Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- MICOS complex (1)
- SILAC (1)
- heart development (1)
- mitochondria (1)
- quantitative proteomics (1)
Institute
Characterization of mouse NOA1 : subcellular localizaion, G-Quadruplex binding and proteolysis
(2013)
Mitochondria contain their own protein synthesis machinery with mitoribosomes that are similar to prokaryotic ribosomes. The thirteen proteins encoded in the mitochondrial genome are members of the respiratory chain complexes that generate a proton gradient, which is the electromotoric force for ATP synthesis.
NOA1 (Nitric Oxide Associated Protein-1) is a nuclear encoded GTPase that positively influences mitochondrial respiration and ATP production. Although a role in mitoribosome assembly was assigned to NOA1 the underlying molecular mechanism is poorly understood. This work shows that the multi-domain protein NOA1 serves multiple purposes for the function of mitochondria. NOA1 is a dual localized protein that makes a detour through the nucleus before mitochondrial import. The nuclear shuttling is mediated by a nuclear localization signal and the now identified nuclear export signal. SELEX (Systemic Evolution of Ligands by Exponential Enrichment) analysis revealed a G-quadruplex binding motif that characterizes NOA1 as ribonucleoprotein (RNP). G-quadruplex binding was coupled to the GTPase activity and increased the GTP hydrolysis rate. The sequence of localization events and the identification of NOA1 being a RNP lead to the discussion of an alternative import pathway for RNPs into mitochondria. The short-lived NOA1 contains ClpX recognition motifs and is specifically degraded by the mitochondrial matrix protease ClpXP. NOA1 is the first reported substrate of ClpXP in higher eukaryotes and augments the contribution of the ClpXP protease for mitochondrial metabolism. To assess the direct action of NOA1 on the mitoribosome co-sedimentation assays were performed. They showed that the interaction of NOA1 and the mitoribosome is dependent on the GTPase function and the nascent peptide chain. In vitro, NOA1 facilitated the membrane insertion of newly translated and isotope labeled mitochondrial translation products into inverted mitochondrial inner membrane vesicles. In conclusion, NOA1 is a G-quadruplex-RNP that acts as mitochondrial membrane insertion factor for mtDNA-encoded proteins.
This thesis provides a comprehensive model of the molecular function of NOA1 and is the basis for future research. The identification of NOA1 as ClpXP substrate is a major contribution to the field of mitochondrial research.
Dissecting the complexities of mammalian heart development and regenerative capacity require thorough understanding of the underlying molecular mechanisms through the expression pattern of proteins and post-translational modifications. To obtain insights intoactivated signaling pathways that control the cellular phenotype during postnatal heart development, we generated a comprehensive map of phosphorylation sites. In total we identified 21,261 phosphorylation sites and 8985 proteins in developing mouse hearts by mass spectrometry. The in-vivo SILAC (stable isotope labeling of amino acids in cell culture) approach allowed robust quantification of phosphorylation sites and proteins, which are regulated during heart development. We found several activated pathways involved in cell cycle regulation and detected numerous kinases and transcription factors to be regulated on protein and phosphopeptide level. Most strikingly, we identified a novel mitochondrial protein, known previously as Perm1, as a highly phosphorylated factor regulated during heart development. We renamed Perm1 as MICOS complex subunit Mic85 since it shows robust physical interaction with MICOS complex subunits, including Mitofilin (Mic60), Chchd3 (Mic19), Chchd6 (Mic25) and the outer membrane protein Samm50. Moreover, Mic85 is localized to the mitochondrial inner membrane facing the intermembrane space and the dynamics of Mic85 protein expression is regulated by the ubiquitin-proteasomal system through phosphorylation of casein kinase 2 on its PEST motif. Silencing of Mic85 in cultured neonatal cardiomyocytes impairs mitochondrial morphology and compromises oxidative capacity. Our findings support a clear role for Mic85 in the maintenance of mitochondrial architecture and in its contribution to enhanced energetics during developing and adult mouse cardiomyocytes. The transgenic Mic85 knockout mouse generated with a GFP knock-in will support future in vivo investigations on the integrity of mitochondria and the function of Mic85 in cardiac development.
Due to recent technical developments, it became evident that the mammalian transcriptome is much more complex than originally expected. Alternative splicing(AS) and the transcription of long non-coding RNAs (lncRNAs) are two phenomenas which have been greatly underestimated in their frequency. Nowadays it is accepted that almost every gene has at least one alternative isoform and the number of lncRNAs exceeds the one of protein-coding genes.
We built user-friendly web interfaces which can process Affymetrix GeneChip Exon 1.0 ST Arrays (exon arrays) and GeneChip Gene 1.0 ST Arrays (gene arrays)for the analysis of alternative splicing events. Results are presented with detailed annotation information and graphics to identify splice events and to facilitate biological validations. Based on two studies using exon arrays, we show how our tools were used to profile genome-wide splicing changes under silencing of Jmjd6 and under hypoxic conditions. Since gene arrays are not intended for AS analysis originally, we demonstrated their applicability by profiling alternative splicing events during embryonic heart development.
To measure lncRNAs expressions with exon arrays, we completely re-annotation all probes and built a lncRNA specific annotation. To demonstrate the applicability of exon arrays in combination with our annotation, we profiled the expression of tens of thousands of lncRNAs. Further, our custom annotation allows for a detailed inspection of lncRNAs and to distinguish between isoforms, as we validated by RTPCR.
To allow for a general usage to the research community, we integrated the annotation in an easy-to-use web interface, which provides various helpful features for the analysis of lncRNAs.