Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Acute Promyelocytic Leukemia (1)
- Autophagy (1)
- Deubiquitination (1)
- Interferon response (1)
- M1 Ubiquitination (1)
- OTULIN (1)
- SUMOylation (1)
Institute
Post-translational modifications (PTMs) of cell fate regulating proteins determine their stability, localization and function and control the activation of cell protective signaling pathways. Particularly in aberrantly dividing cancer cells the surveillance of cell cycle progression is essential to control tumorigenicity. In a variety of carcinomas, lymphomas and leukemias, the tumor-suppressive functions of the apoptosis- and senescence-regulating promyelocytic leukemia protein (PML) is controlled by numerous PTMs. PML poly-ubiquitylation and polySUMOylation at several lysine (K) residues induce PML degradation that is correlated to a progressive and invasive cancer phenotype. Besides several known E3 ubiquitin protein ligases that are involved in PML degradation, less is known about PML-specific deubiquitylases (DUBs), the respective DUB-controlled ubiquitin conjugation sites and the functional consequences of PML (de)ubiquitylation. Here, we show that the pro-tumorigenic DUB USP22 critically regulates PML protein stability by modifying PML residue K394 in advanced colon carcinoma cells in vitro and that this modification also impacts the homeostasis and function of the leukemia-associated mutant variant PML-RARα. We found that ablation of USP22 decreases PML mono-ubiquitylation and correlates with a prolonged protein half-live in colon carcinoma and acute promyelocytic leukemia (APL) cell lines. Additionally, silencing of USP22 enhances interferon and interferon-stimulated gene (ISG) expression in APL cells in vitro, which together with prolonged PML-RARα stability increases the APL cell sensitivity towards differentiation treatment. In accordance with the novel roles of USP22 as suppressor of the interferon response in human intestinal epithelial cells (hIECs), our findings imply USP22-dependent surveillance of PML-RARα stability and interferon signaling in human leukemia cells, revealing USP22 as central regulator of leukemia pathogenesis.
Autophagy is an important degradation pathway mediating the engulfment of cellular material (cargo) into autophagosomes followed by degradation in autophagosomes.
Different stress stimuli, e.g. nutrient deprivation, oxidative stress or organelle damage, engage autophagy to maintain cellular homeostasis, recycle nutrients or remove damaged cell organelles. Autophagy not only degrades bulk cytoplasmic material but also selective autophagic cargo, for example lysosomes (lysophagy), mitochondria (mitophagy), ER (ER-phagy), lipid droplets (lipophagy), protein aggregates (aggrephagy) or pathogens (xenophagy). Selective autophagy pathways are regulated by selective autophagy receptors which bind to ubiquitinated cargo proteins and link them to LC3 on the autophagosomal membrane.
Ubiquitination is an essential post-translational modification controlling different cellular processes such as proteasomal and lysosomal degradation or innate immune signaling.
M1-linked (linear) poly-Ubiquitin (poly-Ub) chains are exclusively assembled by the E3 ligase linear ubiquitin chain assembly complex (LUBAC) and removed by the M1 poly-Ub-specific OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN). In addition to key functions in innate immune signaling and nuclear factor-κB (NF-κB) activation, M1 ubiquitination is also implicated in the regulation of autophagy.
LUBAC and OTULIN control autophagy initiation and maturation and the autophagic clearance of invading bacteria via xenophagy. However, additional functions of LUBAC- and OTULIN-regulated M1 ubiquitination in autophagy are largely unknown and it also remains unexplored if LUBAC and OTULIN control other selective autophagy pathways in addition to xenophagy. This study aimed to unravel the role of LUBAC- and OTULIN-controlled M1 ubiquitination in bulk and selective autophagy in more detail.
In this study, characterization of OTULIN-depleted MZ-54 glioblastoma (GBM) cells revealed that OTULIN deficiency results in enhanced LC3 lipidation in response to autophagy induction and upon blockade of late stage autophagy with Bafilomycin A1 (BafA1). Furthermore, electron microscopy analysis showed that OTULIN-deficient cells have an increased number of degradative compartments (DGCs), confirming enhanced autophagy activity upon loss of OTULIN. APEX2-based autophagosome content profiling identified various OTULIN-dependent autophagy cargo proteins. Among these were the autophagy receptor TAX1BP1 which regulates different forms of selective autophagy (e.g. lysophagy, aggrephagy) and the glycan-binding protein galectin-3 which serves key functions in lysophagy, suggesting a role of OTULIN and M1 poly-Ub in the regulation of aggrephagy and lysophagy.
Abstract 2
To study aggrephagy, protein aggregation was induced with puromycin which causes premature termination of translation and accumulation of defective ribosomal products (DRiPs). Loss of OTULIN increased the number of M1 poly-Ub-positive foci and insoluble proteins and reduced the levels of soluble TAX1BP1 and p62 in response to puromycin-induced proteotoxic stress.
Intriguingly, upon induction of lysosomal membrane permeabilization (LMP) with the lysosomotropic drug L-Leucyl-L-Leucine methyl ester (LLOMe), M1 poly-Ub strongly accumulated at damaged lysosomes and colocalized with TAX1BP1- and galectin-3-positive puncta. M1 poly-Ub-modified lysosomes formed a platform for NF-κB essential modulator (NEMO) and inhibitor of κB (IκB) kinase (IKK) complex recruitment and local NF-κB activation in a K63 poly-Ub- and OTULIN-dependent manner. Furthermore, inhibition of lysosomal degradation enhanced LLOMe-induced cell death, suggesting pro-survival functions of lysophagy following LMP. Enrichment of M1 poly-Ub at damaged lysosomes was also observed in human dopaminergic neurons and in primary mouse embryonic cortical neurons, confirming the importance of M1 poly-Ub in the response to lysosomal damage.
Together, these results identify OTULIN as a negative regulator of autophagy induction and the autophagic flux and reveal OTULIN-dependent autophagy cargo proteins.
Furthermore, this study uncovers novel and important roles of M1 poly-Ub in the response to lysosomal damage and local NF-κB activation at damaged lysosomes.
The role of USP22 in nucleic acid sensing pathways and interferon-induced necroptotic cell death
(2023)
Every day, living organisms are challenged by internal and external factors that threaten to bring imbalance to their tightly regulated systems and disrupt homeostasis, leading to degeneration, and ultimately death. More than ever, we face the challenge of combating diseases such as COVID-19 caused by infection with the SARS-CoV-2 coronavirus. It is therefore crucial to identify host factors that control antiviral defense mechanisms. In addition, in the fight against cancer, it is becoming increasingly important to identify markers that could be used for targeted therapy to influence cellular processes and determine cell fate.
As a deubiquitylating enzyme, ubiquitin specific peptidase 22 (USP22) mediates the removal of the small molecule ubiquitin, which is post-translationally added to target proteins, thereby regulating several important processes such as protein degradation, activation or localization. Through its deubiquitylating function, USP22 controls several biological processes such as cell cycle regulation, proliferation and cancer immunoresistance by modulating key proteins involved in these pathways. Lately, USP22 was reported to positively regulate TNFα-mediated necroptosis, an inflammatory type of programmed cell death, in various human tumor cell lines by affecting RIPK3 phosphorylation. In addition, USP22 as a part of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcription complex is known to regulate gene expression by removing ubiquitin from histones H2A and H2B. However, little is known about the role of USP22 in global gene expression.
In this study, we performed a genome-wide screen in the human colon carcinoma cell line HT-29 and identified USP22 as a key negative regulator of basal interferon (IFN) expression. We further demonstrated that the absence of USP22 results in increased STING activity and ubiquitylation, both basally and in response to stimulation with the STING agonist 2'3'-cGAMP, thereby affecting IFNλ1 expression and basal expression of antiviral ISGs. In addition, we were able to establish USP22 as a critical host factor in controlling SARS-CoV-2 infection by regulating infection, replication, and the generation of infectious virus particles, which we attribute in part to its role in regulating STING signaling.
In the second part of the study, we connected the findings of USP22-dependent regulation of IFN signaling and TNFα-induced necroptosis and investigated the role of USP22 during necroptosis induced by the synergistic action of IFN and the Smac mimetic BV6 in caspase-deficient settings. We identified USP22 as a negative regulator of IFN-induced necroptosis, which does not depend on STING expression, but relies on a yet unknown mechanism.
In summary, we identify USP22 as an important regulator of IFN signaling with important implications for the defense against viral infections and regulation of the necroptotic pathway that could be exploited for devising targeted therapeutic strategies against viral infections and related diseases like COVID-19, and advancing precision medicine in cancer treatment.
Necroptosis is an immunogenic form of programmed cell death characterized by plasma membrane accumulation of activated mixed lineage kinase domain-like (MLKL) that eventually leads to membrane disruption and release of danger-associated molecular patterns (DAMPs). Necroptotic cell death is tightly controlled by checkpoints, including compartmentalization as well as post-translational modifications (PTMs), like phosphorylation and ubiquitination of receptor-interacting protein kinase (RIPK) 1, RIPK3 and MLKL. Removal of plasma membrane-located activated MLKL via endocytosis or exocytosis can counteract necroptosis, but up till now, the exact mechanisms by which necroptosis is regulated downstream of MLKL activation and oligomerization are not fully understood.
Ubiquitination is a key post-translational modification that regulates various cellular processes including cell survival and cell death signaling via ubiquitination of RIPK1, RIPK3 and MLKL. M1-linked (linear) poly-ubiquitination is mediated exclusively by the linear ubiquitin chain assembly complex (LUBAC) which critically regulates cell fate and immune signaling via death receptors such as TNF receptor 1 (TNFR1).
In this study, we demonstrate that M1 poly-Ubiquitin (poly-Ub) increases during necroptosis which can be blocked by inhibition of LUBAC activity with the small-molecule HOIL-1-interacting protein (HOIP) inhibitor HOIPIN-8 or by loss of LUBAC catalytic subunit HOIP. Intriguingly, HOIPIN-8, as well as the HOIP inhibitor gliotoxin, and HOIP knockdown effectively prevent TNFα/smac mimetic/zVAD.fmk-induced necroptotic cell death in cells of human origin, without affecting necroptotic RIPK1 and RIPK3 phosphorylation, necrosome formation and oligomerization of phosphorylated MLKL. We demonstrate that HOIPIN-8 treatment inhibits MLKL translocation to intracellular membranes and accumulation in plasma membrane hotspots as well as MLKL exocytosis. We further confirm that HOIPIN-8 treatment suppresses necroptotic cell death in primary human pancreatic organoids (hPOs). Using time-lapse imaging and live/dead staining, we demonstrate loss of organoid structure and hPO cell death induced by smac mimetics and caspase inhibitors, thus providing a novel platform to investigate necroptosis in near physiological settings. Inhibition of LUBAC activity with HOIPIN-8 prevents hPO collapse and extends cell viability. Of note, loss of the M1 Ub-targeting deubiquitinating enzymes (DUBs) OTU DUB with linear linkage specificity (OTULIN) and cylindromatosis (CYLD) in human cell lines does not affect necroptosis induction and HOIPIN-8-mediated rescue of necroptosis. Intriguingly, inhibition of LUBAC activity with HOIPIN-8 does not block necroptotic cell death in murine cell lines.
Using massive analyses of cDNA ends (MACE)-seq-based global transcriptome analysis we confirm that necroptosis induces a pro-inflammatory cytokine profile which is dependent on LUBAC function and necroptotic signaling. Loss of LUBAC activity prevents the MLKL-dependent production and release of pro-inflammatory cytokines and chemokines.
Finally, we identify Flotillin-1 and -2 (FLOT1/2) as putative targets of necroptosis-induced M1 poly-Ub. Ubiquitin-binding in ABIN and NEMO (UBAN)-based pulldowns of M1 poly-ubiquitinated proteins revealed enrichment of FLOTs after necroptosis induction which is dependent on LUBAC activity and can be blocked with necroptosis inhibitors Nec-1s, GSK’872 and NSA, targeting RIPK1, RIPK3 and MLKL, respectively. Of note, loss of FLOT1/2 potentiates necroptosis suppression induced by LUBAC inhibition with HOIPIN-8.
Together, these findings identify LUBAC-mediated M1 poly-Ub as an important mediator of necroptosis and identify FLOTs as novel putative targets of LUBAC-mediated M1 poly-Ub during necroptosis. In addition, by modeling necroptosis in primary human organoids, we further expand the spectrum of experimental models to study necroptosis in human cellular settings.