Pseudotypvektoren besitzen einen Tropismus für humane CD4 positive T-Helferzellen. Diese Vektoren sind geeigneten Kandidaten für die gen-therapeutische Behandlung der HIV-lnfektion und von kutanen T-Zell Lymphomen, einer lymphproliferativen Erkrankung von CD4 Zellen. Im ersten Teil dieser Arbeit wurden MLV/HIV Pseudotypvektoren exprimierende Verpackungszelllinien mit Hüllproteinen verschiedener Subtypen etabliert und charakterisiert. Die verwendeten Subtypen waren das T-trophe HIV-1 Isolat BH10, das T-trophe HIV-2 Isolat ISY und das dualotrophe SHIV Isolat 89.6P. Dabei zeigte sich eine Abhängigkeit der Vektortiter vom Subtyp. Die höchsten Titer wurden mit der MLV/HIV-1 Pseudotypvektoren exprimierenden Verpackungszelllinie FLY-HIV-87 erhalten und lagen in Abhängigkeit vom retroviralen Vektor zwischen 1 x 10 hoch 5 und 1 x 10 hoch 6 IU/ml. Die Transduktionsspezifität entsprach dem Korezeptorgebrauch des HIV-Subtyps. Da für die geplanten in vivo Experimente höhere Titer notwendig waren, wurden verschiedene Methoden zur Anreicherung MLV/HIV-1 pseudotypisierter Vektoren zunächst getestet, sowie die Beste dieser Methoden für die Konzentrierung der Partikel optimiert. Im zweiten Teil dieser Arbeit wurde an zwei Mausmodellen die in vivo Applikation MLV/HIV-1 pseudotypisierter Vektoren untersucht. An transgenen hCD4 Mäusen wurde der Gentransfer nach systemischer Applikation von MLV/HIV-1 LacZ Pseudotypvektoren untersucht. In den transduzierten Mäusen konnte Gentransfer in Lymphknoten und Thymus beobachtet werden. Durch subkutane Implantation der humanen kutanen T-Zell Lymphomzellen MyLa in Nacktmäuse wurde ein Tiermodell Modell für humane kutane T-Zell Lymphome etabliert. Die intratumorale Applikation von MLV/HIV-1 Partikeln, deren Vektorgenom für das grüne Fluoreszenzprotein (EGFP) kodiert ergab, daß es zum effektiven und spezifischen Gentransfer in die CD4 positiven MyLa Zellen kam. In dem anschließend durchgeführte Therapieversuch mit Herpes Simplex Virus Thymidinkinase kodierenden Vektoren und darauf folgender systemischer Ganciclovir Behandlung konnte eine Verlangsamung des Tumorwachstums erzielt werden Die Ergebnisse der vorliegenden Arbeit haben gezeigt, daß MLV/HIV-1 Pseudotypvektoren für den spezifischen und effizienten Transfer von Genen in primäre humane CD4 T-Helferzellen geeignet sind und daß sowohl die systemische als auch die intratumorale Applikation dieser Vektoren möglich ist.
Funktionelle Charakterisierung des mitochondrialen ABC-Transportkomplexes MDL1 in Saccharomyces cerevisiae (2007)
Gompf, Simone
Für den mitochondrialen ABC-Transporter MDL1 (multidrug resistance like) aus Saccharomyces cerevisiae wurde eine Funktion als intrazellulärer Peptidexporter vorhergesagt. MDL1 ist wahrscheinlich am Export von Degradationsprodukten der m-AAA (matrixoriented ATPases associated with a variety of cellular activities) Protease in den Intermembranraum beteiligt (Young et al., 2001). Das MDL1-Homodimer besteht aus zwei Transmembrandomänen mit jeweils sechs potentiellen α-Helices und zwei Nukleotidbindedomänen. Eine Überexpression des ABC-Transporters in E. coli und L. lactis ist nicht möglich. Nur im homologen Expressionssystem kann eine bis zu 100-fach gesteigerte MDL1-Konzentration in Anwesenheit des induzierbaren GAL1-Promotors gegenüber dem endogenen Protein erreicht werden. Differentielle Zentrifugation, Immunogold-Markierungen und Proteasezugänglichkeitsexperimente zeigen, dass MDL1 ausschließlich in der mitochondrialen Innenmembran lokalisiert ist und die Nukleotidbindedomänen zur Matrix orientiert vorliegen. Mit Hilfe von Edman Sequenzierung des gereinigten His-getaggten MDL1 wurde eine 59 Aminosäuren lange mitochondriale Leitsequenz identifiziert. Die Deletionsvariante MDL1(60-695) wird ausschließlich in den Membranen des Endoplasmatischen Retikulums exprimiert. Ihre Motordomänen liegen zytosolisch orientiert vor. Beide MDL1-Varianten bilden homooligomere Komplexe vergleichbarer Größe und weisen ähnliche ATPase Aktivitäten auf. Die physiologischen Konsequenzen der Lokalisation in unterschiedlichen Membranen wurden in Zellen näher untersucht, deren mitochondrialer ABC-Transporter ATM1 (ABC transporter of mitochondria) deletiert ist. ATM1 ist von essentieller Bedeutung für die Biogenese zytosolischer Eisen/Schwefel-Proteine (Lill und Kispal, 2000). Der mitochondriale MDL1-Komplex kann zum Teil die ATM1-Funktion übernehmen, wohingegen ER-ständiges MDL1, als auch ATP Binde- und Hydrolyse inaktive Mutanten, den Δatm1 Wachstumsphänotyp nicht komplementieren können. Die physiologische Funktion von MDL1 ist somit eng mit der mitochondrialen Innenmembran und der Funktionalität des Proteins verbunden. Durch in vivo Komplementationsstudien wurden zwei mitochondriale ABC-Transporter ABCB10 und Pa_2_9660 aus H. sapiens bzw. P. anserina als funktionelle MDL1-Homologe identifiziert.
Studies on the protein translocation in Escherichia coli : analysis of the integral membrane proteins SecYEG and YidC employing biochemical and crystallographic methods (2007)
Lotz, Mirko
Transport of proteins into or across cellular membranes is mediated by the conserved and ubiquitous Sec-machinery. The Sec-homologue in the inner membrane of Escherichia coli is SecYEG. Sec-mediated insertion of numerous membrane proteins is aided by YidC, another protein integral to the inner membrane of Escherichia coli. YidC fulfils in addition the integration of a variety of membrane proteins Sec-independently. It belongs to a conserved but structurally uncharacterised family of proteins important for membrane protein biogenesis and comprises homologues in mitochondria and chloroplasts. By modification of a former crystallisation protocol two-dimensional crystals of SecYEG were grown in presence of the signal sequence peptide of LamB. Recording of structural data by electron cryo-microscopy and calculation of a difference structure comparing a former SecYEG projection structure with the one of SecYEG crystallised in presence of the substrate revealed several new and vacant densities. These hint to signal peptide binding close to the translocation pore and to significant rearrangements in proximity to the lateral exit site for transmembrane domains in SecYEG. The difference structure suggests that dimeric SecYEG is an asymmetric molecule consisting of one active and one inactive SecYEG monomer. Detergent removal from a mixture of purified YidC and lipids produced two-dimensional crystals that were highly dependent on the ionic strength and lipid composition for their growth. Electron cryo-microscopy on the frozen-hydrated crystals and image processing visualised structural details at about 10 Å resolution. Averaging two alternative projection structures in p2 and p121_a symmetry, respectively, yielded essentially the same features. Four YidC monomers form one unit cell (dimensions 82 x 71 Å, included angle 85 ° and 90 °, respectively) and seem to be arranged as two sets of dimers integrated in an anti-parallel fashion into the membrane. An area of low density in the centre of each YidC monomer resembles possibly a constriction of the membrane, which could have particular relevance for the integration of substrate proteins into the lipid bilayer.
The catalytic cycle of the nucleotide-binding domain of the ABC-transporter HlyB (2005)
Zaitseva, Jelena
Nucleotide-binding domains (NBDs), roughly 27 kDa in size, are conservative components of the large family of ABC (ATP-binding cassette) transporters, which includes importers, exporters, and receptors. NBDs or ABC-ATPases supply energy for the translocation of a vast variety of substrates across biological membranes. Despite their hydrophilic sequence, many NBDs tend to aggregate and precipitate in solution upon isolation from the complete transporter. The conditions stabilizing an extremely labile NBD component of the E.coli HlyA transporter, HlyB-NBD, were developed. As a result, the pure highly concentrated enzyme was protected from precipitation for months that allowed screening of the unlimited crystallization conditions in the presence of different substrates and performance of the reproducible functional assays. HlyB-NBD was characterized in regard to its uncoupled ATPase activity, oligomeric state, and stability in solution. Comparative analysis of protein stability and ATPase activity in various buffers suggested an inverse relationship between the two. Kinetic analysis of ATPase activity revealed ATP-induced protein dimerization. Gel-filtration experiments with the wild type protein and H662A-mutant of HlyB-NBD provided further evidence of protein dimerization in the presence of ATP. The crystal structures in post- and pre-hydrolysis nucleotide-bound states of HlyB-NBD were determined at 1.6Å and 2.5Å resolution, respectively. While the hydrolytically deficient H662A mutant of HlyB-NBD was crystallized as a stable dimer in the presence of ATP or ATP-Mg2+, with two nucleotide molecules sandwiched between the two monomers, the same protein was shown to be a monomer in the ADP-loaded state. The wild type protein failed to develop crystals with bound ATP, yet formed ADP-bound crystals identical to those of the H662A-mutant. The X-ray structures of HlyB-NBD in various states of the hydrolytic cycle and the functional studies of the enzyme have provided an opportunity to characterize enzyme-substrate complexes and protein-protein interactions between the NBD subunits in great detail. Comparison of the nucleotide-free, the ADP-, and the ATP-loaded states revealed oligomeric and conformational changes of the protein upon substrate binding and resulted in a molecular picture of the catalytic cycle. The correlated results of the structural and functional investigations of HlyB-NBD are discussed with relation to the mechanism of action of ABC transporters.
Identifizierung und Charakterisierung Faktor-H- und FHL-1-bindender CRASP-Proteine von Borrelia burgdorferi, dem Erreger der Lyme-Borreliose (2005)
Hartmann, Kristina
Die Dissertation liefert einen Beitrag zur Identifizierung und Charakterisierung der an der Komplementresistenz von Borrelien beteiligten CRASP-Proteine aus Isolaten der Genospezies B. burgdorferi s.s. und B. afzelii. Im Rahmen der Arbeit gelang es mittels Identifizierung und immunologischer Charakterisierung die Zugehörigkeit der spezifisch Faktor H-bindenden BbCRASP-Proteine BbCRASP-3, BbCRASP-4 und BbCRASP-5 zur Erp-Proteinfamilie zu beweisen. Weiterhin konnten die Faktor H- und FHL-1-bindenden BbCRASP-Proteine BbCRASP-1 und BbCRASP-2 von B. burgdorferi s.s. identifiziert werden. Mit dem BbCRASP-2-Protein wurde ein bis dahin unbekanntes Faktor H- und FHL-1-bindendes CRASP-Protein aus den äußeren Membranen des B. burgdorferi s.s.-Isolates B31 isoliert und charakterisiert. BbCRASP-2 stellt innerhalb der CRASP-Proteinfamilie ein neues eigenständiges Lipoprotein dar und unterscheidet sich deutlich von den Sequenzen der anderen CRASP-Proteine. Es ist weder ein Mitglied der gbb54- oder der Erp-Proteinfamilie, noch gehört es zu einer anderen bekannten Proteinfamilie von B. burgdorferi s.s. In Ligandenaffinitätsblot-Analysen konnte mit Hilfe von rekombinantem FHL-1 sowie Deletionsmutanten von Faktor H und FHL-1 gezeigt werden, dass die Bindung von Faktor H und FHL-1 an das BbCRASP-2-Protein ausschließlich über die SCR 7-Domäne vermittelt wird. Die Analysen C terminaler Deletionsmutanten von BbCRASP-2 unterstrichen die Bedeutung der letzten 16 Aminosäuren des BbCRASP-2-Proteins für die Interaktion mit Faktor H und FHL-1.
Identification of the functional unit and the interactome of the lysosomal peptide transport complex TAPL (2010)
Demirel, Özlem
ABCB9 is a peptide transporter belonging to the ATP-binding cassette (ABC) transporter subfamily B. Due to its high sequence identity to the transporter associated with antigen processing (TAP) the protein was named TAP-like (TAPL). The primary aim of this PhD thesis was the functional characterization of the TAPL transport complex. Despite the lack of TAPL function in the classical MHC class I pathway an involvement of TAPL in antigen presentation was still suggested. Apart from the crucial role of TAP for peptide delivery into the ER, TAP-independent translocation pathways in professional antigen presenting cells (pAPC) have been proposed, but not identified so far. Remarkably, TAPL mRNA and protein expression is strongly induced during differentiation of monocytes to immature and mature dendritic cells. This result was confirmed in the promonocytic cell line THP-1, which was used as a model system for monocyte to macrophage differentiation. By using quantitative immunofluorescence microscopy and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome associated membrane protein 2 (LAMP-2) thus excluding the ER-localization formerly reported. Furthermore, by in vitro assays, a TAPL-specific and ATPdependent translocation of peptides into isolated lysosomes was demonstrated. Hence, TAPL is a candidate mediating peptide transport in alternative antigen presentation pathways in pAPCs. The presence of an extra N-terminal transmembrane domain (TMD0) lacking sequence homology to any known protein distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting the TAPL translocation complex into its four putative transmembrane helices containing TMD0 and the core complex, distinct functions to the core complex and TMD0 were assigned. The core-TAPL complex composed of six predicted transmembrane helices and the nucleotide-binding domain (NBD) was expressed transiently in HeLa or stably in Raji cells. Crude membranes containing core-TAPL showed the same peptide transport activity as wt-TAPL demonstrating that the six core helices and the NBD are sufficient for peptide transport. This result also shows that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the wt transporter, the core complex localizes only partially to lysosomes and is mistargeted to the plasma membrane as observed by immunofluorescence microscopy and confirmed biochemically by cell surface biotinylation. Thus, a crucial role for TMD0 in proper subcellular targeting can be postulated. The vast majority of biological processes are mediated by protein complexes, hence characterization of such protein-protein-interactions is essential for understanding protein function on the cellular level. To identify interaction partners of TAPL, the transporter was isolated by tandem affinity purification. By tandem mass spectrometry the membrane proteins LAMP-1 and LAMP-2 were deciphered as specific proteins interacting with wt-TAPL. Notably, core-TAPL lacks these interactions indicating a role for TMD0 in recruiting other proteins. These results were verified for endogenous TAPL by co-immunoprecipitation. Using cells deficient in LAMP-1 and/or in LAMP-2 an escort function for the LAMP proteins was excluded. Very importantly, the physiological function of the LAMP-1and LAMP-2 interaction with TAPL is an increase in stability, since in their absence half-life of TAPL is drastically reduced.
Die Rolle des "Protein Associated with Myc" (PAM) bei der Regulation des "mammalian Target Of Rapamycin" (mTOR) Signalweges (2007)
Mäurer, Christian
Das “Protein Associated with Myc” spielt in den verschiedenen physiologischen Vorgängen eine Rolle. Dazu zählen Prozesse der Synaptogenese und Schmerzverarbeitung ebenso wie eine Regulation des Pteridin- und cAMP-Stoffwechsels. Auf welche Weise PAM die unterschiedlichen Effekte vermittelt, ist bislang nur in Ansätzen verstanden. Um die Wirkmechanismen von PAM aufzuklären, wurden in dieser Arbeit seine biochemischen Funktionen untersucht. Die These, dass PAM als E3 Ubiquitinligase aktiv ist, konnte in vitro mittels biochemischer Versuche zweifelsfrei bestätigt werden. Sowohl das nativ aufgereinigte, humane PAM, als auch der heterolog expremierte C-Terminale Bereich (C-PAM), der die katalytisch aktive RING Finger Domäne enthält, wiesen die Fähigkeit zur Ubiquitinkettenbildung und Autoubiquitinierung auf. Bei der Identifikation eines möglichen Zielproteins rückte das Protein TSC2 und der damit verbundene TSC2 / mTOR Signalweg in den Fokus. Für das gewählte Modell-System HeLa Zellen ließ sich eine Interaktion von PAM und TSC2 durch Ko-Immunopräzipitationen und Immunzytochemie nachweisen. Es konnte erstmalig gezeigt werden, dass das vollständige, native PAM, nicht aber die isolierte RING Finger Domäne, TSC2 polyubiquitinieren und zum proteasomalen Abbau markieren kann. TSC2 ist ein negativer Regulator der mTOR Kinaseaktivität, in dem es den stimulatorischen Einfluss von Rheb auf mTOR inhibiert. PAM wird in HeLa Zellen durch das Phospholipid Sphingosin-1-Phosphat (S1P) aktiviert. Nach S1P Behandlung der Zellen war eine Phosphorylierung der Proteinkinase mTOR nachweisbar. Diese ging mit einer Aktivierung der Kinaseaktivität einher, wie die rapamycinsensitive Phosphorylierung der mTOR Zielproteine p70S6K und 4E-BP1 zeigte. Durch Gabe von Rezeptor-Agonisten/-Antagonisten konnte eine Beteiligung des S1P1 und S1P2 Rezeptors ausgeschlossen werden. Der zunächst vermutete Mechanismus eines S1P induzierten, PAM-abhängigen Abbaus von TSC2 konnte trotz vielfältiger Herangehensweisen nicht nachgewiesen werden. Eine Phosphorylierung als Indikation einer Inaktivierung war ebenfalls nicht detektierbar. Auch die GAP Aktivität von TSC2 auf Rheb, wird in in vitro Versuchen durch die Interaktion mit PAM nicht vermindert. Durch eine Verminderung der TSC2 Expression mittels spezifischer siRNA zeigte sich, dass TSC2 nicht in die S1P-abhängige mTOR Aktivierung involviert ist. Auch regulatorische Proteinkinasen wie AKT, ERK oder PI3K, die durch S1P aktiviert werden können, sind an dem Signalweg nicht beteiligt, wie die Hemmung dieser Enzyme mit spezifischen Inhibitoren zeigte. Dagegen konnte eine Beteiligung von PAM und Rheb zum einen mittels Proteintransfektion bestätigt werden, zum anderen ließen sich die S1P Effekte durch Hemmstoffe verhindern, die für eine Aktivierung von PAM, respektive Rheb, nötig sind. Durch Nukleotidbindungsstudien war ein Einfluss von PAM auf den GTP-Beladungszustand von Rheb nachweisbar. Sowohl in einem GTPS Bindungsversuch als auch in einem GDP Dissoziationsexperiment erhöhte PAM konzentrationsabhängig die GTP Bindung bzw. den GDP/GTP Austausch an Rheb. In dieser Arbeit wird damit erstmalig eine duale Funktion eines Proteins als Ubiquitinligase und GEF beschrieben. So konnte die postulierte Aktivität von PAM als Ubiquitinligase bestätigt und TSC2 als Zielprotein identifiziert werden. Gleichzeitig wurde ein TSC2 unabhängiger Weg der mTOR Aktivierung aufgeklärt, an dem PAM und Rheb beteiligt sind. Als möglicher Mechanismus kommt eine Aktivität von PAM als Guanin-Nukleotid Austausch Faktor (GEF) auf Rheb in Frage. Durch Beschreibung von PAM als negativem Regulator von TSC2 und Aktivator von Rheb trägt diese Arbeit einen wichtigen Beitrag zur TSC2 / mTOR Forschung bei. Umgekehrt ermöglicht sie eine neue Sichtweise auf partiell PAM-abhängige Vorgänge wie Synaptogenese und Nozizeption, indem sie TSC2 / mTOR in diese Prozesse integriert.
Fingerprint of the mitochondrial ABC transporter Mdl1p from Saccharomyces cerevisiae (2006)
Hofacker, Matthias
The multidrug resistance like protein 1 (Mdl1p) belongs to the class of ATP binding cassette (ABC) transporters which comprise a large family of membrane proteins utilising ATP hydrolysis to drive up-hill transport of a wide variety of solutes across membranes. Mdl1p is a mitochondrial ABC transporter involved in the export of protein fragments derived from the proteolysis of non-assembled inner membrane proteins out of the mitochondrial matrix. Mdl1p forms a homodimeric complex consisting of two polytrophic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). The transport function and structural organisation of Mdl1p have not been elucidated yet. To characterise the ATP hydrolysis cycle of Mdl1p, the His-tagged NBD (amino acids D423-R695) was over-expressed in Escherichia coli and purified to homogeneity. The isolated NBD was active in ATP binding and hydrolysis. The ATPase activity was non-linear regarding to the protein concentration, indicating that the functional state is a dimer. Dimeric catalytic transition states could be trapped and three different intermediate states were isolated, containing two ATPs, one ATP and one ADP, or two DPs, which are trapped by orthovanadate or beryllium fluoride. These experiments showed that (i) ATP binding to the NBDs induces dimerisation, (ii) in all isolated dimeric states, two nucleotides are present, (iii) phosphate can dissociate from the dimer, (iv) both nucleotides are hydrolysed, and (v) hydrolysis occurs in a sequential mode. Studies in the workgroup systematically screened for over-expression of the full-length Mdl1p and expression conditions were optimised. These studies showed that highest expression was obtained in S. cerevisiae, where the protein was over-expressed 100-fold. In this work over-expressed His-tagged protein was purified via immobilised metal-ion affinity chromatography that was active in ATP binding and hydrolysis with a turn-over of 2.5 ATP per second. N-terminal amino acid sequencing of purified Mdl1p by Edman degradation confirmed experimentally a N-terminal targeting sequence of a mitochondrial ABC transporter of S. cerevisiae for the first time. This sequence was determined to be 59 amino acids in length. Mdl1p was reconstituted into liposomes, which was confirmed by freeze fracture electron microscopy. The reconstituted protein showed ATP hydrolysis similar to the solubilised Mdl1p. However peptide translocation with radiolabelled X(8) or X(23) libraries as done for the transporter associated with antigen processing TAP could not be shown with this setup. Furthermore, structural insights of the mitochondrial transport complex and its oligomeric state were obtained via single particle electron microscopy. It was shown that Mdl1p forms a homodimer in detergent. These in vitro studies provide the basis for further detailed investigation of the mitochondrial ABC transporter Mdl1p.
Entwicklung und funktionelle Charakterisierung rekombinanter Formen der pro-apoptotischen Enzyme Granzym B und Caspase-3 zur gezielten Induktion des programmierten Zelltods in Tumorzellen (2003)
Giesübel, Ulrike
Zytotoxische T-Lymphozyten und natürliche Killer-Zellen sind hochspezialisierte Zellen des Immunsystems, die durch Sekretion der Serin-Protease Granzym B (GrB) und des membranolytischen Proteins Perforin Virusinfizierte, körperfremde oder auch Tumorzellen durch Induktion von apoptotischem Zelltod eliminieren. Während Perforin für die Aufnahme von Granzym B in Zielzellen verantwortlich ist, wirkt Granzym B im Zytosol als aktive Effektor-Caspase und spaltet Caspase-3 und andere zelluläre Caspasen sowie verschiedene zentrale Caspasen-Substrate. Granzym B aktiviert damit wie Caspase-3 Apoptose-Signalwege am unteren Effektorende und umgeht daher die meisten Kontrollmechanismen, die in Tumorzellen häufig dereguliert sind und zur Resistenz gegenüber klassischer Chemo- und Strahlentherapie führen. Beide Proteasen stellen damit vielversprechende Enzymaktivitäten für die Verwendung als Effektorfunktion in Tumorzell-spezifischen zytotoxischen Fusionsproteinen dar. In der vorliegenden Arbeit wurden rekombinante Formen von Granzym B und Caspase-3 hergestellt und daraufhin untersucht, ob beide Enzyme mit dem ErbB2-spezifischen "single chain" Antikörper scFv (FRP5) als Tumorzell-spezifischer Zellbindungsdomäne fusioniert werden können, ohne dadurch die Faltung der Proteasen zu verhindern, um eine gezielte Applikation in Tumorzellen und Eliminierung der Zellen durch Apoptose zu ermöglichen. Die Herstellung von Granzym B als rekombinantes Protein im präparativen Maßstab war bisher nicht in der Literatur beschrieben worden. In dieser Arbeit konnte humanes aktives Granzym B in der Hefe Pichia pastoris mit Ausbeuten von 1 bis 4 mg/l Kultur exprimiert werden. Zum Nachweis der enzymatischen Aktivität wurde ein in vitro Assays etabliert, bei dem rekombinante Procaspase-3 als Substrat für Granzym B eingesetzt wurde. Nach intrazellulärer Applikation mit einem synthetischen Transduktionsreagens induziert das gereinigte Protein Apoptose in HeLa Zellen. Wie für endogenes Granzym B in der Literatur beschrieben, wird rekombinantes Granzym B aus Pichia pastoris sehr schnell in HeLa Zellen aufgenommen, lokalisiert aber in vesikulären Strukturen, in denen die enzymatische Aktivität eingeschlossen ist. Aus verschiedenen Expressionskulturen wurden jedoch zwei unterschiedliche Proteine isoliert, die bei vergleichbarer molarer Masse und enzymatischer Aktivität in Zellen aufgenommen wurden bzw. nicht internalisierten, was darauf hinweist, daß eine posttranslationale Modifikation der Protease für die Bindung von Granzym B an Zielzellen verantwortlich ist. Während für die Freisetzung von Granzym B aus den Membranvesikeln und Induktion von Apoptose Perforin erforderlich ist, konnte in dieser Arbeit beobachtet werden, daß Kulturen verschiedener etablierter Tumorzellinien nach Behandlung mit Granzym B auch in Abwesenheit von Perforin-Aktivität auffallende morphologische Veränderungen zeigen, die mit dem partiellen Verlust des Kontakts zum Kultursubstrat verbunden sind. Dies deutet darauf hin, daß Granzym B auch extrazellulär auf Zellen einwirkt, indem es Komponenten der extrazellulären Matrix spaltet, und so indirekt Apoptose durch Anoikis induziert. Dieser Effekt ist jedoch für eine mögliche therapeutische Verwendung von Granzym B nicht von Bedeutung, da relativ hohe Proteinkonzentrationen erforderlich sind. Um Granzym B selektiv gegen Tumorzellen zu richten, wurden verschiedene Fusionen mit dem "single chain" Antikörper scFv(FRP5) sowie einer bakteriellen Translokationsdomäne von Exotoxin A oder Diphtherietoxin konstruiert und in E. coli oder Pichia pastoris exprimiert. Während verschiedene in E. coli hergestellte Fusionsproteine nicht enzymatisch aktiv waren, konnte im Überstand einer Pichia Expressionskultur volle-Länge GrB-scFv(FRP5) sowie Granzym B Aktivität nachgewiesen werden. Die Expressionsrate war allerdings so gering, daß eine präparative Isolierung nicht möglich war. Es konnte damit aber gezeigt werden, daß die Fusion heterologer Proteindomänen an den C-Terminus von Granzym B unter Erhalt der enzymatischen Aktivität prinzipiell möglich ist, während zusätzliche Peptidsequenzen am N-Terminus der Protease zumindest partiell zum Verlust der enzymatischen Aktivität führen. Aktive Caspase-3 besteht aus zwei Peptiden p12 und p17, die im aktiven Enzym ein Tetramer (p12 p17)2 bilden. Um Caspase-3 selektiv in Tumorzellen zu applizieren, wurden ebenfalls Möglichkeiten untersucht, eine der beiden Untereinheiten mit dem scFv(FRP5) als Tumorzell-spezifische Zellbindungsdomäne zu fusionieren. Während aus den beiden separat in E. coli exprimierten p12 und p17 Untereinheiten durch gemeinsame Rückfaltung enzymatisch aktive Caspase-3 rekonstituiert werden konnte, führte die Fusion heterologer Proteindomänen an den N- und C-Terminus der p12 Untereinheit sowie an den C-Terminus der p17 Untereinheit zum Verlust der enzymatischen Aktivität, wahrscheinlich aufgrund der Verhinderung der korrekten Faltung des Protease-Tetramers. Dagegen konnte an den N-Terminus der p17 Untereinheit eine bakterielle Translokationsdomäne unter Erhalt der enzymatischen Aktivität fusioniert werden; ein entsprechendes Konstrukt, das zusätzlich den "single chain" Antikörper scFv(FRP5) enthielt, wurde aber in E. coli vollständig degradiert. Nachdem die Idee, Granzym B oder aktive Caspase-3 zur selektiven Induktion von Apoptose in Tumorzellen für therapeutische Zwecke einzusetzen, bereits seit längerem diskutiert wird, es jedoch bisher praktisch nicht möglich war, entsprechende rekombinante Fusionsproteine in funktionaler Form herzustellen, liefern die Ergebnisse dieser Arbeit wichtige grundlegende Informationen, wie die weitere Entwicklung solcher Moleküle erfolgreich durchgeführt werden könnte.
Mechanistic insights into ATP hydrolysis by the ABC transporter TAP (2004)
Chen, Min
The transporter associated with antigen processing (TAP) plays a pivotal role in the adaptive immune response against virus-infected or malignantly transformed cells. As member of the ABC transporter family, TAP hydrolyzes ATP to energize the transport of antigenic peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP forms a heterodimeric complex composed of TAP1 and TAP2 (ABCB2/3). Both subunits contain a hydrophobic transmembrane domain and a hydrophilic nucleotide-binding domain. The aim of this work was to study the ATP hydrolysis event of the TAP complex and gain further insights into the mechanism of peptide transport process. To analyze ATP hydrolysis of each subunit I developed a method of trapping 8- azido-nucleotides to TAP in the presence of phosphate transition state analogs followed by photocross-linking, immunoprecipitation, and high-resolution SDS-PAGE. Strikingly, trapping of both TAP subunits by beryllium fluoride is peptide-specific. The peptide concentration required for half-maximal trapping is identical for TAP1 and TAP2 and directly correlates with the peptide-binding affinity. Only background levels of trapping were observed for low affinity peptides or in the presence of the herpes simplex viral protein ICP47, which specifically blocks peptide binding to TAP. Importantly, the peptideinduced trapped state is reached after ATP hydrolysis and not in a backward reaction of ADP binding and trapping. In the trapped state, TAP can neither bind nor exchange nucleotides, whereas peptide binding is not affected. In summary, these data support the model that peptide binding induces a conformation that triggers ATP hydrolysis in both subunits of the TAP complex within the catalytic cycle. The role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs was investigated. The C-loops of TAP transporter contain a canonical C-loop (LSGGQ) for TAP1 and a degenerated ABC signature motif (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. TAP complexes with equivalent mutations in TAP2 showed however still residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerated C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control the peptide transport efficiency. All single-site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function, but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites. To study the coupling between the ATP binding/hydrolysis and the peptide binding, the putative catalytic bases of the TAP complex were mutated to generate the so-called EQ mutants. The mutations did not influence the peptide-binding ability. Dimerization of the NBDs of EQ mutants upon ATP binding does not alter the peptide binding property. At 27°C, both ATP and ADP could induce the loss of peptide-binding ability (Bmax) only in the variants bearing a mutated TAP2. Further studies are required to deduce at which stage in the catalytic cycle the peptide-binding site is affected. In addition, mutation of the putative catalytic base of both subunits showed a magnesium-dependent peptide transport activity, demonstrating these mutants did not abolish the ATP hydrolysis. Thus, the function of this acidic residue as the catalytic base is not likely to be universe for all ABC transporters.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks