Refine
Year of publication
Document Type
- Doctoral Thesis (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- EPR (2)
- PELDOR (2)
- Aptamere (1)
- Conformational Dynamics (1)
- DEER (1)
- DNS (1)
- Electron Paramagnetic Resonance (1)
- Elektronenspinresonanz (1)
- Elektronenspinresonanzspektroskopie (1)
- Lipopolysaccharid Transport (1)
Institute
Pulsed Electron Paramagnetic Resonance (EPR) spectroscopy is the most powerful tool to investigate structural properties and dynamics of paramagnetic substances. Up to date the electron spin is almost exclusively manipulated by rectangular shaped microwave pulses generated with switches. These pulses are unselective which means they excite outside their nominal bandwidth which is in most cases shallow compared to the overall spectral width of the spin system. Shaped pulses which are widely applied in NMR promise higher bandwidth and selectivity. The use of amplitude and phase modulated pulses was not possible for EPR due to the three orders of magnitude faster timescale compared to NMR. In this work, for the first time, an AWG (arbitrary waveform generator) operating with a 1 ns time resolution and 14 bit amplitude resolution was implemented into a commercial Bruker pulsed EPR spectrometer.
First results were obtained with broadband excitation pulses derived by optimum control theory (OCT). The OCT-pulse used excites transverse magnetization with 98% efficiency over a more than four times larger bandwidth than common rectangular pulse generating the same 1 B field. The benefit of such a pulse was demonstrated for magnitude FT-EPR spectroscopy on organic radicals in liquid phase.
Due to Spectrometer deadtime an FID cannot be observed for most inhomogeneous spin systems. For that reason prefocused pulses have been evaluated for their applicability to EPR spectroscopy. OCT-derived prefocused pulses can be understood as a compact Hahn Echo sequence in one monolithic pulse. Here, two problems have been encountered. 1) The limited bandwidth of the active and passive microwave components in the excitation path as well as microwave resonator cause linear distortions of the pulse shape which results in inferior pulse performance. This could be circumvented by measuring the impulse response function of the whole spin excitation path and including this information in the pulse optimization procedure. 2) Anisotropic hyperfine interaction which was not taken into account during the pulse optimization also caused efficiency losses.
PELDOR spectroscopy is a valuable tool to measure distance distributions between two or more paramagnetic centers in the range from 2-8 nm. It is demonstrated that the S/N ratio of PELDOR experiments can be substantially increased by substituting the rectangular shaped pump pulse by an adiabatic inversion pulse. The damping of the dipolar oscillations introduced by the prolonged pump pulse towards shorter distances could be circumvented by introducing a second time reversed pump pulse.
By substituting the refocused echo of the well-known 4-pulse PELDOR with a CPMG sequence the dipolar evolution time and thus the validity of PELDOR experiments would be increased. To achieve the maximum dipolar evolution time in a CPMG PELDOR for each refocusing pulse one pump pulse has to be applied. This could only be achieved with the new adiabatic inversion pulses since multiple inversions with efficiency close to one are not possible with rectangular pulses. Even with adiabatic pump pulses a reduced efficiency was observed due to hardware limitations thus limiting the sequence to three refocusing pulses. An iterative method was developed to remove the residual dipolar signals attributed to the reduced inversion efficiency.
The new 7-pulse CPMG PELDOR sequence enabled measuring reliable distance distributions between the protomers of the trimeric betaine transporter BetP. With these it could be shown that the asymmetries found for the 2 and 3-dimensional crystal structures are even larger in frozen detergent.
Die Kernspinresonanz(NMR)-Spektroskopie ist ein leistungsstarkes analytisches Werkzeug. Allerdings ist ihre Empfindlichkeit aufgrund geringer Wechselwirkungs-energie zwischen den Kernspins und dem externen Magnetfeld begrenzt. Die dynamische Kernpolarisation (DNP) erhöht DNP die Empfindlichkeit der NMR, indem sie die Polarisation von ungepaarten Elektronenspins auf die benachbarten Kernspins überträgt. In den letzten Jahrzehnten hat die DNP bei hohen Magnetfeldern erneut an Aufmerksamkeit gewonnen, bedingt durch die Verfügbarkeit leistungsstarker Gyrotron-Mikrowellen(mw)-Quellen. Jedoch wurde die Anwendung von DNP für Flüssigkeiten im Vergleich zu Festkörperproben bei niedrigen Temperaturen (≈100 K) weit weniger erforscht. Zwei Gründe können dafür hauptsächlich benennt werden. Bei hohen Magnetfeldern (entsprechend hohen mw-Frequenzen) wird die mw-Strahlung sehr stark von Flüssigkeiten absorbiert, was zu einer starken Erwärmung führt. Darüber hinaus sind die Translations- und Rotationsdynamik der Radikale und Target-Molekülen nicht schnell genug, um Spectraldichten bei den hohen mw-Frequenzen zu erzeugen, die für eine Overhauser-Effekt (OE) DNP Verstärkung benötigt werden. In dieser Arbeit wird gezeigt, Flüssigzustands-DNP bei hohen Magnetfeldern, insbesondere bei 9,4 T, mit hocheffizienten DNP-Probenköpfen möglich ist.
Der von skalaren Hyperfein-Wechselwirkung (hfWW) angetriebene OE ist für Flüssigzustands-DNP-Forschungen von besonderem Interesse, da der von der Theorie vorhergesagte Mechanismus auch bei hohen Magnetfeldern noch effizient ist. In der vorliegenden Arbeit wurde eine Methode zur Vorabprüfung potenzieller DNP-Kandidaten durch Messungen ihrer paramagnetischen NMR-Verschiebungen vorgeschlagen und untersucht. Wir beobachtete signifikante 13C-skalare OE DNP-Verstärkungen bis zu 50 bei den ausgewählten kleinen Biomolekülen, einschließlich Imidazol, Indol, verschiedene Aminosäuren und Kohlenhydraten. Das Lösungssystem wurde auch von organischen Lösungsmitteln auf Wasser erweitert.
Im Kontext von dipolarer OE DNP haben wir den Beitrag der Rotation des Radikals neben der Translationsbewegung zwischen Radikal und Target-Molekül zur OE DNP-Effizienz systematisch untersucht, indem wir verschiedene Nitroxidderivate mit unterschiedlichen Ringgeometrien und Substituenten verwendet haben. Mithilfe eines Models, das eine 'out-sphere' Translationsbewegung und eine 'inner-sphere' Rotationsbewegung des Radikal-Lösungsmittel-Komplexes enthält, konnte unsere Beobachtungen quantitativ simuliert werden. Außerdem wurde ein anderes Model untersucht, das eine Translationsbewegung mit der Rotation von Radikalen, bei denen das ungepaarte Elektron nicht im Zentrum sitzt, kombiniert.
Eine weitere neue Entdeckung in der DNP bei hohen Magnetfeldern waren der beobachtete SE (Solid-Effekt) an Lipidmolekülen mit BDPA-Radikal oberhalb der Lipidphasen-übergangstemperatur. Die neue Anwendung von SE DNP bietet einen alternativen Mechanismus zur OE DNP in Flüssigkeiten bei hohen Magnetfeldern und könnte möglicherweise auf Makromoleküle mit relativ langsamer Rotationsbewegung angewendet werden.
Wir haben zusätzliche Untersuchungen an den Lipiddoppelschichten mit Nitroxid-radikale durchgeführt, basierend auf dem beobachteten 1H DNP-Verstärkungen in einer viskosen Lipidumgebung bei 9,4 T . Durch Messung des Feldprofils wurden DNP-Verstärkungen durch OE und SE in Abhängigkeit ihrer relativen Verschiebungen von der Elektronen-Larmor-Frequenz bestimmt. Die individuelle OE DNP-Effizienzen für Protonen des Wassers, der Lipid-Cholin-Kopfgruppen oder der Lipid-Acylketten wurde bestimmt. Dadurch wird ein quantitativer Vergleich mit MD-Simulationen ermöglicht. Obwohl die von der MD-Simulationen vorhergesagten DNP Kopplungsfaktoren noch deutliche Abweichungen von den experimentellen Beobachtungen aufweisen, wird die schnelle Dynamik nahe der Elektronen-Larmor-Frequenz, die für einen erfolgreichen OE DNP Transfer erforderlich ist, von den MD-Simulationen gut erfasst.
In der Arbeit wurden auch zwei unterschiedliche Dreifachresonanz-DNP-Experimente durchgeführt. Zum einen wurde 13C OE DNP unter 1H-Entkopplung in wässriger Natriumpyruvatlösung, und zum anderen 13C-NMR von Glycin, verstärkt durch SE DNP an 1H zusammen mit einem 1H-13C INEPT-Polarisationstransfer, im Rahmen dieser Doktorarbeit durchgeführt.
Metal ions as novel polarizing agents for dynamic nuclear polarization enhanced NMR spectroscopy
(2017)
High-spin complexes of Gd(III) and Mn(II) were introduced as polarizing agents (PAs) for solid-state dynamic nuclear polarization (DNP) in 2011. This dissertation was undertaken in 2013, with the intention of exploring these PAs further. Major goals of this work were to understand their DNP mechanism(s) and explore their application in biomolecular research. This cumulative thesis details the methods, advantages, and practical implications of using high-spin PAs for MAS DNP. Data from electron paramagnetic resonance (EPR) and NMR spectroscopy are discussed for a complete understanding of DNP mechanisms.
Out of the two main mechanisms − solid effect (SE) and cross effect (CE − active under experimental conditions of solid-state DNP, commonly used nitroxide PAs evoke CE owing to their broad EPR spectra. On the other hand, DNP mechanisms evoked by high-spin metal ions seem non-trivial due to additional features (originating from spin-orbit coupling or zero field splitting) in their EPR spectra. The features of the EPR signal generally influence the shape of enhancement profiles. Therefore, the metal ion with a simpler EPR signal i.e., Gd(III) , is chosen as the starting point for the investigation of DNP mechanisms. Varying concentrations (2, 10, 20 mM) of a water-soluble and stable complex Gd-DOTA was dissolved as the PA in a glycerol-water solution of 13C,15N - urea. Field profiles of DNP enhancement on each nuclear type (1H, 13C, and 15N) establishes SE as the active DNP mechanism at the smallest PA concentration (2 mM). This confirms the theoretical predictions that narrow line width of the Gd(III) EPR signal arising from the central transition (CT, ms = -1/2 +1/2) allows for resolved SE DNP. However, that is no longer the case at higher PA concentrations of 10 and 20 mM. At higher Gd(III) concentrations, the CE mechanism contributes significantly and varies with nuclear Larmor frequency (ωn) of the concerned nuclei. The enhancement maxima shifts towards the EPR resonance as the contribution from CE increases. This shift is evident in the field profiles of 15N and 13C, whereas that of 1H is least influenced. This observation can be explained by combining theoretical estimates with the experimental data; the CE is evoked by increased dipolar coupling (Dee) – a prerequisite for CE – between neighboring Gd(III) spins as the statistical inter-spin distance shortens at elevated concentrations. This finding is important because the knowledge of active DNP mechanisms is essential for accurate interpretation of results from DNP experiments.
From the experiments on Gd-DOTA it becomes clear that concentration, inter-spin distances, and hence induced Dee are intertwined. In order to explicitly address the influence of inter-spin distances on DNP mechanisms we started a collaboration with the group of Adelheid Godt (Bielefeld). In this collaborative project, bis-complexes of the type Gd(III)-spacer-Gd(III) with variable spacer lengths were investigated. These PAs provided an excellent model system where the influence of only inter-spin distances can be determined for a fixed Gd(III) concentration. A small PA concentration of 4 mM is used to ensure absence of significant inter-molecular dipolar interactions. A mono-Gd complex of similar geometry and chemistry is taken as a reference for SE DNP.
The mono-Gd complex yields enhancements arising from SE as expected from negligible inter-molecular Dee. The contribution of CE increases as the inter-spin distances between Gd(III) ions become shorter going from 3.4 nm 2.1 nm 1.4 nm 1.2 nm due to corresponding increase in Dee. The extent of CE on ωn follows the same trend as for Gd-DOTA. Highest CE contribution is observed on nuclei with the smallest ωn 15N because smaller ωn approaches the width of the EPR signal, this is an additional requirement for CE DNP.
The field position for maximum DNP enhancement corresponding to Gd-DOTA, is used for DNP experiments on Ubiquitin with an attached Gd-tag as PA. The success of DNP on this sample illustrates the possibility of site-directed DNP with metal ions tags as PAs. As a perspective Gd-tags can be used to examine change in conformation of a protein that would give higher enhancements due to CE if two Gd(III) labeled domains are closer in space. In a separate project, Mn(II) (s=5/2) bound to the divalent site of a hammerhead ribozyme was used as a PA which resulted in the first demonstration of intra-complex DNP using an intrinsically bound metal ion PA.
Pulsed dipolar (PD) EPR spectroscopy is an established and reliable tool for the investigation of biomolecules. In terms of long distance and orientation measurements, it is one of the leading methods and further fields of application are constantly being explored. The distances that can be detected with PD EPR also correspond to the range in which almost all important biomolecule interactions occur. In the transition from in vitro spectroscopy to in-cell spectroscopy, the power of PD EPR spectroscopy is particularly evident. It is non-invasive, more sensitive than NMR, and does not exhibit background signals from diamagnetic molecules. In particular, the absence of background signals is of great importance given the high density of molecules within cellular environment. However, like any other spectroscopic method, PD EPR has certain limitations. Owing to the intrinsically fast electron spin echo dephasing at higher temperature, these experiments are commonly carried out in frozen solutions at about 50 K. This temperature is far away from the physiological conditions and the freezing additives used, e.g. glycols, can further influence the structure. To enable measurements with and within living organisms, it is therefore necessary to ascend from the cold depths of the frozen state. At the same time, one has to adapt the spin tags for the desired application. Established nitroxides commonly used for EPR studies are typically susceptible to reduction. Thus, for studies under physiological conditions, e.g. in the cell, one has to fight against the reductive environment in the cell and somehow protect the spin labels. Initial published in-cell experiments within the research group and investigations of homogeneously distributed labeled double-stranded (ds) ‐DNA samples in solid matrices showed promising results and enabled pulsed measurement in the temperature range of 50‐ 295 K. It could also be demonstrated that spherical shielded nitroxides have a significantly longer life span in cellular environments than non-protected ones and first nuclear acids were measured in cell. Based on these results, we have gone further to overcome the standing limitations and developed the use of PD EPR spectroscopy. This work addresses these challenges with the overall goal of advancing the applications of PD EPR spectroscopy for studying biomolecules under physiological conditions.
We have focused on four different approaches. The results of these studies were published in various publications. They are presented and discussed together with further studies and put into the context of research conducted before and after the authors' publications.
In approach 1, we fought against the two main obstacles for using pulsed dipolar spectroscopy at ambient conditions – minimizing phase memory time T2 and averaging of the anisotropic dipolar coupling by rotational diffusion. We focused on an immobilization approach, while using rigid spin labels at same time. Besidesto the distance information, the incorporated rigid spin labels will give additional angular constrains and information about the molecular dynamics.
In approach 2, we focused on the on-site and on-demand formation of nitroxide spin labels using light-sensitive alkyl protection groups. This a very mild and efficient procedure that will hardly interfere with sensitive functional groups present in oligonucleotides or peptides. By establishing this method and using coumarin protecting groups plus two-photon excitation, this property may offer the potential to generate spin labels with very high levels of spatial and temporal resolution.
For approach 3, we used paramagnetic Gd3+ -ions as intrinsically stable labels, which are not reducible within a cellular environment. Easy to mix and bound to encodable lanthanide binding tags within the molecule Interleucin 1β, we were able to measure distances between two tags with PELDOR spectroscopy. We tested the extent to which this system is suitable for in-cell measurements.
Finally, we focus on methods for easier labeling by using non-covalentlabeling techniques. One of these is the novel nitroxide G´ for site-directed spin labeling of nucleic acids, especially for RNA. This spin label is sterically hindered, easy to build and binding occurs in seconds by simply mixing the spin label with the target. For large RNAs, another easy-to-mix and noncovalent spin-labeling strategy will be experimentally accompanied and presented.
The approaches and results described here are intended to demonstrate that the study of the biological functions of biomolecules under physiological conditions by pulsed EPR spectroscopy is feasible and operational. In combination, they will enable the life sciences to make further and faster progress in the search for the molecular master plan.
Ribonukleinsäure (ribonucleic acid, RNA) wirkt bei der Proteinbiosynthese nicht nur als Informationsüberträger, sondern kann auch beispielsweise durch sogenannten Riboschalter (auch Riboswitches) regulatorische Funktionen übernehmen. Riboschalter sind komplett aus RNA aufgebaut und man kann sie sich als molekulare Schalter vorstellen, die die Genexpression kontrollieren. Konzeptionell besteht ein Riboswitch aus zwei Untereinheiten, dem Aptamer und der Expressionsplattform. Das Aptamer bindet, üblicherweise sehr spezifisch, kleine organische Moleküle, aber auch Ionen. Diese Ligandenbindung induziert Änderungen in der Struktur des Riboswitches, welche wiederum die Expressionsplattform beeinflussen. Je nach Riboswitch ermöglicht oder verhindert dies schließlich die Genexpression. Die vorliegende Doktorarbeit beschäftigt sich mit der Entwicklung und Etablierung von Methoden der optischen Spektroskopie zur Aufklärung von RNA-Dynamiken und -Strukturen im Allgemeinen und der Erforschung von Aptamerbindungsmechanismen im Besonderen.
Eine der dazu verwendetet Methoden ist die FTIR-Spektroskopie. Hierfür wurden zunächst kritische Parameter wie verschiedenste Messeinstellungen oder die Probenpräparation ausgiebig an RNA-Modellsträngen getestet. Dabei war es möglich, eine kleine Spektrenbibliothek als internen Standard aufzubauen. Gleichzeitig konnte gezeigt werden, dass kleinere RNA-Oligonukleotide (< ca. 20 Nukleobasen) gut mittels FTIR-Methoden untersucht werden können. Anschließend wurde eine statische Bindungsstudie am adenosin- sowie am guanosinbindenden Aptamer vorgenommen.
Die zweite hier vorgestellte Methode zur Untersuchung von RNA-Molekülen ist die Fluoreszenzspektroskopie. Im Gegensatz zur FTIR-Spektroskopie ist dazu allerdings eine Modifizierung der RNA durch ein Fluoreszenzlabel nötig. Deshalb beschäftigt sich der Hauptteil dieser Doktorarbeit mit der Charakterisierung und der Anwendung des quasi bifunktionellen RNA-Markers (auch RNA-Labels) Çmf. So wurden zunächst die photophysikalischen und photochemischen Eigenschaften des Markers untersucht. Dabei konnte gezeigt werden, dass Çmf sich als lokale Sonde eignet, da es empfindlich auf Änderungen der Mikroumgebung in Lösung reagiert. Durch direkten Vergleich der optischen Eigenschaften von Çmf mit den entsprechenden Eigenschaften des Spinlabels Çm war es möglich, den starken Fluoreszenzlöschungseffekt (sog. quenching) des Çm aufzuklären. So kann davon ausgegangen werden, dass die Fluoreszenz des Çm durch eine sehr schnelle interne Konversion (IC) in einen dunklen Dublettzustand (D1) gelöscht wird.
Im nächsten Schritt wurde Çmf in RNA-Modellstränge eingebaut, um den Einfluss der RNA auf die Photochemie des Markers zu untersuchen. Dabei konnte gezeigt werden, dass sich dessen Fluoreszenzsignal abhängig von den direkten Nachbarbasen sowie abhängig vom Hybridisierungszustand signifikant ändert. Gleichzeitig konnte keine deutliche Veränderung der Stabilität der Modellstränge festgestellt werden. So konnte also nachgewiesen werden, dass sich Çmf sehr gut als lokale Sonde in RNA eignet. Im Speziellen wurde aus den Ergebnissen geschlossen, dass der Fluorophor für Ligandenbindungsstudien herangezogen werden kann.
Deshalb wurde Çmf schließlich an mehreren verschiedenen Stellen in das neomycinbindende Aptamer (N1) eingebaut, um dessen Bindungskinetik zu untersuchen. Mittels Stopped-Flow-Messungen war es möglich, die Bindungsdynamik des Aptamers zu beobachten. Anhand dieser transienten Daten konnte ein Zweischrittbindungsmodell abgeleitet werden. Dabei bindet Neomycin zunächst unspezifisch an das weitgehend vorgeformte Aptamer. Anschließend kommt es durch die Ausbildung von Wasserstoffbrücken zu einer spezifischen Bindung des Liganden am Aptamer.
Im dritten Teil dieser Arbeit geht es ebenfalls um die Entwicklung und Etablierung eines spektroskopischen Werkzeuges. Dabei stehen allerdings Rhodopsine im Mittelpunkt der Aufmerksamkeit. Hierbei handelt es sich um Membrantransportproteine, die nach optischer Anregung einen sehr schnellen Photozyklus mit mehreren Intermediaten durchlaufen. Es ist möglich, diese Intermediate dank transienter Absorptionsmessungen mit sehr guter zeitlicher und spektraler Auflösung zu beobachten. Allerdings besteht der Bedarf, diese Intermediate statisch zu präparieren, um sie näher charakterisieren und mit anderen Methoden, wie z.B. der Festkörper-NMR, vergleichen zu können.
Ein spektroskopisches Werkzeug zum Präparieren von frühen Photointermediaten ist kryogenes Einfangen (sog. Cryotrapping) dieser Intermediate. Im Rahmen dieser Arbeit wurden das Cryotrapping und die anschließende statische UV/vis-Absorptionsspektroskopie der fixierten (getrappten) Zustände optimiert und an einer Reihe von Rhodopsinen (ChR2, GPR) demonstriert.
Die Lebensfunktion der Zelle beruht unter anderem auf der Funktion und Wechselwirkung der Nukleinsäuren DNA (2’-Desoxyribonukleinsäure) und RNA (Ribonukleinsäure). Mit Hilfe von PDS (engl. ’pulsed dipolare spectroscopy’)-Techniken, basierend auf der EPR (engl. ’electron paramagnetic resonance’)-Spektroskopie, können Abstände in einem Bereich von 2-10 nm zwischen zwei markierten Positionen einer Nukleinsäure bestimmt werden. Daneben kann mit der Abstandsverteilung auf die Flexibilität des Moleküls geschlossen werden. Durch PDS-Messungen eröffnet sich die Möglichkeit, Bewegungen und Zustandsänderungen zu untersuchen. Die Messungen beruhen auf der dipolaren Kopplung von Radikalen (Spinlabel). Da die gemessenen dipolaren Kopplungen eine anisotrope Wechselwirkung sind, können an starren Systemen neben den Abstandsinformationen auch die Orientierungen der beiden Spinlabel zueinander bestimmt werden. Diese zusätzliche Information ermöglicht es, mittels orientierungsselektiver PDS-Messungen noch genauer die Geometrie und Flexibilität des Systems zu untersuchen. Klassischerweise werden alle Messungen mit der Doppelfrequenztechnik PELDOR (engl. ’pulsed electron-electron double resonance’) durchgeführt. Einzelfrequenzmethoden basieren dagegen auf Breitbandanregung, die mit den technischen Gegebenheiten l nge nicht möglich war. Eine solche Sequenz ist 2D-SIFTER.ImmRahmen dieser Arbeit von PELDOR ausgehende, weiterentwickelte Simulationsprozedur etabliert. Eine große Herausforderung ist die eindeutige Interpretation der sensitiven orientierungsselektiven PELDOR-Messungen. Sie mittels MD (Moleküldynamik)-Simulationen zu beschreiben war bisher nur qualitativ möglich. Allerdings wurden mehrere neue Kraftfelder publiziert. Mit einem quantitativen Vergleich mit orientierungsselektiven PELDOR-Daten kann sichergestellt werden, dass die Flexibilität des Systems durch Kraftfelder richtig beschrieben ist. PELDOR-Zeitspuren, gemessen bei Raumtemperatur und 50 K, unterscheiden sich besonders in ihrer Dämpfung. Der physikalische Unterschied beider Messungen konnte durch MD-Simulationen qualitativ nachvollzogen worden. Eine Schwierigkeit für speziell orientierungsselektive PELDOR-Messungen ist die aufwendige Synthese von mit dem starren Ç-Label markierten Nukleinsäuren. Als Alternative wurde in der Sigurdsson-Gruppe das halbstarre IMU-Label entwickelt. Die Analyse der orientierungsselektiven Daten ergab ein klares Bild der Dynamik dieses Labels. Ein weiterer interessanter Spinlabel ist der `G. Dieser Label ist nicht kovalent gebunden, sondern interkaliert in eine Stelle der Nukleinsäure, in der eine Guanin- Base fehlt. MD-Simulationen im quantitativen Vergleich mit orientierungsselektiven PELDOR-Messungen an verschiedenen Magnetfeldern haben eine hohe Übereinstimmung. Dabei konnte gezeigt werden, dass der Label, interkaliert in eine dsDNA, flippen kann, was zu einer Ausmittelung der Anisotropie führt, allerdings zu keiner Verbreiterung der Abstandsverteilung. Dagegen wird in der dsRNA dieses Flippen um die Einfachbindung sterisch gehindert, so dass neben dem Abstand auch die Orientierung des Labels bestimmt werden kann. Kurze dsRNA-Bausteine tendieren dazu, Oligomere zu bilden, was zu Multispineffekten führte. Zusätzlich beeinflusst diese Aggregation die Dynamik der einzelnen RNAs. Daher musste dieses ’end-to-end’-Stacking verhindert werden. Eine Nukleobasean einem Ende der dsRNA führt zu einer Dimerisierung, während eine Nukleobase an beiden Seiten dieses Stacking vollständig verhindert. Messungen mit unterschiedlichen Salzkonzentrationen konnten zusätzlich zeigen, dass die Interaktion zweier dsRNAs bei höheren Salzkonzentrationen zunimmt.
An application of EPR spectroscopy that is becoming increasingly important is the measurement of distances between electron spins. Several EPR methods have been developed for this purpose, all based on measuring the dipolar coupling between two spins. Due to the specific nature of the sample, we applied dipolar relaxation enhancement measurements to study the geometry of a protein-protein complex. The paramagnetic centers in question had EPR spectra that were too broad and had such short relaxation time that they could not be studied using the more straightforward PELDOR technique. EPR spectral resolution can be increased appreciably by measuring at a frequency higher than conventional X-band (9 GHz) frequency. The spectra of many paramagnetic species can only be resolved at frequencies higher than 90 GHz. For accurate measurement of the orientation of the vector between two dipolar coupled spins with respect to the g-tensors of the spins, high spectral resolution is required. We therefore performed our EPR measurements at G-band (180 GHz) frequency. Dipolar relaxation measurements were applied to study the complex that is formed by the two electron-transfer proteins cytochrome c and cytochrome c oxidase (CcO) from the soil bacterium Paracoccus denitrificans. We were able to detect dipolar relaxation enhancement due to complex formation of soluble subunit II of P.d. CcO (CcOII) with two substrate cytochromes, which was practically absent in a mixture of CcOII with the negative control protein cytochrome c1. This complex formation was characterized by a pronounced temperature dependence that could be simulated using a home-written computer program. The G-band EPR measurements could not be simulated with a single complex geometry. This provided evidence for the hypothesis that electron-transfer protein complexes are short-lived and highly dynamic; they do not seem to form one specific electron-transfer conformation, but rather move around on each other’s binding surfaces and transfer an electron as soon as the distance between donor and acceptor is short enough. As a test of our simulation program, we also applied dipolar relaxation measurements to specially synthesized organic molecules that contained a nitroxide radical and a metal center. The transverse relaxation of Cu2+-OEP-TPA was compared to the relaxation of Ni2+-OEP-TPA at temperatures between 20 and 120 K. In this temperature range, the nitroxide relaxation was enhanced due to the presence of Cu2+, but not by Ni2+. Similarly, relaxation enhancement was found in the nitroxide-Mn2+ pair in Mn2+-terpyridine-TPA with respect to the terpyridine-TPA ligand. Due to the fast T2 relaxation of the nitroxide radical at high temperatures, the measurements were all performed in the low-temperature regime where the T1 relaxation rate of the metal ion was smaller than the dipolar coupling frequency. In this region, no structural information about the molecule can be deduced, since the dipolar relaxation enhancement is only determined by the T1 of the metal ion. The dipolar relaxation measurements we performed at high field indicated a difference in relaxation times between X-band and G-band frequencies. Extensive T1 - measurements of different paramagnetic centers (CuA, Cu2+) confirmed a strong dependence of T1 on magnetic field in the temperature range where the direct process is the dominating T1 relaxation process. This dependence is very strong (factor of 103 with respect to X-band), but does not follow the B04 dependence predicted in literature. The T1 relaxation of low-spin iron in cytochrome c at high magnetic field, estimated from dipolar relaxation data, is also in agreement with a larger contribution by the direct process (factor of 104). Dipolar relaxation enhancement was found to be a technique that is useful for measuring distances between paramagnetic centers, but only for systems where several important conditions are met, such as: the system exists in one certain static geometry, and the relaxation rate of the fast-relaxing spin is faster than the dipolar coupling frequency within the accessible temperature range. Additionally, it is a great advantage for the analysis of dipolar relaxation data if the procedure of dividing the relaxation trace of the dipolar-coupled slow-relaxing spin by the relaxation trace of the slow-relaxing spin in absence of dipolar coupling can be applied. Another useful application of dipolar relaxation enhancement measurements is the measurement of T1 relaxation of extremely fast-relaxing spins, or spins that are otherwise difficult to detect.
Pulsed electron–electron double resonance (PELDOR) spectroscopy is a powerful tool for measuring nanometer distances in spin-labeled systems and recently is increasingly applied to membrane proteins. However, after reconstitution of labeled proteins into liposomes, spin labels often exhibit a much faster transversal relaxation (Tm) than in detergent micelles, thus limiting application of the method in lipid bilayers. In the first part of the thesis, optimization of transversal relaxation in phospholipid membranes was systematically investigated by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin aggregation and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples with low local concentrations does deuteration of acyl chains and buffer significantly prolong Tm. In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect Tm, either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.
In the second part of the thesis, inhomogeneous distribution of spin-labels in detergent micelles has been studied. A common approach in PELDOR is measuring the distance between two covalently attached spin labels in a macromolecule or singly-labeled components of an oligomer. This situation has been described as a spin-cluster. The PELDOR signal, however, does not only contain the desired dipolar coupling between the spin-labels of the molecule or cluster under study. In samples of finite concentration the dipolar coupling between the spin-labels of the randomly distributed molecules or spin-clusters also contributes significantly. In homogeneous frozen solutions or lipid vesicle membranes this second contribution can be considered to be an exponential or stretched exponential decay, respectively. In this study, it is shown that this assumption is not valid in detergent micelles. Spin-labeled fatty acids that are randomly partitioned into different detergent micelles give rise to PELDOR time traces which clearly deviate from stretched exponential decays. As a main conclusion a PELDOR signal deviating from a stretched exponential decay does not necessarily prove the observation of specific distance information on the molecule or cluster. These results are important for the interpretation of PELDOR experiments on membrane proteins or lipophilic peptides solubilized in detergent micelles or small vesicles, which often do not show pronounced dipolar oscillations in their time traces.
In the third part, PELDOR has been utilized to study the structural flexibility of the Toc34 GTPase homodimer, a preprotein receptor of the translocon of the outer envelope of chloroplasts (TOC). Toc34 belongs to GAD subfamily of G-proteins that are regulated and activated by nucleotide-dependent dimerization. However, the function of Toc34 dimerization is not yet fully understood. Previous structural investigations of the Toc34 dimer yielded only marginal structural changes in response to different nucleotide loads. PELDOR revealed a nucleotide-dependent transition of the dimer flexibility from a tight GDP to a flexible GTP-loaded state. Substrate-binding stabilizes the dimer in the transition state mimicked by GDP-AlFx, but induces an opening in the GDP or GTP-loaded state. Thus, the structural dynamics of bona fide GTPases induced by GTP hydrolysis is replaced by substrate-dependent dimer flexibility, which represents the regulatory mode for dimerizing GTPases.
In the fourth part of the thesis, conformational flexibility and relative orientation of the N-terminal POTRA domains of a cyanobacterial Omp85 from Anabaena sp. PCC 7120, a key component of the outer membrane protein assembly machinery, were investigated by PELDOR spectroscopy. Membrane proteins of the Omp85-TpsB superfamily are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. It has been suggested that the N-terminal POTRA domains (P1 and P2) might have functions in substrate recognition. Molecular dynamics (MD) simulations predicted a fixed orientation for P2 and P3 and a flexible hinge between P1 and P2. The PELDOR distances measured between the P2 and P3 POTRA domains are in good agreement with the structure determined by X-ray, and compatible with the MD simulations suggesting a fixed orientation between these domains. PELDOR constraints between the P1 and P2 POTRA domains imply a rather rigid structure with a slightly different relative orientation of these domains compared with the X-ray structure. Moreover, the large mobility predicted from MD is not observed in the frozen solution. The PELDOR results further highlight the restricted relative orientation of the POTRA domains of the Omp85-TpsB proteins as a conserved characteristic feature that might be important for the processive sliding of the unfolded substrate towards the membrane.
One of the central research topics in the field of biophysical chemistry is the structure and function of membrane proteins involved in energy transduction. Both, the aerobic and the anaerobic respiration include electron transfer and proton translocation across the mitochondrial and bacterial membranes. These electron transfer processes lead to changes in oxidation states of cofactors some of which are paramagnetic. Therefore, EPR spectroscopy is the method of choice to obtain electronic and structural information directly related to the function of the respiratory chain proteins. In this work, multifrequency continuous wave (CW) and pulsed EPR spectroscopy has been used to characterize the molybdenum active site of polysulfide reductase (Psr) from the anaerobic bacterium Wolinella succinogenes and the protein-protein complex between cytochrome c oxidase (CcO) and cytochrome c from the aerobic bacterium Paracoccus denitrificans. Molybdenum in Psr-Psr is an enzyme essential for the sulfur respiration of Wolinella succinogenes. Biochemical studies suggested that the active site of this enzyme contains a mononuclear Mo center, which catalyzes the reduction of the substrate polysulfide to sulfide. Until now there is no crystal structure available for Psr. Consequently, current characterizations of this enzyme have to rely on biochemical and spectroscopic investigations. Within the present work, CW and modern pulsed EPR techniques were applied to investigate its catalytically active site. In the first part of this thesis, different redox agents have been used to generate paramagnetic states of Psr. Multifrequency CW-EPR spectroscopy was applied to identify the Mo(V) states. Using simulations of the experimental spectra, three spectroscopically distinct states have been identified based on the Mo hyperfine- and g-tensor values. Comparison of their EPR parameters with those of related enzymes indicated five or six sulfur ligands at the Mo center depending on the state. The state generated by addition of polysulfide is suggested to be the catalytically active form, in which the Mo is coordinated by a sulfur of the polysulfide chain as the sixth ligand. 33S (I = 3/2) labeled polysulfide was prepared to probe the proximity of the polysulfide to the molybdenum center via its hyperfine coupling. 1D-ESEEM and 2D122 HYSCORE spectroscopy was used to detect these hyperfine and quadrupole interactions, which are too small to be observed in conventional CW EPR spectra. To date there has been only one pulsed-EPR study involving a 33S nucleus [Finazzo et.al. 2003]. The reasons are that this nucleus has a high nuclear spin of I = 3/2 and a large nuclear quadrupole moment in addition to the low Larmor frequency. All these make the detection of sulfur and the extraction of structural information demanding. However, analysis of the 2D-data led to a Mo(V) 33S distance in a range of about 2 to 2.5 Å. Mo-S distances found in molybdenum enzymes of the same family are in a range of 1.8 to 2.8 Å suggesting that the 33S is indeed the sixth ligand of the Mo(V) center and demonstrating that polysulfide is the actual substrate for this enzyme. Thus HYSCORE experiments have been proved to be a powerful technique to gain further insight into the active site structures of molybdenum enzymes and the trafficking of substrate atoms during catalysis. Density functional theory (DFT) calculations together with quantitative numerical simulations of the 2D-data will help to obtain more structural details about the molybdenum binding site in Psr. CcO:cytochrome c complex Protein-protein complex formation is an important step in energy conversion biological processes such as respiration and photosynthesis. These protein-protein complexes are involved in long range electron transfer reactions and are known to be of transient nature. Within the bacterial and mitochondrial respiratory electron transport chains such a complex is formed between CcO and cytochrome c. Upon complex formation cytochrome c donates the electrons required for the CcO catalyzed reduction of dioxygen to water. Here, the protein-protein complex formation between CcO and cytochrome c from Paracoccus denitrificans was investigated by pulsed EPR spectroscopy. The idea was to use the relaxation enhancement due to the distance and orientation dependent magnetic dipole-dipole interaction between the paramagnetic centers in the different CcO constructs and cytochromes. Two-pulse electron spin echo experiments were carried out on mixtures of the CuA containing soluble subunit II or the full size CcO with the physiological partner cytochrome c552 or horse heart cytochrome c. Significantly enhanced relaxation of CuA due to specific protein-protein complex formation has been observed in all four cases. In contrast the non-binding cytochrome c1 showed only a very weak relaxation enhancement due to unspecific protein-protein interactions. The echo decays of the slowly relaxing observer spin (CuA of CcO) measured in the absence and presence of the fast relaxing spin (Fe(III) of cytochrome c) permitted the extraction of the pure dipolar relaxation contributions for the different complexes. Measurements at different temperatures proved the dipolar nature of the relaxation enhancement. Furthermore, it was demonstrated experimentally that this approach also works for the full-size CcO, which contains four paramagnetic metal centers, in complex with cytochrome c. Quantitative simulations of the data suggest a broad distribution in distances (2 - 4 nm) and orientations between the CuA and Fe(III) in the complex between CcO and cytochrome c. High-field EPR spectroscopy will be useful to further analyze and prove these complex structures. Within the present work, it has been shown that pulsed relaxation enhancement experiments can be used to investigate the distance and relative orientation between paramagnetic metal centers. Furthermore, it has been demonstrated on a qualitative level, that this method can be used complimentary to other biophysical approaches to study transient electron transfer protein-protein complexes. Finally, within this work it has been proven that this method can be applied also to biological systems where more than two paramagnetic centers are present. This is particularly interesting for supercomplexes between membrane proteins.
One of the most important tasks in chemistry and especially in structural biology has always been the elucidation of three-dimensional molecular structures - either of small molecules or large biopolymers. Among the (bio)physical methods to acquire structural data at atomic resolution electron paramagnetic resonance (EPR) spectroscopy is the most valuable technique for obtaining structural information about many different kinds of paramagnetic species. In biological systems, either paramagnetic metal ions/clusters, transient paramagnetic intermediates in electron transfer processes or artificially attached stable spin labels can be found. The usual approach to interpret EPR spectra is to perform simulations based on the so-called spin Hamiltonian (SH). This means that the well-defined numerical parameters (tensors) in the SH representing different types of interaction are obtained by fitting the experimental data. The SH parameters include electronic g-values, hyperfine coupling (HFC) and quadrupole coupling (&C) constants, zero-field splittings and constants to describe exchange and dipolar interactions between electron spin systems. However, since the SH only contains spin degrees of freedom, a direct translation of the SH EPR parameters into structural information is not straightforward. Therefore, methods to predict such SH interaction parameters starting from molecular structures are required. In this thesis it was investigated whether quantum chemical calculations of EPR parameters based on density functional theory (DFT) methods may be employed to overcome these problems thus enabling a correlation of experimental EPR data with molecular structure. It was the central goal of this work to point out the potential of a fruitful interplay between quantum chemistry and experiment and to study how both can benefit from each other. For this purpose DFT methods were applied to a variety of organic radical or transition metal systems to calculate different EPR parameters. Using the 'broken symmetry' formalism it was possible to compute the exchange coupling constant for a nitroxide biradical and furthermore decompose the exchange mechanism in different through-bond and through-space interactions. Spin density distributions, 14N and 1H HFC constants as well as dipole moments and polarizabilities were computed for a number of aromatic nitroxides to examine their properties and select promising candidates which may serve as DNA-intercalating spin labels. Systematic investigations of the influence of hydrogen bond geometry on the 14N QC parameters for imidazole-water and methylimidazole-benzosemiquinone complexes lead to the conclusion that especially the imidazole amino nitrogen &C parameters are very sensitive probes of the bond geometry, in particular of the hydrogen bond length. The results of this study may be applied to biological systems, e.g. to gain structural information about quinone binding sites. Moreover, quantum chemical methods were applied to elucidate the structure of a nitrogen-centered radical intermediate in the inhibition process of ribonucleotide reductase (RNR). It was possible to find a molecular structure in accordance with all experimentally available data, thus revealing the longsought structure of the No radical and providing evidence for the trapping of a 3'-ketonucleotide in the reduction process catalyzed by RNR. To test the capability of modern DFT methods to predict g- and molybdenum HFC tensors for MoV complexes, validation studies were carried out. Comparison of computed EPR parameters of a number of MoV compounds with corresponding experimental values showed that g- and HFC tensors could be predicted in good accuracy, although some systematic errors of the computational methods have to be considered for such heavy 4d1 transition meta1 systems. Furthermore, DFT calculations on a Mn2+ binding site model of the hammerhead ribozyme allowed to conclude that the structure of the binding site as studied by EPR spectroscopy in frozen solution is very likely to be identical to the site found occupied by Mn2+ in crystals. Finally, computational methods were employed to aid in the structural characterization of the Mn2+ binding site in Ras (rat sarcoma protein) by providing accurate starting parameters for spectral simulations and furthermore helping to interpret the experimental data. In conclusion, it was demonstrated in this thesis that the combination of sophisticated experimental and quantum chemical methods represents a powerful approach in the field of EPR spectroscopy and that it may be essential to employ EPR parameter computations to extract the full information content from EPR spectra. Therefore, great potential lies in future applications of DFT methods to the large number of systems where detailed and reliable experimental data is available but where an unequivocal correlation of these data with structural information is still lacking.