Refine
Year of publication
Document Type
- Doctoral Thesis (56)
Has Fulltext
- yes (56)
Is part of the Bibliography
- no (56)
Keywords
- Allergie (3)
- Entzündung (2)
- Immunologie (2)
- immunology (2)
- Allergy (1)
- Allosterischer Effektor (1)
- Altern (1)
- Alzheimer-Krankheit (1)
- Angiogenese (1)
- Antikörper (1)
Institute
- Pharmazie (36)
- Biochemie und Chemie (19)
- Biochemie, Chemie und Pharmazie (1)
- keine Angabe Institut (1)
GPCRs and ligand-gated ion channels mediate a great variety of physiological effects within the human brain and periphery. The search for selective ligands at these target sites as pharmacological tools or new drug candidates is of great interest. With increasing knowledge of the great diversity of some receptor families, compounds formerly considered to be selective, turned out to be non-selective with regard to recently identified subtypes, splice variants or additional receptor subunits. This work provides SAR studies by means of radioligand binding experiments at serotonergic h5-HT3A and h5-HT4(b) receptors, histamine hH1 receptors and muscarinic hM1-5 receptors. ...
Dihydrocodein wird im wesentlichen zu Dihydrocodein-6-O-43-ß-glucuronid (DHC6G), Dihydromorphin (DHM), Dihydromorpbin-3-O-ß-D-glucuronid (DHM3G), Dihydromorphin-6-O-ß-D-glucuronid (DHM6G) und Nordihydrocodein (NDHC) biotransformiert. In Analogie zu Codein wird vermutet, dass die Metaboliten DHM und DHM6G pharmkologisch deutlich aktiver als die Muttersubstanz sind und somit zur Wirkung von DHC wesentlich beitragen können, auch wenn sie nur in geringen Mengen gebildet werden. Da die O-Demethylierung von Dihydrocodein zu Dihydromorphin durch das polymorphe Cytochrom P450-Enzym CYP2D6 katalysiert wird, sind in EM (schnelle Metabolisierer) und PM (langsame Metabolisierer, weisen kein funktionelles CYP2D6-Enzym auf) unterschiedliche Metabolitenprofile zu beobachten. In etwa 5-10% der Kaukasier, die PM für CYP2D6 sind, könnte sich somit ein Therapiemisserfolg nach Gabe von therapeutisch empfohlenen Standarddosen an DHC einstellen. Es war daher Ziel der vorliegenden Arbeit, die Bedeutung der Biotransformation für die Wirkung von Dihydrocodein beim Menschen zu untersuchen. Im Rahmen dieser Untersuchung wurden Affinitätsprofile an Hirnmembranpräparationen und Affinitäts- und Aktivitätsprofile an humanen Neuroblastomzellen für DHC und seine Metaboliten erstellt. Des weiteren wurden pharmakokinetische und pharmakodynamische Parameter (und deren Zusammenhang) von Dihydrocodein und seinen Metaboliten beim gesunden Menschen unter Berücksichtigung des CYP2D6-Phänotyps mit Hilfe einer Pilot-Probandenstudie bestimmt. Zuletzt wurden die Ergebnisse der Affinitäts- und Aktivitätsversuche mit den Ergebnissen der Probandenstudie unter Berücksichtigung der verfügbaren Literaturdaten in Zusammenhang gebracht. Di in vitro-Untersuchungen zeigten, dass alls Prüfsubstanzen mit Ausnahme des unwirksamen DHM3G vorwiegend u-selektive Agonisten waren und dass das prinzipielle Verhältnis der Affinitäten bzw. Aktivitäten der einzelnen aktiven Prüfsubstanzen zueinander in allen Untersuchungen annähernd gleich war. Auf Grundlage dieser Daten konnte folgender Grundsatz formuliert werden; Die Affinitäten/Aktivitäten von DHM und DHM6G waren etwa um den Faktor 100 größer als die von DHC, während die anderen Metaboliten (mit Ausnahme des unwirksamen DHM3G) vergleichbare Affinitäten/Aktivitäten besaßen. Die im Rahmen der Probandenstudie ermittelten pharmakokinetischen Werte bestätigten verfügbare Literaturdaten, insbesondere dass CYP2D6 wesentlich für die Bildung von DHM war. So konnten weder DHM, DHM3G noch DHM6G in Plasma und Urin von PM detektiert werden. Die pharmakodynamischep Untersuchungen mittels Pupillometrie zeigten einen signifikanten Unterschied im ursprünglichen Pupillendurchmesser an den Zeitpunkten 1 bis 6 Stunden zwischen Placebo einerseits und EM bzw. PM andererseits. Damit konnte zunächst eine eigene in vivo-Wirkung von DHC beim Menschen nachgewiesen werden. Jedoch ergab sich kein signifikanter Unterschied zwischen EM und PM. Im zweiten pharmakodynamischen Modell (Schmerzmodell) konnten bezüglich der Parameter R-III-Reflexschwelle und VAS-EC30 keine Unterschiede sowohl zwischen EM und PM als auch zwischen Placebo und EM bzw. PM festgestellt werden, so dass 60 mg DHC keine analgetische Wirkung hatte oder das Modell für die Ermittlung der analgetischen Potenz von 60 mg DHC ungeeignet war. Einschränkend muss jedoch hier erwähnt werden, dass die Studie aufgrund der kleinen Fallzahl nur Pilotcharakter aufwies. Die Ergebnisse der vorliegenden Arbeit in Zusammenhang mit den verfügbaren Literaturdaten lassen die Schlussfolgerung zu, dass die pharmakologisch wesentlich aktiveren Metaboliten DHM und DHM6G nicht oder nur geringfügig zur Wirkung von DHC nach oraler Einzelgabe von 60 mg DHC beitragen. Gründe hierfür könnten die geringe Bildung von DHM und seinen Metaboliten (ca. 9%) und/oder durch Verteilung und Ausscheidung bedingte niedrige Konzentrationen am Rezeptor in vivo sein. Somit scheint die Biotransformation keine Bedeutung für die Wirkung von DHC zu haben. Entsprechend sind keine Unterschiede in der Therapie von EM und PM mit niedrigen therapierelevanten DHC-Dosen zu erwarten.
Der erste Teil dieser Promotionsarbeit umfasste die Etablierung und Validierung eines in vitro Testsystems zur Auffindung von Substanzen, die selektiv die Interaktion der mitogenen Signalmoleküle Ras und Raf inhibieren können. Die Deregulation der Ras-Signalkaskade spielt in einer Vielzahl maligner Transformationen eine bedeutende Rolle. Daher besteht in der pharmazeutischen Forschung großes Interesse an der Auffindung von Inhibitoren, die in der Lage sind, solche proliferativen Signale zu unterbinden und möglicherweise Ras- vermittelte Malignität einzudämmen. Das im Rahmen dieser Promotionsarbeit entwickelte Testsystem zur Detektion von Inhibitoren der Ras-Raf-Proteininteraktion basiert auf der intracistronischen ß-Galaktosidase Komplementation. Hierbei werden zwei sich nicht komplementierende Deletionsmutanten der ß-Galaktosidase, deren Affinität zueinander sehr niedrig ist, mit interagierenden Proteinpaaren fusioniert, wodurch es zur Ausbildung eines aktiven Enzymkomplexes kommen kann, dessen Aktivität sich über die Umwandlung eines fluorogenen Substrats nachweisen lässt. Bei Expression der interagierenden Fusionsproteine im E.coli Stamm ER2507 zeigte sich in intakten Zellen eine spezifische Komplementation der Interaktionspartner. Eine in vitro Komplementation der Fusionsproteine konnte trotz nativer Aufreinigung nicht beobachtet werden, da die Proteine im zellfreien System unter den gegebenen Versuchsbedingungen nur sehr schwach miteinander interagierten. Das zelluläre Testsystem ließe sich in dieser Form für die Wirkstoffsuche nach Inhibitoren der Ras-Raf-Proteininteraktion einsetzen. Die Evaluierung und Validierung muss aber für jedes interagierende Proteinpaar gesondert erfolgen. Der zweite Teil dieser Promotionsarbeit umfasste die Entwicklung und Charakterisierung zellulärer Systeme zur Validierung von PKB/Akt als Zielstruktur für die Entwicklung neuartiger anti-tumoraler Strategien. PKB/Akt wird in der Literatur als zentraler Mediator von zellulären Überlebenssignalen beschrieben. Zudem weisen verschiedene Tumore eine konstitutive Aktivierung und/oder eine Überexpression von PKB/Akt auf, was möglicherweise mit dem Auftreten von Chemoresistenz korreliert. Im Rahmen dieser Promotionsarbeit konnte durch die Etablierung eines geeigneten zellulären Modells die Bedeutung von PKB/Akt bei der Verhinderung des Auftretens von Anoikis herausgestellt werden. Darüber hinaus gelang es erstmals, einen kausalen Zusammenhang zwischen konstitutiver Aktivierung von PKB/Akt und der Vermittlung von Chemoresistenz in vitro als auch in vivo darzulegen. Bei der molekularen Untersuchung der PKB/Akt- vermittelten Desensitivierung von Lungenkarzinomzellen gegenüber Zytostatika zeigte sich, dass PKB/Akt Chemoresistenz durch breit gefächerte Eingriffe in die apoptotischen Hauptsignalwege über eine Vielzahl von Mechanismen wie beispielsweise die verstärkte Phosphorylierung der Initiator-Caspase 9, die erhöhte Expression des anti-apoptotischen Proteins Bcl-xL oder die verlangsamte Induktion von p53 vermittelt. Die selektive Inhibition der Kinaseaktivität von PKB/Akt stellt somit einen interessanten Ansatz für neuartige therapeutische Strategien dar, die darauf abzielen, Tumorzellen, die Chemoresistenz aufgrund einer hohen intrinsischen Aktivität von PKB/Akt aufweisen, durch Applikation eines PKB/Akt-Inhibitors gegenüber Standard-Chemotherapeutika zu resensitivieren und auf diese Weise eine Vielzahl von chemoresistenten Tumoren einer Therapie zugänglich zu machen.
Das R( )-Enantiomer der rac-a-Liponsäure ist als Coenzym wichtiger Multienzymkomplexe (Pyruvatund a-Ketoglutarat-Dehydrogenase) essentiell für die Zell- und Stoffwechselfunktion. Gerade in den wichtigen Prozessen der Zelle, die Substrate für die Atmungskette bereitstellen (Glykolyse, Citratcyclus), spielt die R( )-a-Liponsäure eine entscheidende Rolle. Zusätzlich besitzt dieser Wirkstoff die Eigenschaft als Chelatkomplex-Bildner, Radikalfänger und Antioxidans zu wirken, und er kann damit den Organismus vor "oxidativem Stress" schützen. Klinische und präklinische Studien geben Hinweise, daß R( )-a- Liponsäure einen positiven Effekt auf die Insulinsensitivität, die Insulin stimulierte Glukoseaufnahme und die Glukoseoxidation hat, weiterhin die Glukoneogenese hemmt und damit eine positive Wirkung auf den Krankheitsverlauf des Typ II - Diabetes hat. Das Ziel dieser Arbeit war es, die in der Literatur beschriebenen lang anhaltenden Wirkungen (Pharmakodynamik) der R( )-a-Liponsäure (12 - 24 h nach Gabe des Wirkstoffes) mit meßbaren Konzentrationen dieser Substanz im Organismus in Zusammenhang zu bringen, um erste Ansätze für die Korrelation zwischen Pharmakokinetik und Pharmakodynamik, also für die Konzentrations-(Dosis)- Wirkungsbeziehung, zu geben. Außerdem sollte geklärt werden, weshalb die Mehrfachgabe zu einer deutlichen Absenkung der nach Einfachgabe wirksamen Dosis führte. Eine wichtige Grundlage dazu ist die genaue Kenntnis der Pharmakokinetik der Wirksubstanz und ihrer wichtigsten Stoffwechselprodukte. Bisher ist nur die Pharmakokinetik der R( )- und S(-)-a-Liponsäure nach Gabe der razemischen a-Liponsäure untersucht worden. Da noch keine Erkenntnisse über die Pharmakokinetik der Metaboliten oder der R( )-a-Liponsäure nach Gabe des reinen R-Enantiomers bestanden, lag der Schwerpunkt der Arbeit auf den Untersuchungen der Pharmakokinetik des R( )- Enantiomers und der Metaboliten nach Gabe von R( )-a-Liponsäure als Trometamolsalz (Dexlipotam) und rac-a-Liponsäure am Tier (Einfach- und Mehrfachgabe) und am Menschen (Einfachgabe). Untersuchungsmodell Ratte: Erster Ausgangspunkt der kinetischen Untersuchungen war das zentrale Kompartiment, abgebildet durch den Blutkreislauf. Die resultierende Plasmakonzentrations-Zeitkurve nach oraler (p.o.), intravenöser (i.v.) oder intraperitonealer (i.p.) Gabe von Dexlipotam konnte mathematisch, basierend auf einem Zwei-Kompartiment-Modell, beschrieben werden. Charakteristisch für die Pharmakokinetik der R( )-a-Liponsäure war die kurze terminale Halbwertszeit (0,6 - 1,6 h) und die hohe, mit dem hepatischen Blutfluß vergleichbare, totale Plasma-Clearance. Diese Eigenschaften führten zu einem schnellen Absinken der Plasmakonzentration auf Werte unterhalb der Nachweisgrenze (6 h nach Gabe des Wirkstoffes). Mit Hilfe der Mikrodialyse wurde nach 1-stündiger Infusion von Dexlipotam die freie ungebundene R( )-a-Liponsäure-Konzentration im Interstitium des Muskels bestimmt. Der zeitliche Verlauf der Gewebekonzentration konnte basierend auf der physiologischen Grundlage eines peripheren Kompartiments (Zwei-Kompartiment-Modell) beschrieben werden. Es zeigte sich, daß nur der freie ungebundene Anteil der im Plasma vorliegenden Konzentration (20 %) für die Distribution in das Gewebe zur Verfügung steht. Die ermittelten Halbwertszeiten der Muttersubstanz im Plasma und im Muskel lagen in vergleichbarer Größenordnung und gaben keinen Hinweis auf eine unterschiedliche Kinetik im Plasma und im Gewebe. Sowohl nach p.o. als auch nach einmal täglicher i.v. Mehrfachgabe über 3 - 4 Wochen konnte keine Anreicherung im Plasma bestimmt werden. Dieser Befund erklärte somit nicht die nach Mehrfachgabe erforderliche Dosisreduktion. Die in weiteren Untersuchungen bestimmten Gewebekonzentrationen in der Leber, in der Niere, im Muskel und im Herzen, die sich aus dem freien ungebundenen und dem reversibel gebundenen Anteil der extrazellulären und intrazellulären Konzentration zusammensetzten, zeigten einen zur Plasmakinetik korrespondierenden Zeitverlauf. Nur einzelne spezifische Geweberegionen zeigten nach p.o. (Aorta) und nach i.v. (Nerven) Mehrfachgabe eine Anreicherung des Wirkstoffes. In in-vitro Testmodellen wurde weiterhin die Pharmakokinetik auf zelluläre Ebene untersucht. Es zeigte sich, daß Hepatozyten in der Lage sind, R( )-a-Liponsäure aufzunehmen und die durch b-Oxidation entstandenen Metaboliten Bisnorliponsäure (BNLA) und Tetranorliponsäure (TNLA) zu bilden und aus der Zelle heraus zu transportieren. Im Hinblick auf die Konzentrations-Wirkungsbeziehung rückten die Metaboliten Tetranorliponsäure und Bisnorliponsäure in das Interesse, da diese Stoffwechselprodukte wie die Muttersubstanz über einen aktiven Dithiolan-Ring verfügen, der möglicherweise das für die Wirkung verantwortliche Strukturelement darstellt. Im Interstitium des Muskels wurde der Metabolit TNLA in vergleichbaren Konzentrationen wie die Muttersubstanz gemessen, der Metabolit BNLA war dort nur in Spuren meßbar. Im Plasma hingegen waren die maximalen TNLA-Konzentrationen um den Faktor 3 geringer als die Muttersubstanz- Konzentrationen. Der Metabolit BNLA war im Plasma nur in geringem Ausmaß, um den Faktor 15 geringer als die Muttersubstanz, meßbar. Untersuchungsmodell Mensch: Im Menschen wurden die Metaboliten TNLA, BNLA, 6,8-Bis(methylmercapto)octansäure (BMOA), 4,6- Bis(methylmercapto)hexansäure (BMHA) und 2,4-Bis(methylmercapto)butansäure (BMBA) im Plasma und im Urin pharmakokinetisch untersucht. Die Metaboliten BMOA, TNLA und BNLA zeigten Halbwertszeiten in vergleichbarer Größenordnung wie die Muttersubstanz (0,5 - 0,9 h). Für die Metaboliten BMBA und BMHA wurden höhere terminale Halbwertszeiten (2 h) ermittelt. Aufgrund der insgesamt kurzen Halbwertszeiten konnte eine Kumulation der Metaboliten nach Mehrfachgabe ausgeschlossen werden. Mit Hilfe eines pharmakokinetischen Modells (Zwei-Kompartiment-Modell) war es möglich, die Bildung der Stoffwechselprodukte BNLA, TNLA, BMOA, BMHA und BMBA im Plasma zeitlich simultan zu beschreiben. Dadurch konnte der Metabolisierungsweg der a-Liponsäure im Organismus genauer erklärt und die resultierenden Konzentrationen der Metaboliten auf Basis der Muttersubstanz-Konzentrationen errechnet werden. Es war nicht möglich, die gemessenen Konzentrationen, weder von der Muttersubstanz noch von den möglichen wirksamen Metaboliten, in den verschiedenen Kompartimenten (Blutkreislauf, Gewebe oder Zelle) mit der lang anhaltenden Wirkung in einen zeitlichen Zusammenhang zu bringen. Weitere Untersuchungen mit empfindlicheren Meßmethoden und weitergehende zusätzliche Konzentrationsbestimmungen in den Kompartimenten in der Zelle (z.B. Mitochondrien) sind erforderlich, um die Korrelation zwischen der Pharmakokinetik und der Pharmakodynamik der R( )-a-Liponsäure oder möglicher wirksamer Metaboliten zu beschreiben.
Reziproke chromosomale Translokationen sind häufig mit Leukämien und Lymphomen assoziiert und gelten in vielen Fällen als Ursache der Erkrankung. Die reziproke Translokation t(4;11) findet man hauptsächlich bei Kleinkindern, die an einer akuten lymphatischen Leukämie erkrankt sind, aber auch bei älteren Patienten mit einer Sekundärleukämie. Die leukämischen Blasten dieser Patienten sind meist gegen konventionelle Therapiekonzepte resistent, was zu einer ungewöhnlich schlechten Prognose führt. Die Chromosomenbande 11q23 ist an einer Vielzahl chromosomaler Translokationen beteiligt. Die dadurch erzeugten reziproken MLL-Fusiongene sind alle mit der Entstehung einer Hochrisikoleukämie korreliert. Für einige der dabei entstehenden Fusionsproteine konnte nach retroviraler Transduktion in hämatopoietische Vorläuferzellen gezeigt werden, dass sie onkogenes Potential besitzen und eine myeloische Leukämie in transgenen oder transienten Mausmodellen initiieren können. Für die Produkte einer Translokation t(4;11) konnte dies bislang nicht erfolgreich untersucht werden. Bei der Translokation t(4;11) werden die beiden Partnergene MLL und AF4 so miteinander verknüpft, dass auf den neu gebildeten Derivatchromosomen zwei Fusionsgene (MLL•AF4 und AF4•MLL) mit einem intakten Leserahmen entstehen. Da man in den leukämischen Blasten im Regelfall beide Fusionstranskripte findet, nehmen wir an, dass beide Genprodukte zur Fehlregulation und Entartung der Zelle beitragen. Um den potentiell onkogenen Wirkmechanismus der t(4;11) Translokation zu untersuchen, wurde ein induzierbares Expressions-System in murinen embryonalen Fibroblasten (MEF) etabliert. Anhand dieses Zellsystems gelang es das potententielle onkogene Potential der Fusionsproteine MLL•AF4 und AF4•MLL, bzw.des Wildtyp AF4 Proteins in Focus Formation Assays sichtbar zu machen. Dabei konnte die Bildung zellulärer Foci eindrucksvoll für das Wildtyp AF4 Protein und das AF4•MLL Fusionsprotein dargestellt werden. Das MLL•AF4 Fusionsprotein war nicht in der Lage den Verlust der Kontaktinhibition und damit Focus-Bildung in den Zellen zu initiieren. Die anschließende Definition des AF4 Wildtyp- und AF4•MLL Fusionsproteins als Proto-/Onkoprotein, führte zu der Arbeitshypothese, dass der Nterminale Bereich des AF4 Proteins (AF4•N) Wachstums-transformierendes Potential besitzt. Aufgrund der vorliegenden Daten und zur genaueren Charakterisierung des AF4 Proteins wurden anschließend Interaktions-Studien mit dem AF4•N Protein durchgeführt, wobei die beiden E3 Ubiquitin Ligasen SIAH1 und SIAH2 als Interaktionspartner des AF4•N Proteins identifiziert wurden. E3 Ubiquitin Ligasen sind wichtige Bestandteile der Ubiquitinylierungs-Maschinerie und der damit verbundenen proteasomalen Degradation. Dabei sind die SIAH Proteine, wie alle E3 Ubiquitin Ligasen, für die Spezifität der Proteasom-abhängigen Degradation verantwortlich, indem sie über ihre Substrat-Binde Domäne im C-Terminus mit den abzubauenden Targetproteinen interagieren. Die spezifische Interaktion der SIAH Proteine mit dem AF4•N Protein konnte in unabhängigen Experimenten sowohl in vitro als auch in vivo bestätigt werden. Durch den Einsatz des Proteasom-Inhibitors MG132 konnte zudem der effiziente, SIAH1-vermittelte und Proteasom-abhängige Abbau von AF4•N demonstriert werden. Mit weiterführenden Experimenten konnte auch für das Wildtyp AF4 Protein und für das AF4•MLL Fusionsprotein eine Regulation der Proteinstabilität über das SIAH1 Protein festgestellt werden. Eine SIAH1-vermittelte Degradation ist jedoch nur auf das AF4•MLL full-length Fusionsprotein beschränkt. Eine proteolytische Spaltung des AF4•MLL Fusionsproteins durch die Protease Taspase1 innerhalb des MLL Fusionsanteils führte zur Bildung eines stabilen der4•N/MLL•C Proteinkomplexes und dessen Akkumulation in den Zellen. Basierend auf diesen Ergebnissen konnte für t(4;11) Translokationen ein erster pathomolekularer Mechanismus zur Leukämie-Entstehung aufgezeigt werden. Dieser beruht im wesentlichen auf der Akkumulation des der4•N/MLL•C Proteinkomplexes, welcher sich der effizienten Kontrolle durch die E3 Ubiquitin Ligase SIAH1 entzieht. Dadurch wird der Wachstums-transformierende AF4•N Proteinanteil in die Lage versetzt sein onkogenes Potential zu vermitteln.
In dieser Arbeit wurde das Hauptkapsidprotein VP1 des murinen Polyomavirus zum Transfer von DNA in eukaryontische Zellen eingesetzt. Das murine Polyomavirus wird der Familie der Papovaviridae zugeordnet. Die Viren dieser Familie sind durch nichtumhüllte, ikosaedrische Kapside gekennzeichnet. Die äußere Hülle wird aus 72 VP1Pentameren gebildet, an die sich intern je ein VP2 bzw. VP3Molekül anlagert. Das Strukturprotein VP1 ist aufgrund folgender Eigenschaften für eine DNABeladung und Transfektion in eukaryontische Zellen prädestiniert: 1. Es wurde am NTerminus von VP1 eine DNABindungsdomäne identifiziert. 2. Es konnte am NTerminus von VP1 eine Kernlokalisationssequenz nachgewiesen werden. 3. Es wurde die exakte Rezeptorerkennungssequenz innerhalb der VP1Struktur bestimmt. 4. VP1 ist in der Lage, nach einer rekombinanten prokaryontischen Expression unter Hochsalzbedingungen zu Kapsoiden zu assemblieren. In dieser Arbeit wurde ein rekombinantes, in E. coli exprimiertes VP1Protein verwendet und hinsichtlich seiner DNABindung und der Fähigkeit zum DNATransfer in eukaryontische Zellen charakterisiert: 1. Das vorhandene Aufreinigungsprotokoll konnte optimiert werden. Die Proteinausbeute aus 1 l Bakteriensuspension wurde von 1,8 mg auf 3 mg gesteigert. Gleichzeitig wurde die Kontamination mit Fremdprotein deutlich reduziert. Es konnten die Ergebnisse hinsichtlich der Kapsoidassemblierung unter Hochsalzbedingungen reproduziert werden. 2. Cytotoxizitätstests in NIH 3T3Zellen belegten, daß die getesteten VP1Kapsoid Konzentrationen (ca. 25 µg/ml) keine signifikanten Anzeichen einer toxischen Reaktion zeigten. 3. Der Vergleich zwischen dem Kapsoid ohne HisTag und mit HisTag (Nterminale Klonierung eines 6xHisAffinitätsTags) zeigte, daß durch den HisTag die Bindung von einzelsträngiger DNA an das Kapsoid von 37% auf 55% erhöht werden konnte. Es wurde aber auch eine konzentrationsabhängige Aggregation des VP1Proteins mit HisTag beobachtet. In späteren Arbeiten wurde aus diesem Grund bevorzugt das VP1Protein ohne HisTag eingesetzt. 4. In dieser Arbeit konnte zum ersten Mal eine Transfektion von eukaryontischen Zellen, in diesem Fall den NIH 3T3Zellen, mit rekombinanten VP1Kapsoiden nachgewiesen werden. Nach Beladung von VP1Kapsoiden mit fluoreszenzmarkierter einzelsträngiger DNA konnte eine eindeutige intrazelluläre Fluoreszenz in den NIH 3T3Zellen beobachtet werden. Diese Fluoreszenz war diffus im Cytoplasma und distinkt im Nukleus lokalisiert. 5. Die biologische Aktivität der über VP1 in die Zelle transportierten einzelsträngigen DNASequenzen wurde mit einer Reduktion der bcl2Expression in MOLT4 Zellen überprüft. Die VP1Kapsoide zeigten im Vergleich zu DOTAP als Transfersystem und Aufnahme freier einzelsträngiger DNA die höchste Antisense Wirkung. Die verwendeten modifizierten Oligodesoxynukleotide zeigten jedoch eine nichtsequenzspezifische Reduktion des Proteinlevels. 6. Nach Beladung von VP1Kapsoiden mit PlasmidDNA unter Hochsalzbedingungen konnte in Transfektionsversuchen der erfolgreiche Transport der verwendeten PlasmidDNA in den Nukleus der Zielzelle über die Expression des Markergens (EGFP) nachgewiesen werden. 7. Im Hinblick auf eine Verbesserung der Transfektionseffizienz wurde die Beladung von VP1 mit DNAKondensaten getestet. Nach Einsatz von Histonen für eine DNAKomplexierung wurden Partikel detektiert, die vor allem aufgrund ihrer Größe nicht für eine Beladung mit VP1 geeignet waren. Als ein zweites Kondensationsagenz wurden polykationische Polyamidoamine, auch Dendrimere genannt, untersucht. Nach Einsatz von kondensierter, fluoreszenzmarkierter doppelsträngiger DNA konnte zusammen mit VP1Pentameren eine wesentlich stärkere Fluoreszenz innerhalb des Cytoplasmas der transfizierten Zellen im Vergleich zur Transfektion von DendrimerDNAKondensaten ohne VP1 nachgewiesen werden. Es konnte jedoch in keinem getesteten Kondensationsansatz in Anwesenheit von VP1 ein Transport der eingesetzten PlasmidDNA zum Nukleus der eukaryontischen Zellen beobachtet werden.
Das “Protein Associated with Myc” spielt in den verschiedenen physiologischen Vorgängen eine Rolle. Dazu zählen Prozesse der Synaptogenese und Schmerzverarbeitung ebenso wie eine Regulation des Pteridin- und cAMP-Stoffwechsels. Auf welche Weise PAM die unterschiedlichen Effekte vermittelt, ist bislang nur in Ansätzen verstanden. Um die Wirkmechanismen von PAM aufzuklären, wurden in dieser Arbeit seine biochemischen Funktionen untersucht. Die These, dass PAM als E3 Ubiquitinligase aktiv ist, konnte in vitro mittels biochemischer Versuche zweifelsfrei bestätigt werden. Sowohl das nativ aufgereinigte, humane PAM, als auch der heterolog expremierte C-Terminale Bereich (C-PAM), der die katalytisch aktive RING Finger Domäne enthält, wiesen die Fähigkeit zur Ubiquitinkettenbildung und Autoubiquitinierung auf. Bei der Identifikation eines möglichen Zielproteins rückte das Protein TSC2 und der damit verbundene TSC2 / mTOR Signalweg in den Fokus. Für das gewählte Modell-System HeLa Zellen ließ sich eine Interaktion von PAM und TSC2 durch Ko-Immunopräzipitationen und Immunzytochemie nachweisen. Es konnte erstmalig gezeigt werden, dass das vollständige, native PAM, nicht aber die isolierte RING Finger Domäne, TSC2 polyubiquitinieren und zum proteasomalen Abbau markieren kann. TSC2 ist ein negativer Regulator der mTOR Kinaseaktivität, in dem es den stimulatorischen Einfluss von Rheb auf mTOR inhibiert. PAM wird in HeLa Zellen durch das Phospholipid Sphingosin-1-Phosphat (S1P) aktiviert. Nach S1P Behandlung der Zellen war eine Phosphorylierung der Proteinkinase mTOR nachweisbar. Diese ging mit einer Aktivierung der Kinaseaktivität einher, wie die rapamycinsensitive Phosphorylierung der mTOR Zielproteine p70S6K und 4E-BP1 zeigte. Durch Gabe von Rezeptor-Agonisten/-Antagonisten konnte eine Beteiligung des S1P1 und S1P2 Rezeptors ausgeschlossen werden. Der zunächst vermutete Mechanismus eines S1P induzierten, PAM-abhängigen Abbaus von TSC2 konnte trotz vielfältiger Herangehensweisen nicht nachgewiesen werden. Eine Phosphorylierung als Indikation einer Inaktivierung war ebenfalls nicht detektierbar. Auch die GAP Aktivität von TSC2 auf Rheb, wird in in vitro Versuchen durch die Interaktion mit PAM nicht vermindert. Durch eine Verminderung der TSC2 Expression mittels spezifischer siRNA zeigte sich, dass TSC2 nicht in die S1P-abhängige mTOR Aktivierung involviert ist. Auch regulatorische Proteinkinasen wie AKT, ERK oder PI3K, die durch S1P aktiviert werden können, sind an dem Signalweg nicht beteiligt, wie die Hemmung dieser Enzyme mit spezifischen Inhibitoren zeigte. Dagegen konnte eine Beteiligung von PAM und Rheb zum einen mittels Proteintransfektion bestätigt werden, zum anderen ließen sich die S1P Effekte durch Hemmstoffe verhindern, die für eine Aktivierung von PAM, respektive Rheb, nötig sind. Durch Nukleotidbindungsstudien war ein Einfluss von PAM auf den GTP-Beladungszustand von Rheb nachweisbar. Sowohl in einem GTPS Bindungsversuch als auch in einem GDP Dissoziationsexperiment erhöhte PAM konzentrationsabhängig die GTP Bindung bzw. den GDP/GTP Austausch an Rheb. In dieser Arbeit wird damit erstmalig eine duale Funktion eines Proteins als Ubiquitinligase und GEF beschrieben. So konnte die postulierte Aktivität von PAM als Ubiquitinligase bestätigt und TSC2 als Zielprotein identifiziert werden. Gleichzeitig wurde ein TSC2 unabhängiger Weg der mTOR Aktivierung aufgeklärt, an dem PAM und Rheb beteiligt sind. Als möglicher Mechanismus kommt eine Aktivität von PAM als Guanin-Nukleotid Austausch Faktor (GEF) auf Rheb in Frage. Durch Beschreibung von PAM als negativem Regulator von TSC2 und Aktivator von Rheb trägt diese Arbeit einen wichtigen Beitrag zur TSC2 / mTOR Forschung bei. Umgekehrt ermöglicht sie eine neue Sichtweise auf partiell PAM-abhängige Vorgänge wie Synaptogenese und Nozizeption, indem sie TSC2 / mTOR in diese Prozesse integriert.
Ca2+-aktivierte Kaliumkanäle mit großer Leitfähigkeit (MaxiK oder BK Kanäle) sind als Schlüsselelemente an der Regulation der elektrischen Aktivität vieler erregbarer Zellen beteiligt. Die duale Steuerung dieser Kanäle durch die intrazelluläre Kalziumkonzentration und das Membranpotential macht MaxiK Kanäle zu effektiven Integratoren multipler zellulärer Signalprozesse. Der MaxiK Kanal der glatten Gefäßmuskulatur ist entscheidend an der Repolarisierung von glatten Muskelzellen und der Terminierung des Kalziumeinstromes während der Vasokonstriktion beteiligt. Zahlreiche Arbeiten, u.a. an b1-Knock-out Mäusen (Brenner et al., 2000b) und humanen genetischen Variationen des b1-Gens (Amberg & Santana, 2003) belegen die wichtige Rolle des MaxiK Kanals für die Kontrolle des systemischen Blutdruckes in Säugern, einschließlich des Menschen (Nelson & Bonev, 2004; Amberg et al., 2003). Aktivierung des vaskulären MaxiK Kanals könnte somit ein neues therapeutisches Prinzip zur Behandlung des Bluthochdrucks und seiner Folgeerkrankungen darstellen. Als pharmakologische Zielstruktur besonders interessant wird der vaskuläre MaxiK Kanal durch seine gewebespezifische Zusammensetzung aus a- und b1-Untereinheit und die Möglichkeit diese Kombination selektiv zu aktivieren (Tanaka et al., 1997; McManus et al., 1993). In der vorliegenden Arbeit wurde ein induzierbares Zellmodell charakterisiert, welches die MaxiKa und -b1 Untereinheiten bicistronisch unter der Kontrolle eines Tetrazyklin-sensitiven Promotors exprimierte. Die Untersuchungen ergaben, dass in diesem System funktionelle MaxiK Kanäle, die sich äquivalent zu nativen vaskulären MaxiK Kanälen verhielten, detektiert werden konnten. Im Vergleich zu anderen heterologen Expressionsmodellen zeichneten sich die induzierbaren Zelllinien durch eine große Stabilität und Reproduzierbarkeit der MaxiK Expression aus. Beide Eigenschaften sind wichtige Voraussetzungen für den Einsatz dieser Zelllinien im Hochdurchsatz-Screening zur Identifizierung neuer MaxiK Aktivatoren. Die Nutzbarkeit dieses Testsystems zur Identifizierung von solchen Verbindungen wurde weiterhin durch die Untersuchung bekannter und neuer aktivierender Substanzen bestätigt. Dabei zeigte sich, dass insbesondere das Benzimidazolon CGS7181 sowie das Dehydroabietinderivat Pimarinsäure den Kanal potent aktivierten. Durch fluorimetrische Kalziummessungen konnte nachgewiesen werden, dass CGS7181 neben MaxiK-aktivierenden Eigenschaften auch einen potenten Ionophor für Ca2+ darstellt und damit wahrscheinlich keinen vielversprechenden Ausgangspunkt für die Entwicklung eines neuen Antihypertensivums darstellt. Unter Benutzung der CHO-Trex-MaxiK-a+b1-Zelllinie wurden inzwischen in der Screening- Abteilung von Sanofi-Aventis im Hochdurchsatzverfahren über 700 Strukturen mit aktivierender Wirkung auf den MaxiK Kanal identifiziert. Mit diesem Ergebnis ist eine solide Grundlage geschaffen, um im weiteren Verlauf des Projektes die Suche nach neuen blutdrucksenkenden Molekülen erfolgreich voranzutreiben. Zur weiteren molekularen Validierung der Zielstruktur MaxiK wurde eine bisher nicht beschriebene Spleißvariante, aDS8, die auch in kardiovaskulären Geweben exprimiert ist, untersucht. Die transiente Expression in HEK293-Zellen führte zu signifikanten, aber im Vergleich zum MaxiK-a-wt geringen Kaliumströmen. Immunfluoreszenz-Experimente zeigten eine Retention des Proteins im Zellinneren, ohne dass eine Translokation in die Plasmamembran oder in distinkte Kompartimente gezeigt werden konnte. Dies galt auch für die Expression in primären Glattmuskelzellen und der Endothelzelllinie EAhy926. Eine Beteiligung der S8-Domäne an der Assemblierung der neuen Spleißvariante konnte durch den biochemischen Nachweis von aDS8-Homomultimeren ausgeschlossen werden. Überraschenderweise wurde jedoch keine Interaktion von MaxiK-aDS8 und der Wildtyp-a-Untereinheit beobachtet. Man kann daher vermuten, dass die S8-Domäne eine Rolle beim Kanaltransport spielt und möglicherweise in distinkten Zelltypen eine Wechselwirkungsfläche für bislang unbekannte Interaktionspartner bildet.
Die Niere stellt im Organismus einen der Hauptangriffspunkte für Toxine dar. Dies liegt zum einen in der Tatsache begründet, dass zahlreiche Substanzen renal eliminiert werden. Eine weitere Funktion der Niere ist die Regulation des Flüssigkeitsund Elektrolythaushaltes durch Rückresorption von Wasser, Ionen, Aminosäuren und Glucose. Dies führt zu einer Aufkonzentrierung des Primärharns und folglich werden für die zu eliminierenden Toxine im Harn normalerweise höhere Konzentrationen erreicht, als beispielsweise im Blutplasma. Ein Portfolio von verschiedenen metabolisierenden Enzymen, die hauptsächlich in der Niere auftreten, sorgt weiterhin dafür, dass einige der gefilterten Substanzen erst in der Niere eine Bioaktivierung zum Toxin erfahren. Es ist somit von grosser Bedeutung, geeignete Testsysteme zu entwickeln, mit denen die Nephrotoxizität von Arzneistoffen, Chemikalien und anderen Substanzen untersucht werden kann. Die globale Analyse der Genexpression mit Hilfe von Mikroarrays bietet die Möglichkeit, die Veränderungen in der Expression von mehreren Tausend Genen gleichzeitig in der Niere oder in renalen Zellkulturen nach der Einwirkung eines potenziellen Nephrotoxins zu untersuchen. Eines der Ziele dieser Arbeit bestand darin, diese vielversprechende Methode für den Einsatz bei der Untersuchung von Nephrotoxizität zu evaluieren. In diesem Zusammenhang sollte geklärt werden, inwiefern sich aus der Literatur bekannte Tatsachen über den Toxizitätsmechanismus bestimmter Nephrotoxine bestätigen lassen und ob Hinweise auf bisher unbekannte Aspekte bezüglich der Vermittlung der Nephrotoxizität der Nephrotoxine gewonnen werden können. Ein weiterer Bestandteil dieser Arbeit war es, ein Zellkulturmodell zu etablieren und zu charakterisieren, das es ermöglicht, Genexpressionsanalysen zur Untersuchung der Nephrotoxizität in vitro durchzuführen und das ausserdem mit in vivo vergleichbare Daten liefert. In verschiedenen Experimenten konnte nachgewiesen werden, dass eine Kultur primärer Zellen etabliert werden konnte, die die funktionellen Eigenschaften von proximalen Tubuluszellen zeigt und keine Verunreinigung mit anderen Zelltypen des Nierencortex aufweist. Weiterhin wurden die optimalen Bedingungen für die Durchführung von Expressionsanalysen mit dieser Zellkultur definiert. Im weiteren Verlauf der Arbeit wurden das Expressionsprofil von Ochratoxin A mit Hilfe von cDNA-Mikroarrays, sowie die Profile von Quecksilber-II-chlorid, Paraquat und Puromycin mit Hilfe von Oligonukleotid-Mikroarrays in vivo und in vitro untersucht und bewertet. Ein Vergleich der beiden verfügbaren Plattformen (cDNA-Mikroarrays und Oligonukleotid-Mikroarrays) mit der Echt-Zeit-PCR als unabhängiger Methode lieferte aufschlussreiche Erkenntnisse über ihre Vor- und Nachteile. Die Analyse der Genexpressionsveränderungen nach der Einwirkung von OTA, HgCl2, Paraquat und Puromycin zeigte, dass sich mit Hilfe des Genexpressionsprofils zahlreiche Erkenntnisse über den Toxizitätsmechanismus der Substanzen gewinnen lassen, die sowohl durch die histopathologischen Befunde als auch mit Hilfe der einschlägigen Literatur bestätigt werden konnten. Zum Teil konnten sogar bisher unbekannte Aspekte der nephrotoxischen Wirkungen der untersuchten Modell- Toxine aufgedeckt werden, wie zum Beispiel die verstärkte Induktion von Golgi- Transport-assoziierten Genen im Nierencortex der Ratte nach Behandlung mit Paraquat. Die Analyse des Genexpressionsprofils kann somit vielversprechende Hinweise für das umfassende Verständnis des Toxizitätsmechanismus von Nephrotoxinen liefern. Der Vergleich der Expressionsmuster von HgCl2, Paraquat und Puromycin machte weiterhin deutlich, dass es einerseits transkriptionelle Änderungen gibt, die für das jeweilige Toxin spezifisch waren, andererseits aber auch Expressionsmuster aufgezeigt werden konnten, die allen untersuchten Nephrotoxinen gemeinsam waren. Durch die Identifizierung solcher gemeinsamen Genexpressionsprofile aus einer Datenbank mit zahlreichen bekannten Nephrotoxinen, könnte es in Zukunft sogar möglich sein, die potenzielle Nephrotoxizität unbekannter Arzneistoffe oder Chemikalien mit Hilfe von Mikroarrays vorherzusagen oder beispielsweise aus mehreren Kandidaten für einen neuen Arzneistoff, denjenigen mit dem geringsten nephrotoxischen Potenzial bereits zu einem frühen Zeitpunkt der Entwicklung herauszufiltern.
Monoklonale Antikörper und rekombinante Antikörperfragmente gegen sekundäre Arzneipflanzenmetabolite
(2004)
Monoklonale Antikörper sind seit vielen Jahren aus den biochemischen und molekularbiologischen Laboratorien nicht mehr wegzudenken. Sowohl in der Grundlagenforschung, als auch in der angewandten medizinischen Diagnostik und der Therapie spielen sie eine immer wichtigere Rolle. Dennoch konnten sich monoklonale Antikörper als Hilfsmittel im Bereich der Naturstoffanalytik bisher noch nicht durchsetzen. Im Mittelpunkt dieser Arbeit stand daher die Frage, inwieweit sich monoklonale Antikörper und rekombinante Antikörperfragmente für die Analytik komplexer Naturstoffgemische eignen. Eine der Zielstrukturen, gegen die monoklonale Antikörper generiert werden sollten, ist das pentazyklische Triterpen Oleanolsäure. Oleanolsäure ist als Aglykon in zahlreichen verschiedenen Triterpensaponinen enthalten. Triterpensaponine bzw. Triterpensaponin-haltige Arzneipflanzen spielen aufgrund ihres breiten Wirkungsspektrums in der Phytotherapie eine wichtige Rolle. Sie zeichnen sich nachweislich durch venentonisierende, antiödematöse, antiphlogistische, diuretische, expektorierende und broncholytische Eigenschaften aus. Da es sich bei den Triterpensaponinen um eine sehr heterogene Stoffgruppe handelt, ist ihre Analytik sehr aufwendig. Monoklonale Antikörper könnten daher bei der Analytik von komplexen Saponingemischen sehr nützlich sein. In Zusammenarbeit mit Frau Dr. Kerstin Brand aus dem Arbeitskreis von PD Dr. Werner Knöss (Universität Bonn) konnten verschiedene monoklonale Antikörper gegen Oleanolsäure etabliert werden. Im Rahmen dieser Dissertation wurden die Bindungseigenschaften dieser Antikörper eingehend charakterisiert. In kompetitiven ELISAs konnten die Molekülepitope, an die die verschiedenen Antikörper binden, bestimmt werden. Außerdem wurden die Immunglobuline auf Kreuzreaktivitäten gegenüber 72 unterschiedlichen sekundären Arzneipflanzenmetaboliten untersucht. Die monoklonalen Antikörper zeigten dabei keine Interaktion mit Steroiden, Phytosterolen und Herzglykosiden – Substanzen die zwar in die Gruppe der Triterpene eingeordnet werden können, sich aber in ihrer Struktur und Stereochemie deutlich von der Oleanolsäure unterscheiden. Gegenüber zahlreichen pentazyklischen Triterpenen, die strukturelle Ähnlichkeiten mit der Oleanolsäure besitzen, zeigten hingegen alle untersuchten Immunglobuline eine ausgeprägte Kreuzreaktivität. Daher eignen sie sich für die Analytik von komplex zusammengesetzten Triterpengemischen, z.B. von Arzneipflanzenextrakten. Dies konnte durch verschiedene direkte und indirekte Kompetitionsversuche mit unterschiedlichen Arzneipflanzenextrakten im Rahmen dieser Arbeit und der Dissertation von Frau Dr. Kerstin Brand gezeigt werden. Mit Hilfe eines kompetitiven ELISAs ist z.B. ein Screening von unbekannten Arzneipflanzen auf Triterpensaponine möglich. Auch eine Wertbestimmung von Arzneipflanzen oder Arzneipflanzenextrakten mit Hilfe der monoklonalen Antikörper ist denkbar, sofern eine Referenz zur Verfügung steht, auf den die Kompetitionsergebnisse bezogen werden können. Der Einsatz der hier vorgestellten Antikörper wird allerdings dadurch eingeschränkt, dass die Immunglobuline eine unvorhersehbare Polyspezifität gegenüber den polyphenolischen Sekundärmetaboliten Quercetin und Ellagsäure zeigten. Bei einem Einsatz der Antikörper im Rahmen der Naturstoffanalytik sind daher Vorversuche erforderlich, um diese Substanzen zu identifizieren und wenn möglich zu entfernen. Einer der untersuchten monoklonalen Antikörper, der Antikörper der Zelllinie 10F10, zeigte eine Kreuzreaktivität gegenüber verschiedenen ß-Boswelliasäuren. Boswelliasäuren sind in der Lage, das Enzym 5-Lipoxygenase zu hemmen und dadurch die Synthese von entzündungsfördernden Leukotrienen zu inhibieren. Daher scheinen Boswelliasäuren viel versprechende Arzneistoffe bei der Therapie der unterschiedlichsten inflammatorischen Erkrankungen, wie z.B. Colitis ulcerosa, Morbus Crohn, Asthma bronchiale oder rheumatoider Arthritis zu sein. Der Antikörper der Zelllinie 10F10 soll im Arbeitskreis von Prof. Dieter Steinhilber am Institut für Pharmazeutische Chemie der Universität Frankfurt unter anderem für eine Immobilisierung der Boswelliasäuren an Immunaffinitätssäulen eingesetzt werden. In diesem Arbeitskreis wird der Einfluss von ß-Boswelliasäuren auf die 5-Lipoxygenase intensiv erforscht. In einem zweiten Projekt wurden rekombinante scFv-Antikörperfragmente gegen das Triterpen Oleanolsäure und gegen das Pyrrolizidinalkaloid Retrorsin generiert. Pyrrolizidinalkaloide sind hepatotoxische Sekundärmetabolite, die in zahlreichen Nutzpflanzen und traditionellen Arzneipflanzen enthalten sind. Insgesamt wurden vier verschiedene scFv-Fragmente konstruiert. Zwei Anti- Oleanolsäure-Antikörperfragmente konnten in E. coli erfolgreich periplasmatisch exprimiert und ihre Funktionalität in verschiedenen Antigenbindungsstudien nachgewiesen werden. Darüber hinaus wurde eine Phagen-Display- und Phagen- Panning-Methode etabliert, mit deren Hilfe es möglich ist, gezielt nach funktionellen Antikörperfragmenten zu suchen. Mit dieser Methode sollte es möglich sein, nach erfolgter Mutation der verschiedenen scFv-Fragmente, Proteine mit neuen Bindungseigenschaften zu identifizieren. Interessant wären dabei z.B. scFv- Fragmente, die mit Pyrrolizidin-N-oxiden interagieren. Gegen diese Substanzen konnten im Arbeitskreis Dingermann mit Hilfe der konventionellen Hybridoma- Technologie bisher noch keine monoklonalen Antikörper generiert werden. Im Rahmen dieser Arbeit konnte gezeigt werden, dass es sich bei monoklonalen Antikörpern und rekombinanten Antikörperfragmenten um interessante Hilfsstoffe für die Naturstoffanalytik handelt, deren Bedeutung für dieses Anwendungsgebiet aber bisher noch deutlich unterbewertet ist. Es wäre daher sehr interessant, die hier vorgestellten Projekte fortzuführen und die Arbeitsmethoden weiter zu optimieren. Mit den im Rahmen dieser Arbeit charakterisierten Anti-Oleanolsäure-Antikörpern stehen bereits drei Immunglobuline für die Arzneipflanzenanalytik zur Verfügung. Von allen drei Antikörpern liegen inzwischen auch scFv-Fragmente vor. Diese Fragmente könnten modifiziert und mit Hilfe der hier vorgestellten Phagen-Display-Methode nach Proteinen mit modifizierten Bindungseigenschaften gesucht werden. Letztendlich wäre auf diese Weise die Generierung eines großen Sortiments von Antikörpern und Antikörperfragmenten für die Analytik der unterschiedlichsten Substanzklassen möglich.