Refine
Year of publication
Document Type
- Doctoral Thesis (114)
Has Fulltext
- yes (114)
Is part of the Bibliography
- no (114)
Keywords
- Gentherapie (4)
- Akute lymphatische Leukämie (3)
- AF4 (2)
- Genfallen-Vektoren (2)
- Hämatopoese (2)
- LINE-1 (2)
- Primäre Immundefekte (2)
- Promotor <Genetik> (2)
- Transkriptionsfaktor (2)
- Virologie (2)
Institute
- Pharmazie (48)
- Biochemie, Chemie und Pharmazie (36)
- Biochemie und Chemie (27)
- Medizin (5)
- Biowissenschaften (1)
- Georg-Speyer-Haus (1)
- keine Angabe Institut (1)
Reziproke chromosomale Translokationen sind häufig mit Leukämien und Lymphomen assoziiert und gelten in vielen Fällen als Ursache der Erkrankung. Die reziproke Translokation t(4;11) findet man hauptsächlich bei Kleinkindern, die an einer akuten lymphatischen Leukämie erkrankt sind, aber auch bei älteren Patienten mit einer Sekundärleukämie. Die leukämischen Blasten dieser Patienten sind meist gegen konventionelle Therapiekonzepte resistent, was zu einer ungewöhnlich schlechten Prognose führt. Die Chromosomenbande 11q23 ist an einer Vielzahl chromosomaler Translokationen beteiligt. Die dadurch erzeugten reziproken MLL-Fusiongene sind alle mit der Entstehung einer Hochrisikoleukämie korreliert. Für einige der dabei entstehenden Fusionsproteine konnte nach retroviraler Transduktion in hämatopoietische Vorläuferzellen gezeigt werden, dass sie onkogenes Potential besitzen und eine myeloische Leukämie in transgenen oder transienten Mausmodellen initiieren können. Für die Produkte einer Translokation t(4;11) konnte dies bislang nicht erfolgreich untersucht werden. Bei der Translokation t(4;11) werden die beiden Partnergene MLL und AF4 so miteinander verknüpft, dass auf den neu gebildeten Derivatchromosomen zwei Fusionsgene (MLL•AF4 und AF4•MLL) mit einem intakten Leserahmen entstehen. Da man in den leukämischen Blasten im Regelfall beide Fusionstranskripte findet, nehmen wir an, dass beide Genprodukte zur Fehlregulation und Entartung der Zelle beitragen. Um den potentiell onkogenen Wirkmechanismus der t(4;11) Translokation zu untersuchen, wurde ein induzierbares Expressions-System in murinen embryonalen Fibroblasten (MEF) etabliert. Anhand dieses Zellsystems gelang es das potententielle onkogene Potential der Fusionsproteine MLL•AF4 und AF4•MLL, bzw.des Wildtyp AF4 Proteins in Focus Formation Assays sichtbar zu machen. Dabei konnte die Bildung zellulärer Foci eindrucksvoll für das Wildtyp AF4 Protein und das AF4•MLL Fusionsprotein dargestellt werden. Das MLL•AF4 Fusionsprotein war nicht in der Lage den Verlust der Kontaktinhibition und damit Focus-Bildung in den Zellen zu initiieren. Die anschließende Definition des AF4 Wildtyp- und AF4•MLL Fusionsproteins als Proto-/Onkoprotein, führte zu der Arbeitshypothese, dass der Nterminale Bereich des AF4 Proteins (AF4•N) Wachstums-transformierendes Potential besitzt. Aufgrund der vorliegenden Daten und zur genaueren Charakterisierung des AF4 Proteins wurden anschließend Interaktions-Studien mit dem AF4•N Protein durchgeführt, wobei die beiden E3 Ubiquitin Ligasen SIAH1 und SIAH2 als Interaktionspartner des AF4•N Proteins identifiziert wurden. E3 Ubiquitin Ligasen sind wichtige Bestandteile der Ubiquitinylierungs-Maschinerie und der damit verbundenen proteasomalen Degradation. Dabei sind die SIAH Proteine, wie alle E3 Ubiquitin Ligasen, für die Spezifität der Proteasom-abhängigen Degradation verantwortlich, indem sie über ihre Substrat-Binde Domäne im C-Terminus mit den abzubauenden Targetproteinen interagieren. Die spezifische Interaktion der SIAH Proteine mit dem AF4•N Protein konnte in unabhängigen Experimenten sowohl in vitro als auch in vivo bestätigt werden. Durch den Einsatz des Proteasom-Inhibitors MG132 konnte zudem der effiziente, SIAH1-vermittelte und Proteasom-abhängige Abbau von AF4•N demonstriert werden. Mit weiterführenden Experimenten konnte auch für das Wildtyp AF4 Protein und für das AF4•MLL Fusionsprotein eine Regulation der Proteinstabilität über das SIAH1 Protein festgestellt werden. Eine SIAH1-vermittelte Degradation ist jedoch nur auf das AF4•MLL full-length Fusionsprotein beschränkt. Eine proteolytische Spaltung des AF4•MLL Fusionsproteins durch die Protease Taspase1 innerhalb des MLL Fusionsanteils führte zur Bildung eines stabilen der4•N/MLL•C Proteinkomplexes und dessen Akkumulation in den Zellen. Basierend auf diesen Ergebnissen konnte für t(4;11) Translokationen ein erster pathomolekularer Mechanismus zur Leukämie-Entstehung aufgezeigt werden. Dieser beruht im wesentlichen auf der Akkumulation des der4•N/MLL•C Proteinkomplexes, welcher sich der effizienten Kontrolle durch die E3 Ubiquitin Ligase SIAH1 entzieht. Dadurch wird der Wachstums-transformierende AF4•N Proteinanteil in die Lage versetzt sein onkogenes Potential zu vermitteln.
Acute myeloid leukemia (AML) is characterized by the accumulation of a large number of abnormal, immature blast cells. Recently, histone deacetylase inhibitors (HDIs) received considerable interest on the ground of their ability to overcome the differentiation block in these leukemic blasts regardless of the primary genetic alteration, an effect achieved either alone or in combination with differentiating agents, such as all-trans retinoic acid (t-RA). Valproic acid (VPA), a potent HDI, is now under clinical evaluation owing to its potent differentiation effect on transformed hematopoietic progenitor cells and leukemic blasts from AML patients. Conversely, in a clinical study by Bug et al., the favorable effects of the combination treatment with t-RA/VPA in advanced acute myeloid leukemia patients were reported to be most likely due to an enhancement of nonleukemic myelopoiesis and the suppression of malignant hematopoiesis rather than enforced differentiation of the leukemic cells. Based on the hypothesis that VPA influences normal hematopoiesis, the effect of chromatin modeling through VPA on HSCs was investigated with respect to differentiation, proliferation as well as self-renewal in the present study. It has been shown that valproic acid increases both proliferation and self-renewal of HSC. It accelerates cell cycle progression of HSC accompanied by a down-regulation of p21cip-1/waf-1. Furthermore, valproic acid inhibits GSK3B by phosphorylation on Ser9 accompanied by an activation of the Wnt signaling pathway as well as by an up-regulation of HoxB4, a target gene of Wnt signaling. Both are known to directly stimulate the proliferation of HSC and to expand the HSC pool. To sum up, valproic acid, a potent histone deacetylase inhibitor known to induce differentiation and/or apoptosis in leukemic blasts, stimulates the proliferation and self-renewal of hematopoietic stem cells. Therefore, the data reported in this study suggest to reconsider the role of histone deacetylase inhibitors from a differentiation inducer to a coadjuvant factor for increasing the response to conventional therapy in acute myeloid leukemia.
Ein weit verbreitetes Merkmal von Leukämien sind genetische Veränderungen, wobei die Entstehung der Leukämie häufig mit reziproken chromosomalen Translokationen assoziiert ist, welche zur Bildung chimärer Genprodukte führen. Eine Vielzahl dieser reziproken Translokationen basieren auf Translokationen des MLL Gens (Mixed Lineage Leukemia), die mit dem Krankheitstyp einer AML oder einer ALL verbunden sind. Die häufigste chromosomale Translokation ist die t(4;11) Translokation. Sie tritt vor allem bei Kleinkindern bzw. auch bei älteren Patienten mit einer Sekundärleukämie auf und resultiert in einer akuten lymphatischen Leukämie. Es handelt sich um eine Hochrisikoleukämie, welche aufgrund ihrer nahezu Therapie-resistenten Blasten mit einer besonders schlechten Prognose assoziiert ist. Der Mechanismus der Leukämieentstehung durch die MLL-Translokationen und der dabei entstehenden Fusionsproteine konnte bis heute nicht ausreichend geklärt werden. Für einige MLL-Translokationen, die mit einer myeloischen Leukämie verknüpft sind, konnte zunächst das onkogene Potenzial der Fusionsproteine im Mausmodell belegt werden. Im Bezug auf die t(4;11) Translokation blieben Ansätze zur Etablierung eines Tiermodells jedoch lang erfolglos. Erst 2006 konnten mittels einer knock-in-Strategie bzw. einem „inverter“-System Mausmodelle für MLL•AF4 entwickelt werden, in denen die Mäuse nach sehr langer Latenzzeit ein disseminiertes B-Zell-Lymphom aufwiesen. Ein neueres konditionales MLL•AF4 knock-in-Modell, in dem MLL•AF4 unter der Kontrolle des endogenen Zellzyklus-abhängigen MLL-Promotors steht, resultierte hingegen in einer ALL oder AML. Im Allgemeinen steht somit bislang das MLL•AF4-Fusionsprotein im Vordergrund der Erforschung des pathomolekularen Mechanismus der t(4;11) Translokation. Aufgrund der Tatsache, dass in der Regel jedoch neben dem MLL•AF4- ebenso ein AF4•MLL-Fusionstranskript nachgewiesen werden kann, befassten sich Studien unserer Arbeitsgruppe mit der Funktion des AF4•MLLFusionsproteins. Diese Untersuchungen zeigten, dass das AF4•MLL-Fusionsprotein in der Zelle akkumuliert und in der Entwicklung onkogener Effekte sowie der Wachstumstransformation der Zelle resultiert. Ergänzend belegten retrovirale Transduktions-/Transplantations-Experimente die Entwicklung einer akuten Leukämie im Mausmodell, wenn zuvor mit AF4•MLL bzw. mit AF4•MLL und MLL•AF4 transduzierte Stammzellen transplantiert wurden. Um nun die Funktion des AF4•MLL-Proteins sowie die molekularen Ursachen der beobachteten Eigenschaften besser verstehen zu können, wurde der AF4•MLL-Proteinkomplex mittels einer Strep-Tag-Affinitätschromatographie erfolgreich gereinigt und ein Molekulargewicht von ca. 2 MDa über Größenausschlusschromatographie bestimmt. Damit nicht nur ein Vergleich mit dem MLL- sondern auch mit dem AF4-Wildtyp- Proteinkomplex möglich war, wurden ebenfalls eine Größenbestimmung und eine Reinigung des AF4-Proteinkomplexes durchgeführt. Die folgenden Analysen der Komplexkomposition über Immunopräzipitationen, Western Blot-Analysen sowie massenspektrometrische Analysen zeigten, dass sich der AF4•MLL-Proteinkomplex aus Mitgliedern der beiden Wildtyp-Proteinkomplexe zusammensetzt; es wurden P-TEFb, HEXIM1, NFKB1, NPM1, DDX6 und das AF4-Wildtypprotein aus dem AF4-Komplex sowie ASH2L, RBBP5, WDR5, CREBBP, HCF-1 und HCF-2 aus dem MLL-Komplex nachgewiesen. Auf diese Weise werden im AF4•MLL-Proteinkomplex Eigenschaften bzw. Funktionen beider Wildtyp-Proteinkomplexe kombiniert. Um einen weiteren Hinweis auf die Funktion zu erhalten, wurde ergänzend ein in vitro Histon-Methyltransferase-Assay etabliert, der für beide gereinigten Proteinkomplexe eine Histonmethyltransferase-Aktivität zeigte. Basierend auf den vorliegenden Daten kann eine Konkurrenzsituation zwischen dem AF4•MLL-Proteinkomplex und den beiden Wildtyp-Proteinkomplexen um die entsprechenden Faktoren angenommen werden, welche die Assemblierung vollständiger und funktioneller Wildtyp-Proteinkomplexe verhindern könnte. Des Weiteren weisen die Ergebnisse auf Funktionen des AF4•MLL-Proteins in transkriptionellen Prozessen, Histonacetylierungen sowie der H3K4-Trimethylierung hin. Die Fehlregulation epigenetischer und transkriptioneller Prozesse durch die Anwesenheit des AF4•MLL-Proteinkomplexes spielt somit vermutlich eine entscheidende Rolle im pathomolekularen Mechanismus der t(4;11) Translokation.
Das “Protein Associated with Myc” spielt in den verschiedenen physiologischen Vorgängen eine Rolle. Dazu zählen Prozesse der Synaptogenese und Schmerzverarbeitung ebenso wie eine Regulation des Pteridin- und cAMP-Stoffwechsels. Auf welche Weise PAM die unterschiedlichen Effekte vermittelt, ist bislang nur in Ansätzen verstanden. Um die Wirkmechanismen von PAM aufzuklären, wurden in dieser Arbeit seine biochemischen Funktionen untersucht. Die These, dass PAM als E3 Ubiquitinligase aktiv ist, konnte in vitro mittels biochemischer Versuche zweifelsfrei bestätigt werden. Sowohl das nativ aufgereinigte, humane PAM, als auch der heterolog expremierte C-Terminale Bereich (C-PAM), der die katalytisch aktive RING Finger Domäne enthält, wiesen die Fähigkeit zur Ubiquitinkettenbildung und Autoubiquitinierung auf. Bei der Identifikation eines möglichen Zielproteins rückte das Protein TSC2 und der damit verbundene TSC2 / mTOR Signalweg in den Fokus. Für das gewählte Modell-System HeLa Zellen ließ sich eine Interaktion von PAM und TSC2 durch Ko-Immunopräzipitationen und Immunzytochemie nachweisen. Es konnte erstmalig gezeigt werden, dass das vollständige, native PAM, nicht aber die isolierte RING Finger Domäne, TSC2 polyubiquitinieren und zum proteasomalen Abbau markieren kann. TSC2 ist ein negativer Regulator der mTOR Kinaseaktivität, in dem es den stimulatorischen Einfluss von Rheb auf mTOR inhibiert. PAM wird in HeLa Zellen durch das Phospholipid Sphingosin-1-Phosphat (S1P) aktiviert. Nach S1P Behandlung der Zellen war eine Phosphorylierung der Proteinkinase mTOR nachweisbar. Diese ging mit einer Aktivierung der Kinaseaktivität einher, wie die rapamycinsensitive Phosphorylierung der mTOR Zielproteine p70S6K und 4E-BP1 zeigte. Durch Gabe von Rezeptor-Agonisten/-Antagonisten konnte eine Beteiligung des S1P1 und S1P2 Rezeptors ausgeschlossen werden. Der zunächst vermutete Mechanismus eines S1P induzierten, PAM-abhängigen Abbaus von TSC2 konnte trotz vielfältiger Herangehensweisen nicht nachgewiesen werden. Eine Phosphorylierung als Indikation einer Inaktivierung war ebenfalls nicht detektierbar. Auch die GAP Aktivität von TSC2 auf Rheb, wird in in vitro Versuchen durch die Interaktion mit PAM nicht vermindert. Durch eine Verminderung der TSC2 Expression mittels spezifischer siRNA zeigte sich, dass TSC2 nicht in die S1P-abhängige mTOR Aktivierung involviert ist. Auch regulatorische Proteinkinasen wie AKT, ERK oder PI3K, die durch S1P aktiviert werden können, sind an dem Signalweg nicht beteiligt, wie die Hemmung dieser Enzyme mit spezifischen Inhibitoren zeigte. Dagegen konnte eine Beteiligung von PAM und Rheb zum einen mittels Proteintransfektion bestätigt werden, zum anderen ließen sich die S1P Effekte durch Hemmstoffe verhindern, die für eine Aktivierung von PAM, respektive Rheb, nötig sind. Durch Nukleotidbindungsstudien war ein Einfluss von PAM auf den GTP-Beladungszustand von Rheb nachweisbar. Sowohl in einem GTPS Bindungsversuch als auch in einem GDP Dissoziationsexperiment erhöhte PAM konzentrationsabhängig die GTP Bindung bzw. den GDP/GTP Austausch an Rheb. In dieser Arbeit wird damit erstmalig eine duale Funktion eines Proteins als Ubiquitinligase und GEF beschrieben. So konnte die postulierte Aktivität von PAM als Ubiquitinligase bestätigt und TSC2 als Zielprotein identifiziert werden. Gleichzeitig wurde ein TSC2 unabhängiger Weg der mTOR Aktivierung aufgeklärt, an dem PAM und Rheb beteiligt sind. Als möglicher Mechanismus kommt eine Aktivität von PAM als Guanin-Nukleotid Austausch Faktor (GEF) auf Rheb in Frage. Durch Beschreibung von PAM als negativem Regulator von TSC2 und Aktivator von Rheb trägt diese Arbeit einen wichtigen Beitrag zur TSC2 / mTOR Forschung bei. Umgekehrt ermöglicht sie eine neue Sichtweise auf partiell PAM-abhängige Vorgänge wie Synaptogenese und Nozizeption, indem sie TSC2 / mTOR in diese Prozesse integriert.
Im Rahmen der vorliegenden Arbeit wurden verschiedene proteomanalytische Methoden untersucht und evaluiert, die, basierend auf der Verwendung 2D-gelelektrophoretischer, 2D-chromatographischer und massenspektrometrischer Techniken, die differentielle, quantitative Proteinanalyse zweier unterschiedlicher muriner Fibroblasten-Zelllinien ermöglichen. Hierfür wurden zunächst unterschiedliche Methoden für die 2D-elektrophoretische Proteinauftrennung analysiert. Im Hinblick auf eine größtmögliche Auflösung und Gel-zu- Gel-Reproduzierbarkeit wurden innerhalb der ersten Dimension (IEF) die Lademethode, die Fokussierungszeiten und der Reduktionsschritt (DTT oder HED) optimiert. Desweiteren wurde eine auf isoelektrischer Fokussierung basierende Vorfraktionierungsmethode auf ihre Anwendbarkeit bei einer quantitativen Proteomanalyse getestet. Für die Proteingelfärbung wurde unter anderem ein selbst synthetisierter Fluoreszenzfarbstoff eingesetzt, der hinsichtlich Färbesensitivität und MS-Kompatibilität mit etablierten Protokollen verglichen wurde. Eine Doppelfärbungs-Methode von Proteingelen (Silberfärbung nach Fluoreszenzfärbung) wurde auf ihre MS-Kompatibilität nach tryptischen Verdau untersucht. Desweiteren wurden manuelle und automatisierte Verdauprotokolle für eine möglichst hohe Peptide Recovery optimiert. Die zunächst durch die Anwendung von klassischen Färbe- und Quantifizierungsmethoden nach 2DE gewonnenen Ergebnisse wurden mit neueren Labelling-Methoden zur relativen Proteinquantifizierung verglichen. Dabei kamen zwei unterschiedliche Multiplexing-Verfahren zum Einsatz, die sich in der Proteinquantifizierung grundlegend unterscheiden (DIGE: gelbasierte Proteinquantifizierung; iTRAQ: LC-MS/MS basierte Peptidquantifizierung). Die für diese beiden Methoden bestehenden Protokolle wurden für die Anwendbarkeit auf die Fibroblasten-Proteinextrakte angepasst. Es konnte gezeigt werden, daß diese beiden Labelling-Methoden in Bezug auf Reproduzierbarkeit und quantitativer Aussagekraft dem klassischen 2DE-Experiment (Proteinfärbung nach der Auftrennung auf einzelnen Gelen) überlegen sind. Die statistische Absicherung der analysierten relativen Quantitätsunterschiede verbesserte sich durch die zusätzliche Anwendung der beiden neuen Labelling-Methoden erheblich. Dabei stützt sich die Signifikanz der quantitativen Bestimmung sowohl auf die große statistische Sicherheit, die innerhalb dieser beiden Multiplexing-Methoden erreicht wird, als auch auf die Wiederholbarkeit in unterschiedlichen Experimenten (21 Proteine wurden in unterschiedlichen Ansätzen bestätigt). Die beiden Labelling-Methoden DIGE und iTRAQ unterscheiden sich außer in der Quantifizierungsstrategie auch grundsätzlich in dem Ansatz der Auftrennung (DIGE: Proteine, 2DElektrophorese; iTRAQ: Peptide, 2D-Flüssigchromatographie). Damit besitzen sie unterschiedliche Limitierungen in Bezug auf die physiko-chemischen Eigenschaften der Peptide/Proteine, die mit der jeweiligen Methode aufgetrennt werden können. Der daraus resultierende komplementäre Charakter beider Methoden konnte anhand mehrerer Proteine verdeutlicht werden. Durch die relative Quantifizierung konnten insgesamt 30 Proteine identifiziert werden, die aufgrund der An- oder Abwesenheit des MLL-Proteins in den beiden murinen Zelllinien differentiell reguliert sind. Die alleine schon durch die unterschiedliche Morphologie der untersuchten murinen Fibroblasten vermutete Deregulation von Struktur- und Stressproteinen (Actin, HSP27, HSP70) konnte bestätigt werden. Weitere Expressionsunterschiede zwischen Mll-/-- und Mll+/+-Fibroblasten zeigten sich vor allem bei Proteinen, die funktionell der Gruppe RNA-prozessierender Proteine (Polyadenylate Binding Protein, PTB-associated Splicing Factor, hnRNPs) zugeordnet werden können. Ein Vergleich der quantitativen Proteomdaten dieser Arbeit mit den mRNA-Expressionsprofilen der gleichen Zellen zeigt nur eine sehr geringe Korrelation bezüglich der Regulationen einzelner Gene/Proteine. Die meisten der bisherigen Studien, die eine Untersuchung des mRNA/Protein-Verhältnisses zum Gegenstand haben, bestätigen das Fehlen einer Korrelation. Diese Tatsache unterstreicht die Wichtigkeit der Kombination genomischer und proteinanalytischer Daten zur Aufklärung zellulärer molekularer Prozesse.
Stem cells capable of self-renewal and differentiation into multiple tissues are important in medicine to reconstitute the hematopoietic system after myelo-ablative chemo- or radiotherapy. In the present situation, adult stem cells such as Mesenchymal stem cells (MSC) and Hematopoietic stem cells (HSC) are used for therapeutic purposes. For tissue regeneration and tissue constitution, engraftment of transplanted stem cells is a necessary feature. However, in many instances, the transplanted stem cells reach the tissues with low efficiency. Considering the three-step model of leukocyte extravasation by Springer et al, the rolling, adhesion and transmigration form the three major steps for the transplanted stem cells to enter the desired tissues. One of the molecular switches reported to be involved in these mechanisms are the Rho family GTPases. The present study investigates the role of Rho GTPases in adhesion and migration of stem and progenitor cells. Chemotactic and chemokinetic migration assays, transendothelial migration assays, migration of cells under shear stress, microinjection, retroviral and lentiviral gene transfer methods, oligonucleotide microarray analysis and pull down assays were employed in this study for the elucidation of Rho GTPase involvement in migration and adhesion of stem and progenitor cells. The transmigration assay used for the migration determination of the adherent cell type, MSC, was optimized for the efficient and effective assessment of the migrating cells. The involvement of Rho was found to be critical for stem and progenitor cell migration where inactivation of Rho by C2I-C3 transferase toxin and/or overexpression of C3 transferase cDNA increased the migration rate of Hematopoietic progenitor cells (HPC) and MSC. Moreover, modulation of Rho caused predictable cytoskeletal and morphological changes in MSC. Assessment of Rho GTPase involvement in the interacting partner, the endothelial cells during stem cell migration, revealed that active Rho expression induced E-selectin expression. The increased levels of E-selectin were functionally confirmed by the increased adhesion of progenitor cells (HPC) to the Human umbilical vein endothelial cell (HUVEC) layer. Moreover, inhibition of Rac in the migrating endothelial progenitor cells (eEPC) increased their adhesion to HUVEC correlating with the increased percentage expression of cell surface receptor, CD44 in Rac inactivated eEPC. In conclusion, this study shows that Rho GTPases control the adhesion and migration of stem and progenitor cells, HPC and MSC. Rho inhibition drives the cells to migrate in the blood vessels. The substantial increase in the level of active Rho in endothelial layer, manifested by the E-selectin surface expression assists the better adhesion of stem and progenitor cells to the endothelial layer. Serum factors and growth factors in the physiological system influence the Rho GTPase expression in both migrating stem cells and the barrier endothelial cells. Thus, specific modulation of Rho GTPases in the transplanted stem and progenitor cells could be an interesting tool to improve the migration and homing processes of stem cells for cellular therapy in future.
Chromosomale Aberrationen des humanen MLL Gens (Mixed Lineage Leukemia) sind mit der Entstehung von akuten Leukämien assoziiert. 5-10% aller akuten myeloischen und lymphatischen Leukämien beruhen auf einer Translokation des MLL Gens mit einem von mehr als 50 bekannten Partnergenen. Die reziproke Translokation t(4;11), die zur Entstehung der zwei Fusionsgene MLL/AF4 und AF4/MLL führt, stellt die häufigste genetische Veränderung des MLL Gens dar und prägt sich in Form einer akuten lymphatischen Leukämie aus. Besonders häufig sind von dieser Erkrankung Kleinkinder und Patienten mit einer Sekundärleukämie betroffen. Aufgrund einer ungewöhnlich hohen Resistenz der leukämischen Blasten gegenüber gängigen Therapie-Protokollen ist diese Erkrankung mit einer schlechten Prognose verbunden. Die beiden erzeugten Fusionsgene der t(4;11) werden als Fusionsproteine MLL/AF4 (der11) und AF4/MLL (der4) exprimiert. Transduktionsexperimente verschiedener MLL Translokationen zeigten, dass in vielen Fällen das jeweilige der11 Fusionsprotein (MLL_N/Translokationspartner) starkes onkogenes Potential besitzt und daher vermutlich ursächlich für die Transformation der betroffenen Zellen ist. Im Fall der Translokation t(4;11) hingegen, konnte für das der11 Fusionsprotein MLL/AF4 nur sehr schwaches onkogenes Potential nachgewiesen werden, während das der4 AF4/MLL Fusionsprotein sich als potentes Onkoprotein herausstellte. Untersuchungen zur Aufklärung des pathologischen Mechanismus des AF4/MLL Fusionsproteins zeigten, dass es, analog zum MLL Wildtyp Protein, einer Prozessierung durch die Taspase 1 unterliegt. Desweiteren ist bekannt, dass die gebildeten Proteinfragmente, der4_N und der4_C (MLL_C), über intramolekulare Interaktionsdomänen des MLL Proteins, in der Lage sind miteinander zu komplexieren. In der unprozessierten Form wird das Fusionsprotein über einen Bereich des AF4 Proteins unter Einsatz der E3-Ligasen SIAH 1/2 dem proteasomalen Abbau zugeführt. Nach der Proteolyse und Komplexbildung findet weiterhin eine Erkennung durch die SIAH Proteine statt, jedoch erfolgt keine Degradation mehr. Auf diese Weise kommt es zur Akkumulation des Komplexes, was letztendlich zur Transformation der betroffenen Zellen führt. Eine Möglichkeit dem onkogenen Charakter des AF4/MLL Fusionsproteins entgegen zu wirken, besteht in der Inhibition der Interaktion der zwei Proteinfragmente der4_N und der4_C (=MLL_C). Für eine mögliche Inhibition stellt die Kenntnis der minimalen Kontaktdomäne des MLL Proteins (und damit gleichermaßen des AF4/MLL Proteins) eine Grundvoraussetzung dar. Die grundlegende Aufgabe der vorliegenden Arbeit bestand daher in der Bestimmung des minimalen intramolekularen Interaktionsinterface. Zu diesem Zweck wurden Interaktionsanalysen verschiedener C-terminaler und N-terminaler MLL Proteinfragmente unter Verwendung des bakteriellen Zwei-Hybrid-Systems sowie eines zellbasierten Protein-Translokation-Biosensor-Systems durchgeführt. Dabei ist es gelungen, die Größe der minimalen Interaktionsdomänen von den bis heute publizierten >150 Aminosäuren auf 58 Aminosäuren im N-terminalen Proteinfragment (FYRN_A3) bzw. 56 Aminosäuren im C-terminalen MLL Fragment (FYRC_B3) einzugrenzen. Eine weitere Verkleinerung führte zu einem Stabilitätsverlust der Interaktion. Eine ungewöhnliche Akkumulation einiger C-terminaler MLL Fragmente, die während der Interaktionsstudien beobachtet wurde, führte zu der Hypothese, dass die generierten Fragmente mit dem zellulären Wildtyp MLL interagieren und möglicherweise als Inhibitor der intramolekularen Interaktion agieren können. Zusätzlich wurde bei diesen Transfektionen eine abnorm hohe Anzahl abgestorbener Zellen festgestellt. Dies wäre damit zu erklären, dass das zelluläre MLL, durch Interaktion mit dem kleinen MLL Fragment, nicht mehr in der Lage ist, seinen natürlichen Funktionen nachzukommen. Der Nachweis der Interaktion des minimierten C-terminalen MLL Proteinfragments FYRC_B3 mit den full length Proteinen MLL sowie AF4/MLL konnte über Co-Immunopräzipitationsversuche erbracht werden. Durchflusscytometrische Analysen transfizierter und Propidiumiodid gefärbter HeLa Zellen sowie t(4;11)-positiver SEM Zellen zeigten eindeutig letale Effekte einiger FYRC-Fragmente auf. Anhand dieser Daten kann postuliert werden, dass die Fragmente FYRB_B3 und FYRC_B1 durch Interaktion mit MLL_N bzw. der4_N die Interaktion der nativen Proteinfragmente MLL_N/der4_N mit MLL_C verhindern und dies in der Folge zum Absterben der Zellen führt. Die Tatsache, dass diese Fragmente einen solch deutlichen Effekt auf die sehr therapieresistenten SEM Zellen haben, zeigt, dass die Inhibierung der intramolekularen Proteininteraktion einen vielversprechenden therapeutischen Ansatz für Leukämien mit einer Translokation t(4;11) darstellt.
Das NANOG2-Gen ist ein Genduplikat des nur in embryonalen Stammzellen exprimierten Stammzellfaktors NANOG1, der eine Schlüsselrolle bei der Pluripotenz und der Selbsterneuerung der Stammzellen und möglicherweise der Krebsstammzellen hat. Zur Analyse, ob NANOG2 die beschriebenen Funktionen von NANOG1 in Gewebestammzellen und Krebsstammzellen übernimmt und ursächlich für die Leukämieentstehung verantwortlich ist, wurden embryonale Zellen und primäre Leukämiezellen auf NANOG2-Expression durch RT-PCR-Experimente, Western Blot Analysen und ChIP Assays untersucht. Dabei konnte eine Methode zur Unterscheidung der NANOG1 und NANOG2-Transkripte etabliert, neue Genstrukturen dieser Gene charakterisiert und NANOG2-Transkripte in hämatopoetischen Stammzellen und in allen primären Leukämiezellen detektiert werden. Außerdem konnte mit Hilfe von Genexpressionsanalysen eine äquivalente Funktion von NANOG2 zu NANOG1 festgestellt werden.
"Protein Associated with Myc" (PAM) hat aufgrund seiner enormen Größe von 510 kD und der Vielzahl an Proteinbindungsstellen das Potential viele regulatorische und physiologische Prozesse zu regulieren. Mit der Funktion als E3-Ubiquitinligase und davon unabhängigen Proteininteraktionen reguliert es beispielsweise Prozesse der Synaptogenese und der spinalen Schmerzverarbeitung, wie auch die Regulation des Pteridin Stoffwechsels und des cAMP-Signalweges. Im Gegensatz zur spinalen Schmerzverarbeitung war eine Beteiligung von PAM an der peripheren Nozizeption bisher unbekannt und sollte im Rahmen dieser Arbeit untersucht werden. Dazu wurden konditionale PAM-Knockout Mäuse generiert und charakterisiert. Zum einen wurde PAM in Vorläuferzellen von Neuronen und Gliazellen und zum anderen in allen nozizeptiven und thermorezeptiven Neuronen der Dorsalganglia und der Ganglia trigeminale deletiert. Der Knockout in Neuronen und Gliazellen führte zu einer pränatalen Letalität und unterstreicht so die Bedeutung von PAM während der Neuronenentwicklung. Mit Hilfe des spezifischen Knockouts in nozizeptiven Neuronen konnte eine Rolle von PAM bei der Regulation der thermischen Hyperalgesie gezeigt werden. Keinen Einfluss hatte die Deletion von PAM auf basale thermische und mechanische Schmerzschwellen, sowie auf Formalin-induzierte akute Schmerzen. Als potentieller Mechanismus wurde der mTOR- und der p38 MAPK-Signalweg untersucht. Dabei konnte eine Vermittlung der S1P-induzierten mTOR-Aktivierung durch PAM nachgewiesen werden und Rheb als eine Komponente dieser Aktivierung ermittelt werden. Der p38 MAPK Signalweg war in Abwesenheit von PAM konstitutiv aktiviert und einige Proteine des Rezeptortraffickings waren verstärkt exprimiert. Als ursächlich für die beobachtete verlängerte Hyperalgesie in PAM-defizienten Mäusen konnte die Unterbindung der Internalisierung des TRPV1-Rezeptors nachgewiesen werden. Dieser Effekt ist spezifisch für TRPV1, da der verwandte Ionenkanal TRPA1 durch die PAM-Deletion nicht beeinträchtigt wurde. In der vorliegenden Arbeit konnte so zum ersten Mal gezeigt werden, dass PAM in peripheren nozizeptiven Neuronen über die p38 MAPK-vermittelte Internalisierung von TRPV1 die Dauer der thermischen Hyperalgesie reguliert.
Suicide genes have been broadly used in gene therapy. They can serve as safety tools for conditional elimination of infused cells or for directed tumor therapy. To date, the Herpes simplex virus thymidine kinase/ ganciclovir (HSVtk/GCV) system is the most prominent and the most widely used suicidegene/prodrug combination. Despite its promising performance, the system displays limitations, which include relatively slow killing kinetics and toxicity of the prodrug GCV. Consequently, several groups have either developed new suicide-gene/prodrug combinations or attempted to improve the established HSVtk/GCV suicide system. The present study also aimed towards optimization of the HSVtk/GCV system. To do so, a novel, codon-optimized point mutant (A168H) of HSVtk was developed. The novel mutant was named TK.007. It was extensively tested for its efficiency in two relevant settings: (1) control of severe graft-versus-host disease (GvHD) after adoptive immunotherapy with Tlymphocytes, and (2) direct elimination of targeted tumor cells. TK.007 was compared to the broadly used wild-type, splice-corrected scHSVtk and to a codon-optimized HSVtk (coHSVtk) not bearing the above point mutation. (1) For experiments related to the adoptive immunotherapy approach, HSVtkvariants were expressed from a γ-retroviral MP71 vector as a fusion construct with the selection and marker gene tCD34. Expression levels for TK.007 in transduced lymphoid and myeloid cell lines were significantly higher at initial transduction and over a 12 week period compared to the commonly used scHSVtk and coHSVtk indicating reduced toxicity of TK.007. Killing kinetics of transduced cell lines (PM1 and K562) and primary human T cells were significantly faster for TK.007 in comparison to scHSVtk and coHSVtk in vitro. In vivo-functionality of TK.007 was assessed in an allogeneic transplantation model. T cells derived from C57BL/6J.Ly5.1 donor mice were transduced with MP71 vectors expressing scHSVtk or TK.007. Transduced cells were selected and transplanted into Balb/c Rag2-/- γ-/- immune-deficient recipient mice. Acute, severe GvHD occurred and was effectively abrogated in all mice transplanted with TK.007- transduced T cells, and in five out of six mice transplanted with scHSVtk-transduced cells. In a slightly modified quantitative allogeneic transplantation mouse model, significantly faster and more efficient in vivo killing was demonstrated for TK.007 as compared to scHSVtk, especially at low doses of GCV. (2) In order to assess TK.007 functionality in cells derived from solid tumors, HSVtk-variants were expressed from lentiviral gene ontology (LeGO) vectors in combination with an eGFP/neo-opt selection cassette. Transduced and selected tumor cell lines that derived from several tissues were eliminated at significantly lower GCV doses and to higher extents when transduced with TK.007 compared to scHSVtk. Moreover, a significantly stronger bystander effect of TK.007 was demonstrated. The superior in vitro efficiency of TK.007 was confirmed in an in vivo subcutaneous xenograft mouse model for glioblastoma in NOD/SCID mice. Mice transplanted with TK.007 transduced cells stayed tumor-free after treatment with different GCV-doses. On the contrary, mice of the scHSVtk group either demonstrated only transiently reduced tumor growth in the low-dose GCV group (10 mg/kg) compared to the control groups or suffered from relatively fast relapses after initial tumor shrinking in the standarddose (50 mg/kg) GCV group. As a result, all mice in the scHSVtk group died from vigorous tumor growth. In summary, in two different applications for suicide gene therapy the present study has demonstrated superior functional performance of the novel suicide gene TK.007 as compared to the broadly used wild-type scHSVtk. Differences became particularly pronounced at low doses of GCV. It can be concluded that the new TK.007-gene represents a promising alternative to the commonly used scHSVtk for gene therapeutic applications.