Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- 1,4-dioxane (1)
- Anoxie (1)
- Gas Chromatography/Mass Spectrometry (1)
- Glyme (1)
- Grundwasserleiter (1)
- Grundwasserverschmutzung (1)
- Late Cretaceous (1)
- Oderbruch (1)
- Organischer Schadstoff (1)
- Solid Phase Extraction (1)
Institute
Eintrag organischer Umweltchemikalien aus der Oder in den anaeroben Grundwasserleiter des Oderbruchs
(2002)
In der vorliegenden Arbeit wurde im Rahmen des DFG-Schwerpunktprogrammes 546 ,,Geochemische Prozesse mit Langzeitfolgen im anthropogen beeinflussten Sickerwasser und Grundwasser" der Eintrag organischer Umweltchemikalien aus der Oder in den anaeroben Grundwasserleiter des Oderbruchs untersucht. Ausgewählt wurden verschiedene Vertreter der Stoffklassen Antioxidantien und Phosphorsäureester sowie die beiden Xenoöstrogene Bisphenol A und 4-Nonylphenol, denen eine endokrine (hormonähnliche) Wirkung auf Organismen zugeschrieben wird. Solche Umweltchemikalien werden seit ca. 40 Jahren in großen Mengen für verschiedene Zwecke in Industrie und Privathaushalten eingesetzt oder sie entstehen durch photochemischen oder mikrobiologischen Abbau unter Umweltbedingungen. Die Chemikalien gelangen durch Produktion und Verwendung in die Abwässer und werden durch Direkteinleitungen geklärter Abwässer in die Oberflächengewässer eingetragen. Durch den Prozess der Uferfiltration werden im Oderbruch organische Verbindungen von der Oder ins Grundwasser des angrenzenden Aquifers transportiert. Viele Umweltkontaminanten sind unter aeroben Bedingungen gut biologisch abbaubar. Wie sie sich aber in einer sauerstofffreien Umgebung verhalten, ist bis heute relativ unerforscht. Es ist notwendig, die Prozesse bei der Uferfiltration zu kennen, da heute zunehmend mehr Trinkwasser aus Uferfiltrat gewonnen wird und Umweltchemikalien somit eine potentielle Gefahr für die Trinkwasserversorgung darstellen. Eine zweite Eintragsquelle stellen die Niederschläge dar. Viele organische Verbindungen besitzen die Fähigkeit, aufgrund ihrer physikalischen Paramter von freien Wasser- und Bodenoberflächen oder aus den Produkten, in denen sie enthalten sind, in die Atmosphäre zu verdampfen. Über den Regen gelangen sie schließlich zurück auf die Erde und können so mit dem Sickerwasser bis in tiefere Zonen des Aquifers transportiert werden. Für Vergleichszwecke wurden auch andere Fließgewässer in Deutschland bezüglich der Belastung durch die ausgewählten Umweltchemikalien untersucht. In Ergänzung und Fortsetzung bisheriger Publikationen wurde mit der vorliegenden Arbeit die Konzentrationsentwicklung dieser Stoffe in den Flüssen Rhein, Main, Elbe, Nidda und Schwarzbach dokumentiert. Ein weiterer Schwerpunkt dieser Arbeit lag darin, die Frage nach dem Eintrag dieser Umweltchemikalien in die Flüsse zu beantworten. Dazu wurde Abwasser und Regenwasser auf die Anwesenheit der entsprechenden Verbindungen untersucht. Das Hauptuntersuchungsgebiet stellte die Oder im Grenzbereich Deutschland-Polen sowie der anaerobe Grundwasserleiter des Oderbruchs dar. Dieses Gebiet westlich der Oder im Bundesland Brandenburg wurde ausgewählt, da hier die besondere hydrologische Situation gegeben ist, dass das Flusswasser der Oder mit Geschwindigkeiten von 0,2-5 m/d in den angrenzenden Aquifer infiltriert. Da im Aquifer des Oderbruchs durchweg reduzierende Verhältnisse herrschen, eignet sich dieser in besonderer Weise, das Verhalten organischer Substanzen unter anaeroben Bedingungen zu untersuchen. Hydrogeologisch betrachtet sind im quartären Untergrund des Oderbruchs zwei Hauptgrundwasserleiter ausgebildet. Beide Horizonte werden durch eine undurchlässige Schicht aus Geschiebemergel voneinander getrennt. Gegenstand der vorliegenden Untersuchungen war ausschließlich der obere Hauptgrundwasserleiter, in dem durchweg anaerobe Bedingungen herrschen. Bei einer durchschnittlichen Mächtigkeit von 20-30 m wird der Aquifer im wesentlichen aus holozänen und pleistozänen Sanden und Kiesen aufgebaut. Charakteristisch für das Oderbruch ist der sogenannte ,,Auelehm". Es handelt sich hierbei um flächenhaft verbreitete bindige Deckschichten mit unterschiedlichen Mächtigkeiten. In einigen Bereichen des Oderbruchs fehlen diese undurchlässigen Deckschichten völlig, weshalb das Niederschlagswasser ungehindert in den Aquifer eindringen kann. In anderen Bereichen variiert die Mächtigkeit des Auelehms lokal. Mit zunehmender Entfernung von der Oder nimmt sie stark ab. In Bereichen ab ca. 3000 m Entfernung vom Fluss sind die Auelehmdeckschichten nicht mehr vorhanden, weshalb hier der Eintrag organischer Stoffe mit den Niederschlägen in einen Aquifer begünstigt wird. Im Vorfeld dieser Arbeit hat die Auswertung der zur Schadstoffbelastung der Oder vorliegenden Literatur gezeigt, dass sich die wenigen Untersuchungen vor allem mit dem Auftreten sogenannter persistenter organischer Schadstoffe wie polychlorierte Biphenyle (PCB), Dioxine, Furane und Chlorpestizide beschäftigten. Umweltchemikalien wie Antioxidantien, Phosphorsäureester und Xenoöstrogene, die unter aeroben Bedingungen gut biologisch abgebaut werden, treten oft in den Hintergrund der Betrachtung, da von einer vollständigen Eliminierung dieser Substanzen ausgegangen wird. Diese Industriechemikalien, die Gegenstand dieser Arbeit sind, werden in so hohen Mengen produziert und eingesetzt, dass die Abbaukapazität in Böden und Gewässern häufig überschritten wird. In der vorliegenden Arbeit wurde zunächst eine empfindliche Messmethode zur Bestimmung von mittelpolaren organischen Umweltkontaminanten aus matrixreichen Wasser- und Abwasserproben im unteren Nanogramm/Liter-Bereich entwickelt. Die Analysenmethode basierte auf der Extraktion der Wasserproben mittels Festphasenextraktion (SPE) sowie dem hochempfindlichen Nachweis der Analyten mittels Kapillargaschromatographie/ Massenspektrometrie (GC/MS). Damit konnten zahlreiche Verbindungen mit einem relativ geringen Arbeitsaufwand im Routinebetrieb mit Wiederfindungsraten von 68 bis 95 % in den Wasserproben identifiziert und quantifiziert werden. Die Bestimmungsgrenzen für die einzelnen Verbindungen lagen zwischen 3-53 ng/l. Insgesamt sind in diesem Projekt von März 1999 bis Juli 2001 sechs Beprobungskampagnen im halbjährlichen Rhythmus durchgeführt worden. Zur Beprobung standen die im Rahmen dieses Schwerpunktprogrammes von Mitarbeitern der FU Berlin sowie des ZALF in Müncheberg im Oderbruch installierten Grundwassermessstellen der Transsekten Bahnbrücke und Nieschen zu Verfügung. Im Bereich der Transsekte Bahnbrücke ist der ,,Auelehm" weit verbreitet, allerdings mit lokal variierenden Mächtigkeiten. Mit zunehmender Entfernung von der Oder nimmt die Mächtigkeit dieser Deckschicht ab, bis sie in einer Entfernung von ca. 5000 m überhaupt nicht mehr vorhanden ist. Vereinzelt sind den überwiegend sandig bis kiesigen Sedimentfolgen, die den Aquifer im Bereich der Transsekte Bahnbrücke überwiegend aufbauen, in unmittelbarer Nähe der Oder geringmächtige Tonlagen zwischengeschaltet. Dadurch wird der Aquifer in flussnähe in zwei Teilbereiche gegliedert. Der untere Teilbereich steht im direkten hydraulischen Kontakt zur Oder und wird so maßgeblich durch das Uferfiltrat beeinflusst. Im Hangenden dieses grundwasserleitenden Horizontes folgt ein zweiter Teilbereich, der durch eine stauende Tonschicht an der Basis hydraulisch von der Oder getrennt ist und so überwiegend von infiltrierendem Niederschlagswasser sowie vom Oderwasser bei Überschwemmungen geprägt wird. Im Bereich der Transsekte Nieschen besteht der Grundwasserleiter ausschließlich aus sandig-kiesigen Sedimentfolgen. Außerdem fehlt hier der Auelehm und damit eine den Aquifer schützende Deckschicht. Daher ist im Bereich der Transsekte Nieschen der Einfluss von infiltrierendem Niederschlagswasser auf den Grundwasserchemismus besonders stark ausgeprägt, da dieses ungehindert in den Aquifer eindringen kann. Parallel zu jeder Grundwasserprobennahme wurde an ausgewählten Standorten in Deutschland eine Beprobung verschiedener Oberflächengewässer durchgeführt sowie Dachablaufproben gesammelt. Bei der letzten Beprobungskampagne wurden im Oderbruch eine Niederschlagsprobe sowie zwei Dachablaufproben genommen. Zum gleichen Zeitpunkt wurden Zu- und Abläufe der Kläranlage einer Stahlverarbeitungsfirma sowie dreier kommunaler Kläranlagen in der Umgebung des Oderbruchs beprobt. Sämtliche beprobten Kläranlagen leiten ihre geklärten Abwässer in die Oder. Folgende organische Verbindungen wurden in den Proben identifiziert und in drei Gruppen eingeteilt: Die Gruppe der Antioxidantien mit den Vertretern 3,5-Di-tert.-butyl-4-hydroxytoluol (BHT), 3,5-Di-tert.-butyl-4-hydroxybenzaldehyd (BHT-CHO) und 1,2-Bis(3,5-di-tert.- butyl-4-hydroxy-phenyl)ethan (2-BHT), die Gruppe der Phosphorsäureester mit den Vertretern Tributylphosphat (TBP), Tris(2-chloroethyl)phosphat (TCEP) und Tris(2- butoxyethyl)phosphat (TBEP) sowie die Gruppe der Xenoöstrogene mit den Vertretern 2,2- Bis-(4-hydroxyphenyl)propan (BPA) und 4-Nonylphenol (4-NP). Die organischen Verbindungen BHT, TBP, TCEP, TBEP und BPA sind weltweit eingesetzte, industriell hergestellte Chemikalien. 4-NP ist ein Abbauprodukt nichtionischer Tenside (Nonylphenolpolyethoxylate = NPnEO), die als Detergentien in Waschmitteln eingesetzt werden. Bei der Verbindung BHT-CHO handelt es sich um ein Abbauprodukt des Antioxidationsmittels BHT und bei 2-BHT um ein Dimeres von BHT. Sämtliche organische Umweltchemikalien und Metabolite konnten in kommunalen und industriellen geklärten und ungeklärten Abwässern, im Niederschlag und im Dachablauf, in Oberflächengewässern sowie im Grundwasser nachgewiesen werden. Abwasser: In den kommunalen Zuläufen betrug die mittlere BHT-Konzentration 392 ng/l und in den Abläufen 132 ng/l. Für BHT-CHO lag die mittlere Konzentration in den kommunalen Zuläufen bei 113 ng/l und in den Abläufen bei 70 ng/l. Auch die drei Phosphorsäureester wurden in allen untersuchten kommunalen Zuläufen mit mittleren Konzentrationen von 15404 ng/l für TBP, 986 ng/l für TCEP und 12835 ng/l für TBEP nachgewiesen. Die Durchschnittskonzentration in den Abläufen der drei kommunalen Kläranlagen lag bei 622 ng/l für TBP, 352 ng/l für TCEP und 2955 ng/l für TBEP. Das Xenoöstrogen BPA wurde in den Zuläufen mit durchschnittlich 6579 ng/l und in den Abläufen mit 1656 ng/l bestimmt. Die Verbindung 4-NP trat hingegen nur in den Abläufen der kommunalen Kläranlagen mit durchschnittlich 385 ng/l auf. Die Konzentrationen von BHT, TBP, TCEP und TBEP im Zulauf der betriebseigenen Kläranlage einer Stahlverarbeitungsfirma bei Eisenhüttenstadt waren durchweg geringer als die mittleren Konzentrationen dieser Stoffe in den Zulaufproben der kommunalen Kläranlagen. Diese Industriechemikalien finden vor allem in Haushaltsprodukten Verwendung und werden so hauptsächlich durch die Abwassereinleitungen kommunaler Kläranlagen in die Oberflächengewässer eingetragen. Im Gegensatz dazu wurden im Abwasser der industriellen Kläranlage die höchsten Konzentrationen für die beiden Xenoöstrogene BPA und 4-NP festgestellt, da diese Stoffe bei der Metallverarbeitung als Zusatzstoff bzw. als Reinigungsmittel eingesetzt werden. Sämtliche hier zur Diskussion stehenden Verbindungen, mit Ausnahme von 4-NP, wurden durch den Klärprozess mit Raten von 29,1-96,0 % eliminiert. Die Substanzen TBP und TBEP, die in höheren Konzentrationen von mehreren Mikrogramm/l im ungeklärten Abwasser enthalten waren, wurden effektiver durch den Klärprozess eliminiert, als dies bei Substanzen mit geringeren Konzentrationen wie BHT und TCEP der Fall war. Eine besondere Stellung im Eliminierungsprozess in den Kläranlagen nimmt 4-NP ein. Diese endokrin wirksame Substanz konnte ausschließlich in den Ablaufproben der kommunalen Kläranlagen nachgewiesen werden, was darauf hindeutet, dass sie erst während des Klärprozesses durch biologischen Abbau von NPnEO gebildet wird. Da allerdings kommunale Kläranlagen neben Abwasser auch einen großen Anteil an Oberflächenabfluss und damit Niederschlagswasser aufnehmen, stellt sich an dieser Stelle die Frage, warum 4-NP in den Zulaufproben nicht oberhalb der Nachweisgrenze nachgewiesen werden konnte. Niederschlag- und Dachablauf enthielten immerhin durchschnittlich 942 ng/l 4-NP. Hier besteht weiterhin Klärungsbedarf. Das Auftreten aller Substanzen in sämtlichen Ablaufproben zeigt, dass die Direkteinleitungen geklärter Abwässer in die Flüsse eindeutig eine Eintragsquelle für das gesamte untersuchte Stoffspektrum in die aquatische Umwelt darstellen. Ein weiterer Schadstoffeintrag ist durch die Aufbringung von Klärschlamm auf landwirtschaftliche Nutzflächen gegeben. Aufgrund der hohen Werte der Octanol/Wasserverteilungskoeffizienten (logPOW) der hier untersuchten Verbindungen muss eine Adsorption der Substanzen an Klärschlamm und ein damit verbundener Eintrag ins Grundwasser durch Remobilisierungserscheinungen ebenfalls als Eintragsquelle in Betracht gezogen werden. Generell gingen in den letzten Jahren die Mengen an BHT, die über die Einleitungen geklärter Abwässer in die Oberflächengewässer gelangen, zurück. Vor fast 30 Jahren gelangte in den USA vereinzelt noch ungefähr die 100fache Menge der Substanz über Abwassereinleitungen in die Vorfluter. Für TBP, TCEP und TBEP war im geklärten Abwasser deutscher Kläranlagen in den letzten 20 Jahren ebenfalls eine Konzentrationsabnahme zu beobachten. Der Grund hierfür liegt in der Ausweitung des Kläranlagennetzes sowie in der Verbesserung vorhandener Abwasserreinigungsanlagen (vor allem in den neuen Bundesländern). Dagegen ist die BPA-Konzentration im geklärten Abwasser in der Bundesrepublik Deutschland in den letzten drei Jahren geringfügig gestiegen, was auf die steigenden Produktionszahlen dieser Massenchemikalie zurückgeführt werden kann. Für 4-NP wurde in der BRD in den letzten fünf Jahren ein leichter Konzentrationsrückgang im geklärten Abwasser beobachtet. Dies kann damit in Zusammenhang gebracht werden, dass die deutsche Wasch- und Reinigungsmittelindustrie im Jahr 1986 eine freiwillige Verzichterklärung bezüglich des Einsatzes von NPnEO abgegeben hat. Durch den geringeren Einsatz dieser nichtionischen Tenside in den Produkten gelangen weniger NPnEO mit dem Abwasser in die Kläranlagen. Folglich wird im Verlauf der Abwasserbehandlung auch weniger 4-NP durch biologischen Abbau gebildet. Trotz dieser Verzichterklärung kann 4-NP dennoch bis heute in deutschen Kläranlagenabläufen nachgewiesen werden. Im internationalen Vergleich mit Österreich, Italien, England, Schottland, Schweiz, Kanada und den USA sind die 4-NP-Konzentrationen im geklärten Abwasser in Deutschland allerdings relativ gering. Niederschlag und Dachablauf Alle ausgewählten Verbindungen konnten sowohl in der Niederschlagsprobe aus dem Oderbruch als auch in den Dachablaufproben nachgewiesen werden. Aufgrund ihrer physikalischen Eigenschaften wie Dampfdruck und Henry-Konstante ist die Voraussetzung für einen Eintrag in die Atmosphäre für alle im Rahmen dieser Arbeit untersuchten Substanzen generell gegeben. BHT und BHT-CHO konnten mit durchschnittlich 510 ng/l bzw. 171 ng/l in Niederschlag- und Dachablauf nachgewiesen werden (n=5). Der Maximalwert für BHT lag dabei bei 1797 ng/l in einer Dachablaufprobe und für BHT-CHO bei 474 ng/l in der Niederschlagsprobe. Die mittlere Konzentration der Phosphorsäureester in den untersuchten Niederschlags- und Dachablaufproben lag bei 951 ng/l für TBP, bei 151 ng/l für TCEP und bei 338 ng/l für TBEP. Dabei erreichte TBP ein Maximum von 1344 ng/l, TCEP von 327 ng/l und TBEP von 448 ng/l (die Maximalwerte der Phosphorsäureester wurden jeweils in einer Dachablaufprobe bestimmt). 4-NP wurde mit einer mittleren Konzentration von 942 ng/l im Niederschlag- und Dachablauf gemessen. Das 4-NP- Maximum lag bei 1231 ng/l (Dachablauf). BPA konnte mit durchschnittlich 1251 ng/l in Niederschlag- und Dachablauf nachgewiesen werden. Die maximale BPA-Konzentration lag dabei bei 4085 ng/l in der Niederschlagsprobe aus dem Oderbruch. Die hohen Konzentrationen von BPA im Regen konnten im Rahmen dieser Arbeit nicht erklärt werden. Die Verbindung besitzt einen sehr niedrigen Dampfdruck (0,000005 Pa bei 25°C), der nicht ausreicht, um solch hohe Konzentrationen in der Atmosphäre hervorzurufen. Eine Verunreinigung der Regenwasserproben bei der Probennahme ist hier als Grund für die hohen BPA-Konzentrationen in Betracht zu ziehen und durch die Analyse weiterer Niederschlags- und Dachablaufproben zu überprüfen. Die Substanzen BHT, BHT-CHO, TBP und 4-NP waren im Vergleich zum geklärten Abwasser in höheren Konzentrationen in Niederschlag und Dachablauf enthalten. Diese Stoffe werden somit verstärkt über die Atmosphäre mit den Niederschlägen in die Umwelt eingetragen. Hier besteht Klärungsbedarf bezüglich dessen, dass 4-NP zwar im Regenwasser nicht aber in den Zuläufen der kommunalen Kläranlagen nachgewiesen werden konnte. Die mittleren Regenwasserkonzentrationen von BHT, BHT-CHO, TBP und 4-NP lagen ebenfalls über den mittleren Konzentrationen in Oberflächen- und Grundwasser. Zwei der Dachablaufproben stammten aus dem Rhein-Main Gebiet. In solchen Ballungszentren sind häufig höhere Gehalte an organischen Umweltchemikalien im Regenwasser enthalten als in ländlichen Gebieten, was einen Anstieg der Durchschnittskonzentration in sämtlichen Regenwasserproben zur Folge hat. Hinzu kommt, dass sich Verbindungen wie 4-NP, die einen hohen Dampfdruck aufweisen, relativ gleichmäßig in der Atmosphäre verteilen und so auch in Gebiete gelangen, die nicht durch hohe Schadstoffemissionen gekennzeichnet sind. Dies hat ebenfalls relativ hohe Konzentrationen im Regenwasser zur Folge. Ein dritter Grund für die höheren Konzentrationen im Regenwasser im Vergleich zum Oberflächen- und Grundwasser könnte die Adsorption organischer Umweltchemikalien mit hohen Octanol/ Wasserverteilungskoeffizienten an Sedimentpartikel, Schwebstoffe und/oder organische Substanz in Fluss und Aquifer sein. Die mittleren Konzentrationen der beiden Phosphorsäureester TCEP, TBEP und BPA waren im Vergleich zum geklärten Abwasser der kommunalen Kläranlagen im Regenwasser deutlich niedriger. Der Eintrag über die Atmosphäre ist folglich für diese Verbindungen von geringerer Bedeutung. Am Beispiel des Phosphorsäureester TBEP konnte dennoch demonstriert werden, dass der atmosphärische Eintrag organischer Verbindungen mit relativ geringen Dampfdrücken nicht zu vernachlässigen ist, da solche Substanzen die Tendenz zeigen, an Aerosolpartikel zu adsorbieren und mit dem Aerosol transportiert zu werden. Oberflächenwasser Die untersuchten Umweltchemikalien konnten in fast allen Wasserproben aus den untersuchten Oberflächengewässern mit zum Teil erheblichen Konzentrationsschwankungen nachgewiesen werden. Für BHT lagen die Konzentrationen in den Oberflächengewässern zwischen Werten unterhalb der Nachweisgrenze (<1 ng/l) und 1594 ng/l. Der Metabolit BHT- CHO wies dagegen mit einem Konzentrationsbereich von Werten unterhalb der Nachweisgrenze (<5 ng/l) bis 236 ng/l durchweg geringere Konzentrationen in den Oberflächenwasserproben auf. Der Mittelwert lag für BHT bei 233 ng/l und für BHT-CHO bei 89 ng/l (n = 47). Die Konzentrationen der Phosphorsäureester TBP, TCEP und TBEP in den untersuchten Oberflächenwasserproben schwankten zwischen Gehalten unterhalb der Nachweisgrenzen (<7 ng/l für TBP, <5 ng/l für TCEP und <6 ng/l für TBEP) und 1510 ng/l für TBP. Dabei wiesen TBP und TBEP mit Mittelwerten von 481 bzw. 465 ng/l die höchsten Konzentrationen in den untersuchten Oberflächengewässern auf. Der Mittelwert der Substanz TCEP in allen untersuchten Oberflächenwasserproben lag dagegen nur bei 165 ng/l. Die Konzentrationen der Xenoöstrogene BPA und 4-NP reichten bis maximal 1672 bzw. 1220 ng/l. Die Nachweisgrenze für BPA lag bei 10 ng/l und für 4-NP bei 6 ng/l. 4-NP trug mit einem Mittelwert von 464 ng/l am meisten von allen untersuchten Verbindungen zur Gewässerverunreinigung bei. Der Mittelwert für BPA in den Oberflächengewässern lag bei 351 ng/l. In den hier untersuchten Flüssen in der BRD war die maximale BHT-Konzentration (1594 ng/l) um das 10fache geringer als die maximale BHT-Konzentration, die noch vor 30 Jahren in deutschen Oberflächengewässern gemessen wurde (14000 ng/l). Im Vergleich zu BHT- Gehalten in japanischen (1980) und amerikanischen (1975) Oberflächengewässern lagen die aktuellen BHT-Gehalte in deutschen Flüssen deutlich darunter. Die Konzentrationen für TBP und TCEP in deutschen Oberflächengewässern sind in der Vergangenheit ebenfalls deutlich zurückgegangen. Im internationalen Vergleich liegt die BRD in Bezug auf TBP-Gehalte in Oberflächengewässern mit an der Spitze. In der Elbe konnte für die Substanz TBEP in den letzten 15 Jahren ein leichter Konzentrationsanstieg beobachtet werden. Die TBEP- Konzentration in deutschen Oberflächengewässern ist im Vergleich zu Gehalten in japanischen und amerikanischen Flüssen sowie im Trinkwasser aus Kanada gering. Der BPA- Gehalt im Rhein ist in den letzten 10 Jahren geringfügig angestiegen. Im Vergleich mit Japan und Tschechien liegen die BPA-Konzentrationen in deutschen Flüssen innerhalb von Ballungsgebieten auf einem ähnlich hohen Niveau. Die Konzentrationsentwicklung des Xenoöstrogens 4-NP war seit 1986 in deutschen Oberflächengewässern stark rückläufig, was mit der freiwilligen Verzichterklärung in diesem Jahr zusammenhängt. Trotzdem tritt 4-NP auch heute noch in Konzentrationen im Nanogramm/Liter-Bereich in deutschen Flüssen auf. Die deutschen Werte lagen allerdings deutlich unterhalb der 4-NP-Konzentrationen in Oberflächengewässern der Schweiz, England, den USA und Taiwan.. Grundwasser Das Antioxidans BHT sowie sein Abbauprodukt BHT-CHO konnten in den meisten Grundwasserproben aus dem Oderbruch mit Gehalten bis zu 2156 bzw. 541 ng/l nachge- wiesen werden. Der Mittelwert für BHT im Grundwasser lag bei 353 ng/l und für BHT-CHO bei 105 ng/l (n=76). Die Verbindung 2-BHT wurde ausschließlich im Grundwasser nachgewiesen. Dies zeigt, dass die anaeroben Bedingungen im Aquifer des Oderbruchs zur Bildung des Dimeren von BHT geführt haben. Ob diese Vermutung stimmt, dass 2-BHT tatsächlich aus dem Antioxidans BHT gebildet wird, soll in naher Zukunft anhand mikrobiologischer Abbauversuche von BHT unter anaeroben Bedingungen geklärt werden. Die Gehalte der Phosphorsäureester im Grundwasser bewegten sich in Konzentrationsbereichen bis zu 1605 ng/l (TBP), bis zu 754 ng/l (TCEP) und bis zu 2010 ng/l (TBEP) mit einem Mittelwert für TBP von 276 ng/l, für TCEP von nur 80 ng/l und für TBEP von 289 ng/l. Der Maximalwert für BPA in den Grundwasserproben betrug 4557 ng/l. Der Mittelwert für diese Verbindung im Grundwasser lag bei 630 ng/l. Betrachtet man die BPA- Konzentration in den Grundwasserproben, fällt auf, dass diese sehr starken Schwankung unterliegt, die an dieser Stelle nicht erklärt werden können. Es besteht der Verdacht einer BPA-Kontamination der Grundwasserproben bei der Probennahme, da die beprobten Messstellen im Oderbruch zur Förderung des Grundwassers mit Kunststofflinern ausgestattet wurden, die eventuell BPA als Antioxidans enthalten. In Zukunft sind daher weitere Grundwasseranalysen mit einer verbesserten Probennahmetechnik notwendig, um eine Kontamination mit BPA auszuschließen. In den Grundwasserproben war das Isomerengemisch 4-NP, ebenso wie in den Oberflächenwasserproben, im Mittel mit der höchsten Konzentration vertreten (724 ng/l). Das 4-NP-Maximum lag dabei bei 2542 ng/l. Alle ausgewählten organischen Industriechemikalien konnten in den odernahen Bereichen innerhalb der Transsekte Bahnbrücke sowohl im Grundwasser aus dem Teilbereich des Aquifers, der nur durch infiltrierendes Oderwasser gespeist wird, als auch im Grundwasser aus dem Teilbereich des Aquifers, der überwiegend von infiltrierendem Niederschlagswasser beeinflusst wird, nachgewiesen werden. Die anthropogenen Stoffe gelangen also im Bereich der Transsekte Bahnbrücke sowohl über das Uferfiltrat als auch durch Niederschlagsinfiltration ins Grundwasser. Durch die Uferfiltration spiegelten sich die Konzentrationen der vor wenigen Tagen infiltrierten organischen Verbindungen aus dem Oderwasser direkt im Grundwasser aus odernahen Bereichen wieder. Auch weiter vom Fluss entfernt liegende Aquiferbereiche innerhalb der Transsekte Bahnbrücke wurden noch von infiltriertem Oderwasser beeinflusst. Die jahreszeitlichen Konzentrationsschwankungen demonstrieren hier jedoch die Flusskonzentrationen vor einigen Jahren, da das Oderwasser mehrere Jahre braucht, um in diese Bereiche zu gelangen. Weiterhin ist auch ein Stoffeintrag ins Grundwasser mit dem Oderwasser bei Hochwasserereignissen zu berücksichtigen. Generell nahmen die Konzentrationen der organischen Umweltchemikalien mit zunehmender Entfernung von der Oder ab, was den fehlenden Niederschlagseinfluss im Aquiferbereich der Transsekte Bahnbrücke bedingt durch die schützenden undurchlässigen Deckschichten demonstriert. Im Grundwasser, das aus dem Aquiferbereich in unmittelbarer Nähe der Entwässerungsgräben stammte, war häufig eine Konzentrationsabnahme der organischen Umweltchemikalien zu beobachten. Dies beweist den hydraulischen Zusammenhang zwischen Fluss und Entwässerungsgräben. Das infiltrierte Flusswasser steigt nach der Aquiferpassage in Grabennähe auf, was zu Verdünnungseffekten im Grundwasser verbunden mit einer Konzentrationsabnahme führt. Weiterhin wurden die ausgewählten Stoffe auch in den Grundwasserproben aus dem Aquiferbereich der Transsekte Nieschen nachgewiesen, der durch das Fehlen undurchlässiger Deckschichten gekennzeichnet ist. Da hier aufgrund der Entfernung dieser Transsekte von der Oder der hydraulische Kontakt zum Fluss stark eingeschränkt ist, sind die im Grundwasser auftretenden organischen Umweltchemikalien auf einen Eintrag mit dem infiltrierenden Niederschlagswasser zurückzuführen. Für einen Eintrag der Substanzen mit dem Niederschlagswasser spricht auch die Tatsache, dass die mittleren Konzentrationen der organischen Verbindungen in den Grundwasserproben aus der Transsekte Nieschen im Gegensatz zu denen aus der Transsekte Bahnbrücke trotz eines fehlenden hydraulischen Kontakts zur Oder erhöht waren. Die starken Konzentrationsschwankungen der organischen Umweltchemikalien im Aquiferbereich der Transsekte Nieschen können zum einen auf einen Eintrag dieser Substanzen mit dem Niederschlag zurückgeführt werden. Der Aquifer im Oderbruch ist heterogen ausgebildet, was den Eintrag organischer Stoffe mit den Niederschlägen ins Grundwasser lokal fördert oder hemmt und es dadurch zu unterschiedlichen Konzentrationen kommt. Zum anderen kann angenommen werden, dass die Konzentrationsschwankungen in diesem Aquiferbereich Folge einer Aufkonzentrierung der gelösten organischen Stoffe durch Verdunstung des oberflächennahen Grundwassers waren. Diese Annahme bestätigen die erhöhten Konzentrationen der Stoffe im Grundwasser im November 2000 und im März 2001 im Vergleich zum März 2000. Zu beiden Zeitpunkten waren die Niederschläge gering, was sich im Niedrigwasserstand der Oder wiederspiegelte. Vor allem in niederschlagsarmen Gebieten wie das Oderbruch, kann dieser Prozess der Aufkonzentrierung organischer Stoffe im Grundwasser durch Evaporation von Bedeutung sein. Die Frage, ob letztendlich der Niederschlagseintrag oder der umgekehrte Prozess, die Evaporation des Grundwassers, zu den starken Konzentrationsschwankungen der organischen Umweltchemikalien im Aquiferbereich der Transsekte Nieschen geführt hat, kann an dieser Stelle nicht beantwortet werden. Sicher ist, dass bei fehlenden undurchlässigen Deckschichten ein atmosphärische Eintrag organischer Umweltchemikalien in den Aquifer stattfindet. Auch in den Messstellen, die außerhalb der beiden Transsekten Nieschen und Bahnbrücke ca. 3000 bzw. 5000 m entfernt von der Oder liegen, konnten die organischen Verbindungen zum Teil in erheblichen Konzentrationen nachgewiesen werden. Dies ist zum einen wiederum mit einem Eintrag durch Niederschlagswasser und dem Transport der organischen Umweltchemikalien in größere Tiefen des Aquifers mit dem Sickerwasser zu erklären. Die undurchlässige Auelehmschicht ist in diesem Bereich nicht mehr vorhanden, so dass das Niederschlagswasser ungehindert in den Aquifer infiltrieren kann. Ein Einfluss des Oderfiltrats in dieser Entfernung vom Fluss kann ausgeschlossen werden, da in den mittleren Bereichen des Oderbruchs 50-100 Jahre für einen vollständigen Grundwasseraustausch realistisch sind und die Produktion sämtlicher Industriechemikalien, die Gegenstand dieser Arbeit sind, zu diesen Zeiten ohne Bedeutung war. Eine Remobilisierung der organischen Umweltchemikalien aus Klärschlamm, der im Land Brandenburg noch häufig auf Agrarflächen aufgebracht wird, muss als Eintragsquelle hier ebenfalls in Betracht gezogen werden, da Stoffe mit einem hohen Octanol/ Wasserverteilungskoeffizienten häufig die Tendenz zeigen, an Klärschlamm zu akkumulieren. Der photochemische Abbau des Antioxidationsmittels BHT zu seinem Metabolit BHT-CHO in der Atmosphäre war im Sommer höher als im Herbst und im Frühjahr, wobei der Metabolit selbst ebenfalls Abbauprozessen unterlag. Im Gegensatz dazu spielte der photochemische Abbau von TBP, TCEP, TBEP und 4-NP zu keinen Zeitpunkt eine große Rolle. Solange keine nennenswerten Direkteinleitungen in die Oder zu verzeichnen waren, konnte flussabwärts eine Konzentrationsabnahme für alle organischen Verbindungen festgestellt werden, welche auf aeroben Abbau der Substanzen zurückgeführt werden kann. Im Frühjahr war der Sauerstoffgehalt im Fluss mit 12,05 mg/l aufgrund der geringen Wassertemperatur (6,9 °C) und des Hochwasserereignisses am höchsten. Dies hatte höhere aerobe Abbauraten von BHT zu BHT-CHO zu diesem Zeitpunkt zur Folge. Ob es sich tatsächlich um einen biologischen Abbau der organischen Substanzen handelt oder ob Adsorptionseffekte an Schwebstoffe und Sedimente bei der Eliminierung dieser Stoffe ebenfalls eine Rolle spielen, muss anhand zukünftiger Analysen von Odersedimenten- und Schwebstoffen auf solche Substanzen geklärt werden. Der Abbau unter anaeroben Bedingungen, wie sie im Grundwasserleiter des Oderbruchs durchweg herrschen, spielte dagegen im Bezug auf alle untersuchten Verbindungen keine große Rolle, da diese in allen Tiefen des Aquifers (bis 21 m) noch nachgewiesen werden konnten. Sind sie einmal in das Grundwasser gelangt, werden sie aufgrund ihrer relativ guten Wasserlöslichkeit also leicht mit diesem in tiefere Bereiche transportiert. Sie sind damit relativ mobil. Die organischen Umweltchemikalien werden auch nicht wesentlich durch Adsorption an Sediment und/oder organischer Substanz zurückgehalten und dadurch aus dem Grundwasser eliminiert. Solche Faktoren wie ein schlechter anaerober Abbau, eine gute Wasserlöslichkeit und eine geringe Adsorption an Boden und Sediment einiger Schadstoffe müssen bei der Trinkwasserförderung aus tieferen Aquiferbereichen berücksichtigt werden. Chemikalien mit guten Wasserlöslichkeiten, wie beispielsweise die beiden Phosphorsäureester TCEP und TBEP, zeigten sogar die Tendenz sich besonders in den tieferen Aquiferbereichen anzureichern. Die Ergebnisse dieser Arbeit zeigen auch, dass es selbst in Gebieten wie dem Oderbruch, in denen die Grundwasserneubildung durch Niederschlag eine eher geringe Rolle spielt, durchaus zu einen nicht zu vernachlässigenden Eintrag von Stoffen durch Niederschlagswasser kommt und eine hohe Verdunstungsrate zu einer Aufkonzentrierung führt. Dies bedeutet, dass bei einer Betrachtung von hydrochemischen Prozessen in einem Grundwasserleiter, der hauptsächlich durch Uferfiltrat gespeist wird, keine einfache räumliche Struktur zugrunde gelegt werden kann. Zum lateralem Zustrom des infiltrierenden Flusswassers kommt der vertikale Einfluss des Sickerwassers. Dies muss neben Faktoren wie anaerober Abbau, Adsorption und Verdünnungseffekte bei der Interpretation des Schadstoffeintrags- und Transports im Grundwasser berücksichtigt werden.
The objective of the present doctoral thesis was to investigate the occurrence, distribution, and behaviour of six hydrophilic ethers: ethyl tert-butyl ether (ETBE), 1,4-dioxane, ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme) in surface-, waste-, ground- and drinking water samples. Solid phase extraction and gas chromatography/mass spectrometry were used to analyze the six hydrophilic ethers. Altogether more than 150 surface water samples, almost 100 of each groundwater and wastewater samples, and 10 raw and drinking water samples were analyzed during the research project.
Initially, the method was validated in order to simultaneously determine the analytes of interest in various aquatic environments. A solid phase extraction method that uses coconut charcoal (Resprep® activated coconut charcoal, Restek) or carbon molecular sieve material (SupelcleanTM Envi-CarbTM Plus, Supelco) for analyte absorption were found suitable for determination of ETBE, 1,4-dioxane, and glymes in surface-, drinking-, ground- and wastewater samples. Precision and accuracy of both methods was demonstrated for all analytes of interest. The recovery of target compounds from the ultrapure water spiked at 1.0 µg L−1 was between 86.8 % and 98.2 %, with relative standard deviation below 6 %. The samples spiked at 10.0 µg L−1 gave slightly higher recovery of 90.6 % to 112.2 % with a relative standard deviation below 3.4 % for each analyte. Detection and quantification limits in ultrapure water and surface waters were furthermore established. The limit of quantitation (LOQ) in ultrapure water ranged between 0.024 µg L−1 to 0.057 µg L−1 using Restek cartridges, and 0.030 µg L−1 to 0.069 µg L−1 using Supelco cartridges. In the surface water samples the calculated LOQ was 0.032 µg L−1 to 0.067µg L−1 using coconut charcoal material and 0.032 µg L−1 to 0.052 µg L−1 using the carbon molecular sieve material. Moreover, stability of the unpreserved and preserved water samples as well as the extracts was determined. Preservation of samples with sodium bisulfate (at 1 gram per Liter) resulted in much better stability of the ethers in water samples. Subsequently, 27 samples obtained from seven surface water bodies in Germany (Rivers Rhine, Lippe, Main, Oder, Rur, Schwarzbach and Wesel-Datteln Canal) were analyzed for the six hydrophilic ethers. ETBE was present in only two surface waters (Rhine River and Wesel-Datteln Canal) with concentrations close to the LOQ (up to 0.065 µg L−1). 1,4-Dioxane was detected in all of the water samples at concentrations reaching 1.93 µg L–1. Monoglyme was identified only in the Main and Rhine Rivers at the maximum concentration of 0.114 µg L–1 and 0.427 µg L–1, respectively. Very high concentrations (up to 1.73 µg L−1) of diglyme, triglyme, and tetraglyme were detected in the samples from the Oder River. These glymes were also detected in the Rhine River; however the concentrations did not exceed 0.200 µg L–1. Furthermore, tetraglyme was detected in the Main River at an average concentration of 0.409 µg L–1 (n = 6) and in one sample from the Rur River at 0.192 µg L–1.
Four sampling campaigns were conducted at the Oderbruch polder between October 2009 and May 2012, in order to study the behavior of the hydrophilic ethers and organophosphates during riverbank filtration and in the anoxic aquifer. Moreover the suitability of these target compounds was assessed for their use as groundwater organic tracers. At the time of each sampling campaign, concentrations of triglyme and tetraglyme in the Oder River were between 20–185 ng L–1 (n = 4) and 273¬–1576 ng L–1 (n = 4). Monoglyme, diglyme, and 1,4-dioxane were analyzed only during the two last sampling campaigns. At that time, the concentration of diglyme in Oder River was 65¬–94 ng L-1 (n = 2) and 1,4-dioxane 1610¬–3290 ng L–1 (n = 2). In the drainage ditch, following bank filtration, concentrations of ethers ranged between 1090 ng L–1 and 1467 ng L–1 for 1,4-dioxane, 23¬ng L–1 and 41 ng L–1 for diglyme, 37 ng L–1 and 149 ng L–1 for triglyme, and 496 ng L–1 and 1403 ng L–1 for tetraglyme. In the anoxic aquifer, 1,4-dioxane showed the greatest persistence during the groundwater passage. At the distance of 1150 m from the river and an estimated groundwater age of 41.9 years, a concentration above 200 ng L−1 was detected. A positive correlation was found for the inorganic tracer chloride (Cl−) with 1,4-dioxane and tetraglyme. Similarities in the behavior of Cl− and the organic compound suggested that 1,4-dioxane and tetraglyme are controlled by the same hydraulic process and therefore can be used as additional tracers to study the dynamics of the groundwater system. These results show that high concentrations of ethers are present in the surface water and are not removed during bank filtration processes. Moreover, the hydrophilic ethers persist in the anoxic aquifer and little or no degradation is expected, supporting, their possible application as organic tracers.
A separate sampling project was conducted for 1,4-dioxane that focused primarily on its fate in the aquatic environment. This study provided missing information on the extent of water pollution with 1,4-dioxane is Germany. Numerous waste-, surface-, ground- and drinking water samples were collected in order to determine the persistence of 1,4-dioxane in the aquatic environment. The occurrence of 1,4-dioxane was determined in wastewater samples from four municipal sewage treatment plants (STP). The influent and effluent samples were collected during weekly campaigns. The average influent concentrations in all four plants ranged from 262 ± 32 ng L−1 to 834 ± 480 ng L−1, whereas the average effluents concentrations were between 267 ± 35 ng L−1 and 62,260 ± 36,000 ng L−1. The source of increased 1,4-dioxane concentrations in one of the effluents was identified to originate from impurities in the methanol used in the postanoxic denitrification process. Spatial and temporal distribution of 1,4-dioxane in the river Main, Rhine, and Oder was also examined. Concentrations reaching 2,200 ng L−1 in the Oder River, and 860 ng L−1 in both Main and Rhine River were detected. The average load during the sampling was estimated to be 6.5 kg d−1 in the Main, 34.1 kg d−1 in the Oder, and 134.5 kg d−1 in the Rhine River. In all of the sampled rivers, concentrations of 1,4-dioxane increased with distance from the mouth of the river and were found to negatively correlate with the discharge of the river. In order to determine if 1,4-dioxane can reach drinking water supplies, samples from a Rhine River bank filtration site and potable water from two drinking water production facilities were analyzed for the presence of 1,4-dioxane in the raw water and finished potable water. The raw water (following bank filtration) contained 650 ng L−1 to 670 ng L−1 of 1,4-dioxane, whereas the concentration in the finished drinking water fell only to 600 ng L−1 and 490 ng L−1, respectively.
During the final project, investigations of the source identification of high glyme concentrations in the Oder River were carried out. During four sampling campaigns between January, 2012 and April, 2013, 50 samples from the Oder River in the Oderbruch region and Poland were collected. During the first two samplings in the Oderbruch polder, glymes were detected at concentration reaching 0.07 µg L-1 (diglyme), 0.54 µg L−1 (triglyme) and 1.73 µg L−1 (tetraglyme) in the Oder River. The extensive sampling campaign of the Oder River (about 500 km) in Poland helped to identify the area of possible glyme entry into the river. During that sampling the maximum concentrations of triglyme and tetraglyme were 0.46 µg L−1 and 2.21 µg L−1, respectively. A closer investigation of the identified area of pollution, helped to determine the possible sources of glymes in the Oder River. Hence, the final sampling focused on the Kaczawa River, a left tributary of the Oder River and Czarna Woda, a left tributary of Kaczawa River. Moreover, samples from an industrial wastewater treatment plant were collected. Samples from Czarna Woda stream and Kaczawa River contained even higher concentrations of diglyme, triglyme, and tetraglyme, reaching 5.18 µg L−1, 12.87 µg L−1 and 80.81 µg L−1, respectively. Finally, three water samples from a wastewater treatment plant receiving influents from a copper smelter were analyzed. Diglyme, triglyme, and tetraglyme were present at an average concentration of 569 µg L−1, 4300 µg L−1, and 65900 µg L−1, respectively in the wastewater. Further research helped to identify the source of the glymes in the wastewater. The gas desulfurization process – Solinox implemented in the nearby copper smelter uses glymes as physical absorption medium for sulfur dioxide.
Results of this doctoral research provide important information about the occurrence, distribution, and behavior of hydrophilic ethers: 1,4-dioxane, monoglyme, diglyme, triglyme, and tetraglyme in the aquatic environment. A method capable of analyzing a wide range of ether compounds: from a volatile ETBE to a high molecular weight tetraglyme was validated. 1,4-Dioxane and tetraglyme were found to be applicable as organic tracers, since they are not easily attenuated during bank filtration and the anoxic groundwater passage. The extent of water pollution with 1,4-dioxane was shown in waste-, surface-, ground-, and drinking waters. One source of extremely high concentrations of 1,4-dioxane in a municipal sewage treatment plant applying postanoxic denitrification was identified, however more information is needed on the entry of 1,4-dioxane into surface waters. Moreover, 1,4-dioxane was present in drinking water samples from river bank filtration, which demonstrates its persistence in the aquatic environment and its low degradation potential during bank filtration and subsequent water treatment. Furthermore, this was the first study that focused primarily on identifying sources of glymes in surface waters. Glymes find a widespread use in industrial sectors, hence establishing their origin in the surface water is difficult (as with 1,4-dioxane). In this work, a gas desulphurization process was identified to be a dominating source of glyme pollution in the Oder River.
The Late Cretaceous is known to be mostly affected by warm periods interrupted temporarily by a number of cooling events. The reconstruction of the paleoclimatic conditions during a period of high concentration of CO2 in the atmosphere is of great importance for the creation of future climate models. We applied the recently developed method reconstructing the SST from the TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms).
The sample material used for the present study was obtained from the tropical Late Cretaceous southern Tethys upwelling system (Negev/Israel), lasting from the Late Santonian to the Early Maastrichtian (~ 85 to 68 Ma). On the core samples from the Shefela basin, representing the outer belt of the upwelling system and the outcrop profile from the open mine Mishor Rotem (Efe Syncline), representing the inner belt, various bulk geochemical and biomarker studies were performed in this thesis.
Derived from TEX86 data, a significant long-term SST cooling trend from 36.0 to 29.3 °C is recognized during the Late Santonian and the Early Campanian in the southern Tethys margin. This is consistent with the opening and deepening of the Equatorial Atlantic Gateway (EAG) and the intrusion of cooler deep water from the southern Atlantic Ocean influencing the global SSTs and also the Tethys Ocean. Furthermore, the cooler near shore SST usually found in modern upwelling systems could be verified in case of the ancient upwelling system investigated in the present study. The calculated mean SST in the inner belt (27.7 °C) represented in the Efe Syncline was 1.5 °C cooler in comparison to the more seaward located outer belt (Shefela basin).
Moreover, geochemical and biomarker analyses were used to identify both the accumulation of high amounts of phosphate in the PM and good preservation of organic matter (OM) in the lower part of the OSM section. Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6 % in the MM, to 24.5 % in the OSM. Total iron (TFe) varies from 0.1 % in the PM to 3.3 % in the OSM and total sulfur (TS) varies between 0.1 % in the MM and 3.4 % in the OSM. Different correlations of TS, TOC and TFe were used to identify the conditions during the deposition of the different facies types. Natural sulfurization was found to play a key role in the preservation of the OM particularly in the lower part of the OSM. Samples from the OSM and the PM were deposited under dysoxic to anoxic conditions and iron limitation lasted during the deposition of the OSM and the PM, which effected the incorporation of sulfur into OM.
Phosphorus is highly accumulated in the sediments of the PM with a mean proportion of 11.5 % total phosphorus (TP), which is drastically reduced to a mean value of 0.9 % in the OSM and the MM. From the correlation of the bulk geochemical parameters TOC/TOCOR ratio and TP a major contribution of sulfate reducing bacteria to the phosphate deposition is concluded. This interrelation has previously been investigated in recent coastal upwelling systems off Peru, Chile, California and Namibia. This was further supported by the analysis of branched and monounsaturated fatty acids indicating the occurrence of sulfate reducing and sulfide oxidizing bacteria during the deposition.
According to the results from the analysis of n-alkanes and C27- to C29-steranes up to 95 % of the OM was of marine origin.
Organic sulfur compounds (OSC) were a major compound class in the aromatic hydrocarbon fraction and n-Alkyl and isoprenoid thiophenes were the most abundant, with highest amounts found for 2-methyl-5-tridecyl-thiophene (28 µg/g TOC). The relatively high abundance of ββ-C35 hopanoid thiophenes and epithiosteranes is equivalent to an incorporation of sulfur during the early stages of diagenesis.
Moreover, the geochemical parameters δ13Corg, δ15Norg, C/N and the pristane/phytane (Pr/Ph) ratio, were studied for reconstruction of seafloor and water column depositional environments. The high C/N ratio along with relatively low values of δ15Norg (4 ‰ to 6 ‰) and δ13Corg (-29 ‰ to -28 ‰) are consistent with a significant preferential loss of nitrogen-rich organic compounds during diagenesis. Oxygen-depleted conditions lasted during the deposition of the PM and the bottom of the OSM, reflected by the low Pr/Ph ratio of 0.11–0.7. In the upper part of the OSM and the MM the conditions changed from anoxic to dysoxic or oxic conditions. This environmental trend is consistent with co-occurring foraminiferal assemblages in the studied succession and implies that the benthic species in the Negev sequence were adapted to persistent minimum oxygen conditions by performing complete denitrification as recently found in many modern benthic foraminifera.
Furthermore, the anammox process could have influenced the nitrogen composition of the sediments. In this anaerobically process nitrite and ammonia are converted to molecular nitrogen.
Occurrence and sources of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) in the aquatic environment
(2011)
The aim of the present study was to identify the sources of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) into the aquatic environment and to investigate its occurrence in rivers and wastewater treatment plants (WWTPs). Therefore, TMDD was analyzed in 441 wastewater samples from influents and effluents of 27 municipal WWTPs, in 6 sludge samples, in 52 wastewater samples from 3 sewage systems of municipal WWTPs, in 489 surface samples from 24 rivers, in 9 wastewater samples of 3 paper-recycling industries and in 65 groundwater samples. TMDD was also analyzed in household paper products, in 23 samples of toilet
papers, in 5 types of paper towels and in 12 types of paper tissues. The samples were collected between 2007 and 2011. The water samples were extracted with solid phase extraction (SPE) and the household paper samples with Soxhlet extraction. Gas chromatography-mass spectrometry (GC-MS) was used for quantification purposes. Between November 2007 and January 2008, TMDD was detected in the river Rhine at Worms with permanent high concentrations (up to 1330 ng/L). The results showed that TMDD is uniformly distributed across the river at Worms. An increase of the mean TMDD concentration from approximately 500 ng/L to 1000 ng/L was registered in January 2008. Due to the minor fluctuations of the TMDD concentration during the sampling period it is expected that the input of TMDD into the river is continuous. Therefore, TMDD might rather originate from effluents of municipal WWTPs than from temporal sources. The mean TMDD load based on the analysis of 147 water samples collected in the River Rhine was 62.8 kg/d which is equivalent to 23 t/a suggesting that TMDD must be used and/or produced in high quantities in order to be found in those high concentrations. To determine if TMDD is discharged by effluents of municipal WWTPs into the rivers, 24 hours influent and effluent samples of four municipal WWTPs in the Frankfurt/Rhine-Main metropolitan region were collected during November 2008 and February 2010 and analyzed for TMDD. The TMDD influent concentrations varied between 134 ng/L and 5846 ng/L and the effluent concentrations between <LOQ (limit of quantitation) and 3539 ng/L. The TMDD elimination rates in the four WWTPs varied between 33% and 68%. The results showed that effluents of municipal WWTPs are an important source of TMDD in the aquatic environment because TMDD is not completely removed from the sewage during the wastewater treatment. Weekly and daily variations of the TMDD concentration in the influents of two municipal WWTPs indicated that both private households and indirect industrial dischargers contribute to the introduction of TMDD into the municipal sewage systems. A more detailed study of the TMDD elimination rate in the different wastewater treatment stages was carried out in the WWTP Niederrad/Griesheim in Frankfurt am Main. The results showed that the removal of TMDD is mainly carried out during the aerobic biological treatments, where the elimination rate was 46%. In contrast, during the anoxic treatment the removal efficiency was only 1.4% and during the mechanical treatment the elimination rate was 19%. To determine the sources of TMDD in the sewage, household paper products (paper tissues, toilet papers and paper towels) were analyzed for TMDD using Soxhlet extraction. TMDD was detected in 83% of the samples (n=40). The highest mean TMDD concentrations were found in recycled toilet paper (0.20 μg/g) and in paper towels (0.11 μg/g). In paper tissues and non-recycled toilet paper the mean TMDD concentrations were lower 0.080 μg/g and 0.025 μg/g respectively. According to these results the high TMDD influent concentrations found previously in municipal WWTPs (mean 1.20 μg/L) cannot be explained due to migration of TMDD from the household paper products into the sewage. Thus indirect industrial dischargers are the cause of the high influent TMDD concentrations. Effluents of municipal WWTPs with different indirect industrial dischargers (textile-, metal processing-, food processing-, electroplating-, paper-recycling- and printing ink factories) were analyzed. The highest mean TMDD concentrations were found in the effluents of municipal WWTPs that have paper-recycling (71.3 μg/L) and printing ink factories (138 μg/L) as indirect industrial dischargers. These results were confirmed by analyzing process wastewater of three paper-recycling factories located in Germany. High TMDD concentrations were detected and fluctuated between 1.83 μg/L and 113 μg/L. TMDD was also analyzed in the wastewater of a non-recycling-paper factory but its concentration was much lower (0.066 μg/L) indicating that TMDD is introduced into the processing water during the papermaking process due to the use of waste paper. Analyses of wastewater samples from different parts of the sewage pipes of a municipal WWTP in Hesse, which receives the wastewater from a printing ink factory, were carried out. The TMDD concentration in the wastewater sample from the sewage pipe of the printing ink factory was much higher (3,300 μg/L) than the TMDD concentration detected in the other wastewater samples from the sewage system (0.030 μg/L – 0.89 g/L). These results confirm the printing ink production as one of the principal sources of TMDD in the sewage. Analysis of surface water samples of the River Modau downstream from the effluent of the WWTP Nieder-Ramstadt showed TMDD concentrations of up to 28.0 μg/L. These high TMDD concentrations might be caused by the indirect wastewater discharges of a paint factory connected to the municipal sewage system. These results indicate that TMDD is introduced into the municipal WWTPs principally by indirect industrial dischargers and they are mainly paint and printing ink factories. The paper-recycling factories also represent an important source of TMDD in municipal WWTPs but indirectly. According to statements given by the representatives of two paper recycling factories neither TMDD or any other TMDD containing product is used or added during the papermaking process. Therefore, TMDD is washed out from the printing inks of the coloured waste paper and concentrated in the process wastewater in the closed water circuits of paper-recycling factories reaching rivers and municipal WWTPs. The occurrence and distribution of TMDD in surface waters in Germany was also studied. The results showed that TMDD is widely distributed across different rivers systems in the federal states of Hesse, North-Rhine-Westphalia, Bavaria, Baden-Wuerttemberg and Rhineland-Palatinate. In Hesse, TMDD was detected in the some of main rivers with mean concentrations of 812 ng/L (Schwarzbach, Hessian Ried), 374 ng/L (Kinzig), 393 ng/L (Main, at Frankfurt), 539 ng/L (Werra), 326 ng/L (Fulda), 151 ng/L (Emsbach) and 161 ng/L (Nidda). In small rivers (creeks) the mean TMDD concentrations varied between <LOQ (Diemel, Urselbach) and 1890 ng/L (Darmbach). The results showed that the TMDD concentrations in creeks are highly influenced by both effluents of WWTPs and by the distance between the sampling point and the nearest WWTP. Surface samples from sampling locations downstream from WWTPs dischargers showed higher TMDD concentrations (mean 518 ng/L) than sampling locations upstream from WWTPs dischargers (mean 35.1 ng/L). The behavior of TMDD during bank filtration was investigated at two locations, at a water utility company at the Lower River Rhine (urban area) and at the Oderbruch polder (rural area). The results indicated that TMDD is removed from the surface water by bank filtration at both sampling locations. The removal process is probably carried out in the first meters of the aquifer (hyporheic zone) by biodegradation processes, since TMDD does not tend to be absorbed by sediments and it was not found in the groundwater of monitoring wells. In groundwater samples from the Hessian Ried (n=23) TMDD was found only in five samples and the highest TMDD concentration was 135 ng/L. According to these results, TMDD does not represent a concern for drinking water in Germany, since it does not reach the groundwater with high concentrations and it has a low toxicity potential. The input of TMDD into the North Sea was estimated to be 60.7 t/a by considering the mean transported loads of TMDD by the River Rhine at Wesel (58.3 t/a) and Meuse in the Netherlands (2.40 t/a). The estimated discharge of TMDD by German municipal WWTPs (8.19 t/a) and paper-recycling factories (9.24 t/a) into rivers seems to be too low considering that the mean TMDD load in the River Rhine downstream from Wesel is 58.3 t/a. However, due to the high density of population and industries at the Lower Rhine it is expected that more relevant sources of TMDD are located along the Rhine River increasing the transported load. According to the results of this PhD project TMDD is a non-ionic surfactant contained in products, which are applied on surfaces (printing inks and paints) and has the potential to reach the aquatic environment. Therefore, TMDD should fulfill the requirement of a biodegradability of 80% established by the “Law on the Environmental Impact of Detergents and Cleaning Products” in Germany. However, due to the partial elimination rates of TMDD obtained in municipal WWTPs (between 33% and 68%) and to the absence of information about the execution of the biodegradation test on TMDD, it is unknown if TMDD is in accordance with this law. Otherwise, its use as surfactant in such products is questionable.