Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Funktionelle NMR-Tomographie (1)
- Sozialer Vergleichsprozess (1)
- Subjektive Theorie (1)
- Theory of Mind (1)
- fMRI (1)
- fMRT (1)
- social comparison (1)
- social decision (1)
- soziale Entscheidungen (1)
- soziale Vergleiche (1)
Institute
- Psychologie (3)
- Medizin (1)
Synchronized neural activity in the visual cortex is associated with small time delays (up to ~10 ms). The magnitude and direction of these delays depend on stimulus properties. Thus, synchronized neurons produce fast sequences of action potentials, and the order in which units tend to fire within these sequences is stimulusdependent, but not stimulus-locked. In the present thesis, I investigated whether such preferred firing sequences repeat with sufficient accuracy to serve as a neuronal code. To this end, I developed a method for extracting the preferred sequence of firing in a group of neurons from their pair-wise preferred delays, as measured by the offsets of the centre peaks in their cross-correlation histograms. This analysis method was then applied to highly parallel recordings of neuronal spiking activity made in area 17 of anaesthetized cats in response to simple visual stimuli, like drifting gratings and moving bars. Using a measure of effect size, I then analyzed the accuracy with which preferred firing sequences reflected stimulus properties, and found that in the presence of gamma oscillations, the time at which a unit fired in the firing sequence conveyed stimulus information almost as precisely as the firing rate of the same unit. Moreover, the stimulus-dependent changes in firing rates and firing times were largely unrelated, suggesting that the information they carry is not redundant. Thus, despite operating at a time scale of only a few milliseconds, firing sequences have the strong potential to provide a precise neural code that can complement firing rates in the cortical processing of stimulus information.
The comparison of persons is pervasive in social judgement and human decision making and yet its neural substrate is poorly explored. Using functional magnetic resonance imaging we investigated the brain activities of participants comparing other persons with each other (other vs. other comparison - OOC) and with themselves (self vs. other comparison - SOC) as regards psychological (intelligence) and physical (height) characteristics. We found that the comparison of these two person characteristics differ in their neural activation patterns in the OOC as well as in the SOC with higher activity increases for intelligence than height comparison in several areas in medial frontal and orbitofrontal cortex and posterior cingulate cortex suggesting that their activation scales with the demand on person comparison. The person comparison network strikingly overlaps the one commonly described for the classic theory of mind tasks. We interpret this overlap as indicating perspective taking common to person comparison and theory of mind. Furthermore, we suggest that the neural differences between the SOC and the OOC especially in the dorsal part of the medial frontal cortex rely on the different degree of the self involved in the two types of comparisons. The results additionally suggest that the decision directions of self-relevant comparisons, especially in the intelligence comparison of the SOC, resulted in differences in the activation of the medial frontal cortex, which also relies on differences in the reward anticipation and self-relatedness of these decisions.
Visual information is processed hierarchically in the human visual system. Early during processing basic features are analysed separately while at later stages of processing, they are integrated into a unified percept. By investigating a basic visual feature and following its integration at different levels of processing one can identify specific patterns. In certain visual impairments, these patterns can function defectively and their detailed study can clarify the cause of the visual deficit. Here we investigate orientation as a basic feature and use a property of the visual system called adaptation. Adaptation occurs as a decrease in the level of neural activity during repetitive presentation of the same stimulus. Psychophysical studies have shown that adaptation transfers interocularly, meaning that if only one eye is adapted the other eye shows also adaptation effects. Our aim was to investigate interocular transfer by means of functional magnetic resonance imaging (fMRI). Even though adaptation was demonstrated in the fMRI environment, the interocular transfer was never investigated in such a setup. First, we developed a method to measure interocular transfer of adaptation to gratings with fMRI. We then went further to test it in various groups of subjects. In normally sighted humans interocular transfer was present both in early (striate) as well as later visual areas (extrastriate). In subjects with impaired stereovision (with or without normal visual acuity) interocular transfer was absent in the investigated regions. Detailed analysis of the recorded differences between subjects with and subjects without stereovision was performed. The results of this analysis are presented in detail in this book. These results suggest that the neuronal mechanisms involved in the interocular transfer of pattern adaptation share, at least in part, the neural circuitry underlying binocular functions and stereopsis. We conclude that fMRI adaptation can be used for the assessment of cortical binocularity in humans with normal and impaired stereopsis. Further investigations are needed to address more subtle aspects of the lack of interocular transfer. Towards this purpose, through a fourth experiment we propose further directions that might shed more light on the issue of stereovision and its clinical implications. We show that carefully tuned variations in our experimental procedure might reveal other aspects of binocularity in the human visual system. We believe that the method we developed, apart from the interesting results shown here, has a high potential to be further used for other research questions. Following the above summarized ideas, the thesis comprises of three parts (chapters). The first chapter provides the main theoretical backgrounds of the visual system and of the MRI imaging technique, chapter two describes the experimental procedures while the results and their detailed discussion are detailed in chapter three.
Amblyopie (griech.: amblyopia = stumpfes Auge) bezeichnet eine nichtorganische Sehschwäche eines, oder deutlich seltener beider, Augen, die durch eine beeinträchtige Seherfahrung während der frühkindlichen Entwicklung des visuellen Systems entsteht. Die durch die Amblyopie entstehenden Beeinträchtigungen sind sehr gravierend und können die Sehschärfe, die binokulare Interaktion sowie die Kontrastsensitivität betreffen. Darüber hinaus können auch Fehllokalisationen visueller Reize sowie ausgeprägte räumliche Verzerrungen und zeitliche Instabilitäten beobachtet werden (Sireteanu, 2000a). Zielsetzung der vorliegenden Arbeit war es, die funktionellen Defizite in der amblyopen Sicht in drei verschiedenen Studien zu untersuchen und Hinweise auf die Beeinträchtigungen des ventralen und auch dorsalen kortikalen Verarbeitungspfades zu finden. Die erste Untersuchung, an der 22 amblyope bzw. alternierende Versuchspersonen teilnahmen, befasst sich mit der qualitativen Erfassung der amblyopen visuellen Wahrnehmung bei vier standardisierten Reizmustern. Bei allen Versuchsteilnehmern treten Verzerrungen auf, die jedoch schwächer sind, als in der Literatur bislang beschrieben. Die ausgeprägtesten Verzerrungen finden sich bei der Gruppe der Schielamblyopen. Unabhängig von der Ätiologie zeigt sich jedoch, dass das Ausmaß der Verzerrung bei stärkerer Amblyopie größer ist. Die von Barrett et al. (2003) vorgeschlagenen Kategorien konnten weitgehend repliziert werden und erweiter werden (Schattierungen, partiell vergrößerte bzw. verkleinerte Wahrnehmungen sowie Farbwahrnehmungen). In der zweiten Studie, an der 22 amblyope bzw. alternierende Versuchspersonen und neun normalsichtige Kontrollprobanden teilnahmen, wurde das zweidimensionale Verzerrungsmuster anhand einer Punkt-Lokalisations-Aufgabe im zentralen visuellen Feld untersucht. Schieler mit und ohne Anisometropie zeigen konsistente Verzerrungen, in Form von Erweiterung, Einschrumpfung oder Drehung von Bereichen des getesteten visuellen Feldes. Reine anisometrope Amblyope und Schieler mit alternierender Fixation weisen eine erhöhte räumliche Unsicherheit, jedoch keine konsistenten Verzerrungen auf. In der dritten Studie, einem Streckenteilungsparadigma, nahmen 23 amblyope bzw. alternierende Versuchspersonen sowie sieben normalsichtige Kontrollprobanden teil. Die Aufgabe bestand darin, eine horizontale Strecke in der Mitte zu teilen. Normalsichtige Kontrollprobanden weisen eine konsistente Linksverschiebung („Pseudoneglect“), Schieler mit und ohne Anisometropie hingegen eine konsistente Rechtsverschiebung („Minineglect“) auf. Die Rechtsverschiebung ist bei beiden Augen vorhanden, jedoch beim amblyopen Auge stärker ausgeprägt. Reine anisometrope Amblyope zeigen ähnliche Effekte das amblyope Auge betreffend. Die Gruppe der Schieler mit alternierender Fixation unterscheidet sich nicht signifikant von der Kontrollgruppe. Die Ergebnisse der durchgeführten Studien bestätigen und ergänzen die bekannten Beeinträchtigungen des ventralen visuellen Pfades und liefern darüber hinaus Hinweise auf eine funktionelle Dysfunktion des dorsalen visuellen Pfades.