Refine
Document Type
- Doctoral Thesis (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Canary Islands (1)
- Chinese river basins, water withdrawals, dam construction, river flow alteration, flow indicators, fish species richness, fish catch, riparian vegetation cover, quantitative analysis (1)
- Ecology (1)
- Endemism (1)
- Functional Traits (1)
- Global change (1)
- Island Biogeography (1)
- Plant physiology (1)
- Plants (1)
- Remote sensing (1)
Institute
Climate controls the broad-scale distribution of vegetation and change in climate will alter the vegetation distribution, biome boundaries, biodiversity, phenology and supply of ecosystem services. A better understanding of the consequences of climate change is required, particularly in under-investigated regions such as tropical Asia, i.e., South and South-east Asia, which is a host to 7 of the 36 global biodiversity hotspots. Conservation strategies would also require an in-depth understanding of the response of vegetation to climate change. Therefore, the main objective of this thesis was to investigate the impact of climate change and rising CO2 vegetation in tropical Asia. Dynamic global vegetation model (DGVMs) are the well-known tools to investigate vegetation-climate interactions and climate change impacts on ecosystems. In this thesis, I used a complex trait-based DGVM called adaptive dynamic vegetation model version 2 (aDGVM2).
In Chapter 1, I presented a brief background of the phytogeography and discussed the exiting knowledge gap on vegetation-climate interactions in the region. One major disadvantage for available DGVMs studies for the tropical Asia is that most of them have used fixed plant functional types (PFTs) and do not explicitly represent the distinct varieties of vegetation type of the region such as Asian savannas. In Chapter 2, I discussed at great length to improve DGVMs for South Asia and discussed ways to include them in the model for better representation of region vegetation-climate interaction.
I upgraded the current version of aDGVM2 and added a new vegetation type i.e., C3 grasses, and modified the sub-module to simulate photosynthesis for each individual plants to aDGVM2. In chapter 3, I used this updated version of aDGVM2 to simulate the current and future vegetation distribution in South Asia under RCP4.5 and RCP8.5 (RCP: representative concentration pathway). The model predicted an increase in biomass, canopy cover, and tree height under the presence of CO2 fertilization, which triggered transitions towards tree-dominated biomes by the end of the 21st century under both RCPs. I found that vegetation along the Western Ghats and the Himalayas are more susceptible to change due to climate change and open biomes such as grassland and savanna are prone to woody encroachment.
In Chapter 4, the study domain was extended to include South-east Asia to verify if the model configuration used in Chapter 3 can also simulate vegetation patterns in tropical Asia. The aDGVM2 simulations showed a robust trend of increasing vegetation biomass and transitions from small deciduous vegetation to taller evergreen vegetation across most of tropical Asia. Shifts in plant phenology also affect ecosystem carbon cycles and ecosystem feedback to climate, yet the quantification of such impacts remains challenging. The study showed increased biomass due to CO2 fertilization, indicates that the region can remain a carbon sink given there is no other resource limitation. However, nutrient limitations on CO2 fertilization effects were not included in the study, and carbon sink potential has to be seen with caution.
In Chapter 5, I focused on Asian savannas, which have been mismanaged since the colonial era due to misinterpretation as a degraded forest. I proposed a biome classification scheme to distinguish between degraded forest or woodland and savanna based on the abundance of grass biomass and canopy cover. I found that considering vegetation systems as woodland or degraded forest could easily be mistaken as a potential for forest restoration within a tree-centric perspective. This would put approximately 35% to 40% of a unique savanna biome at risk. Although projected woody encroachments may imply a transition toward the forest that benefits climate mitigation. This raises potential conflicts of interest between biodiversity conservation in open ecosystems, i.e., savanna and active afforestation, to enhance carbon sequestration. Proper management strategies should be taken into account to maintain a balance for both objective
In conclusion, the model predicted that vegetation in South and South-East Asia would significantly shift towards tree-dominated biomes due to CO2-induced fertilization of C3-photosynthesis. The simulation under fixed CO2 and rising CO2 scenarios clearly showed that rising level of atmospheric CO2 is responsible for most of the predicted change in biome properties. This study is an important step towards understanding ecosystems of South and Southeast Asia, specifically savannas. The aDGVM2 can serve as tools to inform decision making for climate adaptation and mitigation for savanna. The thesis, thus contributes to our ability to improve conservation strategies to mitigate the consequences of climate change.
In the past sixty years, excessive water consumption and dam construction have significantly influenced natural flow regimes and surface freshwater ecosystems throughout China, and thus resulted in serious environmental problems. In order to balance the competing water demands between human and environment and provide knowledge on sustainable water management, assessments on anthropogenic flow alterations and their impacts on aquatic and riparian ecosystems in China are needed.
In this study, the first evaluation on quantitative relationships between anthropogenic flow alterations and ecological responses in eleven river basins and watersheds in China was performed based on the data that could be obtained from published case studies. Quantitative relationships between changes in average annual discharge, seasonal low flow and seasonal high flow and changes in ecological indicators (fish diversity, fish catch and vegetation cover, etc.) were analyzed. The results showed that changes in riparian vegetation cover as well as changes in fish diversity and fish catch were strongly correlated with the changes in flow magnitude (r = 0.77, 0.66), especially with changes in average annual river discharge. In addition, more than half of the variations in vegetation cover could be explained by changes in average annual river discharge (r² = 0.63) and roughly 50 % changes in fish catch in arid and semi-arid region and 60% changes of fish catch in humid region could be related to alterations in average annual river discharge (r² = 0.53, 0.58).
In a supplementary analysis of this study, the first estimation on quantitative relationships between decreases in native fish species richness and anthropogenic flow alterations in 34 river basins and sub-basins in China was conducted. Linear relationships between losses of native fish species and five ecologically relevant flow indicators were analyzed by single and multiple regression models. For the single regression analysis, significant linear relationships were detected for the indicators of long-term average annual discharge (ILTA) and statistical low flow Q90 (IQ90). For the multiple regressions, no indicator other than ILTA has significant relationships with changes in number of fish species mainly due to collinearity. Two conclusions emerged from the analysis: 1) losses of fish species were positively correlated with changes in ILTA in China and 2) indicator of ILTA was dominant over other flow indicators included in this research for the given dataset. These results provide a guideline for the sustainable water resources management in rivers with high risk of fish extinction in China.
The timing and duration of leaf deployment strongly regulate earth-atmosphere interactions and biotic processes. Leaf dynamics therefore have major implications for life on earth, including the global energy balance, carbon and water cycles, feedbacks to climate, species extinction risk and agriculture. Evidence of shifts in the timing of leaf deployment and senescence (leaf phenology) as a result of climate change has been accumulating over the past decades, particularly in relation to spring phenology in the northern hemisphere. However, leaf phenological change in other parts of the world has received less attention. This thesis quantifies global phenological change over the past three decades using remotely sensed data. Phenological change was found to be widespread and severe, also in the southern hemisphere. While the detected change testifies of the phenological plasticity of many plant species, it is not clear if the duration of leaf deployment (leaf habit) is equally sensitive to environmental change. Since evergreen and deciduous leaf habits are often distinctly sorted along environmental gradients, ecologists have hypothesised that these patterns result from natural selection for an optimal leaf habit, under a given environmental regime. Such evolutionary convergence can be examined by testing if the physiological niche that is occupied by a particular leaf habit (evergreen or deciduous) is similar among regions with distinct evolutionary histories. Using a process-based model of plant growth and a constructed map of evergreen and deciduous vegetation, the physiological niche of leaf habits was quantified in four global biogeographic realms. Substantial niche overlap was found between the same leaf habit in different realms, suggesting evolutionary convergence of the physiological niche. This implies a sensitivity of leaf habit to environmental change, as environmental variables determine the geographic space where the physiological niche allows a positive carbon balance, and therefore occurrence of the leaf habit. Since the physiological niche consists of the integrated effects of physiological traits and trade-offs, environmental dependencies and leaf habit and phenology, an understanding of the carbon economy of individual plants requires decomposing the physiological niche into its components. Using empirical data on leaf phenology, leaf habit and physiological processes from woody species in a seasonally dry African savanna, a simple carbon balance model was parametrised. Carbon gain varied considerably between species as a result of substantial variation in leaf habit, leaf phenology and physiological traits. The multiple lines of evidence in this thesis therefore suggest that, while convergent selective forces may determine the dominant leaf habit in a particular environment, inter-specific variation is substantial, potentially as a consequence of historical contingencies or competitive interactions.
Shrubs are a characteristic component of savannas, where they coexist with trees and grasses. They are often part of woody encroachment phenomena, which have been observed globally, and the determinant of shrub encroachment cases, which are particularly of concern in African savannas. In response to climate change and land use change, African savannas are vulnerable to biome shifts and shrub encroachment is a process driving and explaining this risk.
We contribute to furthering the understanding of shrubs biogeography and ecology by considering the number of stems of woody plants to characterise shrubs phenotype and strategy. We postulate that shrubs are multi-stemmed, compared to single-stemmed trees and integrate this assumption in aDGVM2 (adaptive Dynamic Global Vegetation Model 2). Modelling a trait representing the number of stems of a woody plant implies a trade-off between single-stemmed plants having higher height growth potential and multi-stemmed plants having higher hydraulic capacity but limited height growth. Multi-stemmed individuals, being shorter, are more likely to suffer severe damage from fires than tall single-stemmed trees managing to grow their crown out of the flame zone.
We simulate potential vegetation over sub-Saharan Africa at 1° spatial resolution, with aDGVM2 and compare it to simulations without our shrub model turned on. We also test the impact of fire by including or excluding it from our simulations. To assess the accuracy and relevance of our approach, we benchmark our overall model’s performance against multiple satellite derived products of above ground biomass (AGBM), and against specific field measurements of AGBM. We further benchmark our results against vegetation cover type derived from satellite data.
We demonstrate that shrubs can be modelled as multi-stemmed woody plants in African savannas based on whole-plant trait trade-off without being predefined as static functional types. Indeed, the addition of our shrub model to aDGVM2 allows for shrubs to emerge dynamically through community assembly processes without a priori categorisation. Our shrub model also improves the simulated vegetation patterns simulated by aDGVM2 in sub-Saharan Africa, particularly in savannas. The simulated pattern of stem number per woody individual broadly follows our assumptions about biogeographic patterns as it is lowest in equatorial African forests and increases in savannas and grasslands as precipitation decreases. Shrubs are more abundant in more water-stressed regions where they have a competitive advantage over trees due to their increased relative water transport potential. However, in arid and hyper-arid regions, further investigations are required. Simulated shrub prevalence is higher in more open and fire prone landscapes, where woody cover and biomass are reduced.
Adding shrubs to aDGVM2, while increasing complexity allows for greater simulated diversity. As resilience and resistance of ecosystems have been shown to be influenced by diversity, such model development is necessary to improve our ability to forecast ecosystems responses to changes. However, there are challenges to fully tap this benefit. Assessing the accuracy and relevance of our approach is challenging. Data and simulations are conceptually different which limit the possibility to conclude based on comparison. Benchmarking challenge is exacerbated by the variability existing among satellite derived products and site studies observations. In areas of extremely low biomass and vegetation cover, such as deserts and semi-deserts, the accuracy of our model is more concerning as small differences in absolute values are relatively more important.
Categorisation of life-forms shapes our understanding of their ecology and biogeography, thus, consensus about their definition is direly needed. To contribute to this debate, we investigate how vegetation distribution patterns arising from our shrub model inform our understanding of shrub biogeography. First, shrub distribution in trait space (considering stem number), relatively to environmental drivers, concurs with our assumptions. Second, shrub spatial distribution is consistent with our characterisation assumptions. Third, the role of simulated shrubs in an ecosystem supports realistic ecological dynamics. Our model allows for, shrubs to exhibit a specific phenotype, but also a specific life-strategy, which we characterise in terms of persistence strategy (shrubs are mainly resprouters, in contrast to trees, which can be either resprouters or reseeders) and in terms of resource acquisition (rooting strategy) and allocation (carbon investment). Adding stem count as a trait to aDGVM2 increase the range of simulated functional diversity.
Our shrub model allows for aDGVM2 to simulate realistic ratio of grass to woody vegetation across sub-saharan Africa. Similarly, it simulates ratio of shrubs to trees consistent with our hypotheses.
...
Oceanic islands only comprise a small amount of the Earth’s land area but harbour a disproportionate amount of global biodiversity. This vast diversity is not only reflected in the taxonomic uniqueness of island biota but also in the remarkable evolution of functional traits. Functional traits, i.e. measurable characteristics that strongly influence the fitness of species, determine how a species responds to its environment and can help to gain more insights into the biogeographical, ecological and evolutionary processes that have shaped island biodiversity. However, research in island biogeography has primarily focused on species richness, and knowledge of functional trait patterns on oceanic islands is scarce. Hence, in this dissertation, I have explored how trait-based approaches can increase our understanding of how biodiversity on oceanic islands assembles and how it is driven by the environment. The Canary Islands (Spain) are a particularly suitable model system to investigate patterns and drivers of biodiversity. The archipelago is characterised by a high variation in environmental heterogeneity and inhabits a unique and well-described native flora. Therefore, I have investigated five principal research questions using the flora (Spermatophytes) of the Canary Islands as a study object. First, I have analysed how climate and biogeography shape the assembly of the Canary Islands flora using a novel trait-based approach. Second, the question of whether rare climates link to functional trait distinctiveness in the native Canary Islands flora was addressed. Third, I have examined how intraspecific trait variation is represented in the native flora of oceanic islands focusing on the succulent scrub of La Palma (Canary Islands). Fourth, this dissertation investigated whether scientific floras can be reliable sources for trait data of plants native to oceanic islands. Finally, I have explored how climate change may impact the native Canary Islands flora by analysing possible climate change-induced shifts in plant species distribution and plant traits.
The results of my dissertation expand the understanding of the importance of biogeography and the environment in determining the functional composition of island floras. I have assessed that traits of endemic plant species did not expand the functional trait space of the Canary Islands but were packed with the ones of non-endemic species. This result hints at a trait convergence in endemic species, possibly driven by non-adaptive speciation processes. Moreover, I have evidenced that humidity is a critical driver of functional diversity in native plant assemblages and particularly leads to a high trait convergence in arid environments via environmental filtering. In contrast, alien species have expanded the Canary Islands flora’s functional trait space. I further have shown that in contrast to native species assemblages, alien species assemblages are characterised by an increasing functional diversity with increasing aridity. This contrasting pattern of functional diversity could pose a potential risk to the native flora of the Canary Islands as a low functional diversity is expected to reduce the resilience of species assemblages to the establishment of more functionally diverse alien plant species. However, in this dissertation, I also have revealed that endemic plant species on the Canary Islands show a high intraspecific variation in arid environments, possibly as an adaptation to environmental stress. Intraspecific variation could help endemic plant species have a competitive advantage over alien species and be more resilient to environmental changes. Furthermore, in this dissertation, I have shown that scientific floras and taxonomic monographs could be used to gain information on quantitative functional traits of plants native to oceanic islands. This finding is particularly relevant for advances in trait-based research, as coverage of trait data for oceanic island floras is extremely poor in global trait databases. Hence, for some of the studies included in this dissertation, trait data were retrieved from scientific floras and taxonomic monographs and used to answer novel scientific research questions. Thus, I have used trait data from the literature to analyse the effect of climate change on the range size of plants native to the Canary Islands. Identifying plant species of particular conservation concern is critical on oceanic islands as many island species have limited distributions and small population sizes, and their niche tracking is impeded by insularity. I have revealed that single-island endemic plants gain less and lose more climatically suitable areas than archipelago endemic and non-endemic native plants due to a climate change-induced decrease in precipitation until 2100...