Refine
Document Type
- Diploma Thesis (3)
- Doctoral Thesis (2)
Language
- German (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Anabolismus (1)
- Biosynthese (1)
- Biotechnologie (1)
- Biotechnologische Industrie (1)
- Hefe (1)
- Hefeartige Pilze (1)
- Lipidmembran (1)
- Membranlipide (1)
- Molekularbiologie (1)
- Pichia ciferrii (1)
Institute
Die Hefe Saccharomyces cerevisiae hat sich wie kaum ein anderer Organismus auf die Verwertung von Glukose spezialisiert. Die Aufnahme dieser Hexose stellt dabei den ersten Schritt der Metabolisierung dar. Saccharomyces cerevisiae besitzt hierfür eine große Zahl an Hexosetransportern und eignet sich daher gut zur Untersuchung der Wirkungsweise und Regulation dieser Transporter, sowie deren Translokation zur Plasmamembran.
Ziel der vorliegenden Arbeit war es, die Funktion des in der Membran des Endoplasmatischen Retikulums lokalisierten Proteins Gsf2 der Hefe Saccharomyces cerevisiae näher zu charakterisieren. Gsf2 ist an der Translokation der Hexosetransporter Hxt1, Hxt3 und Gal2 zur Plasmamembran beteiligt. Die Deletion von GSF2 führt zur Akkumulation dieser Transporter in der Membran des Endoplasmatischen Retikulums. Interaktionen von Gsf2 mit ribosomalen Proteinen, Komponenten der Translokationsmaschinerie und COPII-Hüllproteinen deuten auf eine multifunktionelle Hexosetransporterspezifische Funktion des Verpackungschaperons Gsf2 hin.
Mit Hilfe des „Synthetic Genetic Arrays“ wurde nach synthetisch letalen und synthetisch kranken Interaktionspartnern von GSF2 gesucht, die zur Aufklärung der Funktion von GSF2 beitragen beziehungsweise bisherige Forschungsergebnisse verifizieren sollten. Unter den nicht-essentiellen Genen der Hefe konnte allerdings kein synthetisch letaler oder synthetisch kranker Interaktionspartner von GSF2 ermittelt werden.
Im zweiten Projekt sollten Multicopy-Suppressoren aus einer Genbank identifiziert werden, die in der Lage sind die Deletion von GSF2 und damit verbundene Retention von Hxt1 in der Membran des Endoplasmatischen Retikulums zu komplementieren. Mit Hilfe dieses Screenings konnten einzig GSF2-kodierende Plasmide identifiziert werden.
Die Ergebnisse der beiden genetischen Screening-Verfahren belegen, dass Gsf2 eine herausragende Rolle innerhalb des Translokationsprozesses von Hxt1 einnimmt.
Struktur-Funktionsbeziehungen des Verpackungschaperons Gsf2 in der Hefe Saccharomyces cerevisiae
(2007)
Im Rahmen der vorliegenden Arbeit wurde die Funktion des in der Membran des Endoplasmatischen Retikulum lokalisierten Proteins Gsf2 der Hefe Saccharomyces cerevisiae näher charakterisiert. Gsf2 ist ein 46 kDa großes ER-Transmembranprotein mit zwei membrandurchspannenden Domänen, wobei C- und N-Terminus cytosolisch orientiert sind. Zudem besitzt Gsf2 C-terminal ein klassisches Dilysin-Motiv. Eine Deletion des GSF2-Gens resultiert in einer Retention der Hexosetransporter Hxt1, Hxt3 und Gal2 im ER, so dass es sich bei Gsf2 möglicherweise um ein Hexosetransporterspezifisches Verpackungschaperon handelt.
Um Sequenzbereiche zu determinieren, die für die Funktion des Verpackungschaperons bezüglich der Reifung und des ER-Transportes von Hxt1 notwendig sind, wurden verkürzte Versionen des Gsf2-Proteins hergestellt. Die funktionelle Analyse zahlreicher verkürzter Versionen ergab die Lokalisation eines essentiellen Sequenzbereiches in den hinteren 40 Aminosäuren der carboxyterminalen Domäne des Gsf2-Proteins.
Vorläufige genetische und biochemische Untersuchungen hatten ergeben, dass Gsf2 mit Komponenten der Ribosomen, des Sec61-Translokationsapparates und mit Proteinen der COPII-Vesikel interagiert.
Mit Hilfe des Split-Ubiquitin Systems konnte in der vorliegenden Arbeit eine direkte Interaktion zwischen Gsf2 und dem Sec61-Translokations-Komplex und den Komponenten des sekretorischen Weges Sec12 und Sar1 bestimmt werden. Sec12 ist ein Sar1-spezifischer Guanin-Nucleotid-Austausch-Faktor, der für die Aktivierung von Sar1 benötigt wird. Sar1 ist ein kleines G-Protein, welches für die Initiation der COPII-Vesikelbildung benötigt wird. Sar1 ist aber auch für die Erkennung di-basische ER-Exportsignale spezifischer Cargo-Proteine zuständig. Diese Interaktion weist daraufhin, dass Gsf2 über solch ein Motiv verfügt und somit die Verpackung von Hxt1 in COPII-Vesikel gewährleisten könnte.
Postuliert wird ein Modell, wonach Gsf2 bereits eine wichtige Funktion bei der Translokation des Hexosetransporter Hxt1 in die ER-Membran übernimmt. Dabei interagiert Gsf2 mit dem Sec61-Translokon, um den Reifungsprozess der naszierenden Polypeptidkette des Metabolittransporters zu ermöglichen. Anschließend rekrutiert Gsf2 das gefaltete Proteine an Exit-Sites des Endoplasmatischen Retikulums. Es interagiert dort mit Sec12 und Sar1, so dass Gsf2 zusammen mit dem Hexosetransporter in die COPII-Vesikel verpackt und zum Golgi-Apparat transportiert wird. Aufgrund des ERRetentionssignals wird Gsf2 über COPI-Vesikel recycelt.
Dieses Modell impliziert, dass Hxt1 über kein ER-Exportsignal verfügt und daher Gsf2 als guide eine ausschlaggebende Funktion bei dessen Translokation übernimmt.
Die Zuckertransporterfamilie ist eine Unterfamilie der MFS („major facilitator superfamily“), wobei die MFS wiederum als Überfamilie von Transportproteinen definiert wurde, die sich aus Proteinen mit 12 Transmembran-Domänen zusammensetzt. Im Rahmen dieser Doktorarbeit sollte die subzelluläre Lokalisation und physiologische Funktion der uncharakterisierten Mitglieder der Zuckertransporterfamilie Ybr241 und Ygl104 untersucht werden. Mittels Zellfraktionierung durch Saccharosedichtegradienten-Zentrifugation und Fluoreszenzmikroskopie konnte eine Lokalisation von Ybr241 und Ygl104 in der vakuolären Membran festgestellt werden. Da Plasmamembran-Proteine zur Degradation ubiquitiniert, über Endocytose internalisiert und in der Vakuole abgebaut werden, wurden weitere Lokalisationsstudien sowohl in Endocytose-Mutanten als auch in einer Mutante mit Defekten in der Ubiquitinierung durchgeführt. Diese ergaben, daß die vakuoläre Lokalisation nicht auf Degradation zurückzuführen war. Somit handelt es sich bei Ybr241 und Ygl104 um residente vakuoläre Membranproteine. Lokalisationsstudien in vps-Mutanten erbrachten Hinweise darauf, daß zumindest Ygl104, wie die meisten vakuolären Proteine, über den CPY-Weg zur Vakuole befördert wird. Weder durch Wachstumsanalysen noch mit Hilfe von Phenotype MicroArrays™ (Biolog, Inc.) konnten Phänotypen der Deletionsmutanten von Ybr241 und Ygl104 identifiziert werden. Allerdings zeigte sich im Verlauf der Arbeit, daß die Deletionsmutanten einen Vorteil beim Wachstum mit geringen Glucosekonzentrationen bei 37°C haben. Des weiteren bestanden aufgrund von Datenbankanalysen Anhaltspunkte auf eine Beteiligung am Trehalosestoffwechsel. Durch Hitzeschockexperimente konnte eine essentielle Rolle von Ybr241 und Ygl104 bei der Resistenz von Zellen gegenüber schwerem Hitzestreß identifiziert werden. Die verminderte Thermotoleranz der Deletionsmutanten war aber nicht auf einen geringeren Gehalt der Zellen am Streßschutzmolekül Trehalose zurückzuführen. Zudem deckte ein SGA („synthetic genetic array“) eine synthetisch kranke Interaktion von YBR241C und YGL104C mit dem Gen der Trehalose-6-Phosphat-Synthase TPS1 auf. Diese Interaktion sprach gegen eine Beteiligung der Genprodukte am Trehalosestransport, da tps1-Mutanten keine Trehalose enthalten. tps1-Mutanten haben einen Wachstumsdefekt mit schnell fermentierbaren Kohlenstoffquellen, der höchstwahrscheinlich auf einen Mangel an freiem Phosphat zurückzuführen ist. Somit scheinen die Proteine Ybr241 und Ygl104 die intrazelluläre Phosphatkonzentration zu beeinflussen. Eine Analyse ergab, daß der Phosphat- und Polyphosphatgehalt der Mutanten teilweise stark herabgesetzt war. Der Einfluß könnte direkt durch Phosphatimport in die Vakuole stattfinden oder sekundär über eine Verminderung der Glycerinproduktion, da durch die Synthese von Glycerin wieder Phosphat freigesetzt wird. Somit handelt es sich bei Ybr241 und Ygl104 möglicherweise um vakuoläre Phosphat- oder Glycerintransporter. Ferner konnte gezeigt werden, daß die saure Trehalase Ath1 sekretiert wird und Trehalose extrazellulär in Glucose hydrolysiert. Die Glucosemoleküle werden dann von der Hefezelle aufgenommen und verstoffwechselt. Somit spielt Ath1 eine essentielle Rolle beim Wachstum der Hefe mit Trehalose als Kohlenstoffquelle. Ziel des zweiten Teils dieser Doktorarbeit war die Entwicklung eines genomweiten Screens nach ER-Verpackungschaperonen, durch den bisher unbekannte Verpackungschaperone identifiziert werden sollten. Durch Testen verschiedener Varianten des Screens konnte ein Verfahren entwickelt werden, das prinzipiell funktionierte. Für den Einsatz im genomweiten Maßstab war es jedoch ungeeignet, da mit einer hohen Rate an falsch negativen Ergebnissen zu rechnen gewesen wäre.
Im Rahmen der vorliegenden Dissertation sollte der Sphingolipid-Biosyntheseweg der Hefe Pichia ciferrii näher charakterisiert werden, um die Entwicklung einer fermentativen Route zur Sphingosin-Produktion zu ermöglichen. Darüber hinaus galt es patentierbare Selektionssysteme für diese Hefe zu etablieren. Durch Sequenzvergleiche mit nahe verwandten Hefen und das Ableiten degenerierter Primer wurden elf für die Sphingolipid-Biosynthese von Pichia ciferrii relevante Gene isoliert und sequenziert: LCB1 (codiert für eine UE der Serin-Palmitoyltransferase), TSC10 (3-Ketosphinganin-Reduktase), LAG1 und LAF1 (Ceramid-Synthasen), LIP1 (UE der Ceramid-Synthasen), DES1 (Dihydroceramid-delta4-Desaturase), YXC1 (Ceramidase), 8DES (Sphingolipid-delta8-Desaturase), 9MTR (Sphingolipid-C9-Methyltransferase), GCS1 (Ceramid-Glycosyltransferase) und LCB4 (LCB-Kinase). Bioinformatische Analysen, sowie in vivo-Experimente dienten der Einordnung der korrespondierenden Genprodukte in den Stoffwechselweg. Die Bestimmung der Substratspezifität einzelner Enzyme aus der Sphingolipid-Biosynthese erfolgte durch Überexpression der korrespondierenden Gene und anschließende Analyse des Einflusses auf die Zusammensetzung der Sphingolipidfraktion von Pichia ciferrii. Zusammengenommen wurde durch die Ergebnisse ein deutlich geschärftes Bild der Biosynthese von Sphingolipiden in Pichia ciferrii erstellt. Die gewonnenen Erkenntnisse über die Sphingolipid-Biosynthese in Pichia ciferrii fanden Anwendung auf die rationale Stammentwicklung eines Sphingosin-Produzenten. Durch die kombinierte Überexpression der die Dihydroceramid-delta4-Desaturase aus Pichia ciferrii, die Ceramid-Synthase aus Coccolithovirus und eine alkalische Ceramidase aus Mus musculus kodierenden Gene wurde eine 8,5-fache Erhöhung der Sphingosin-Konzentration von 7,5 mg/L in vom Wildtyp abgeleiteten Syringomycin-E-resistenten Stämmen auf 64,0 mg/L erzielt. Die Codon-Optimierung der heterolog exprimierten Gene zur Anpassung an die sehr eingeschränkte Codon-Verwendung von Pichia ciferrii erwies sich hierbei als essentiell. Zur Nutzbarmachung von rekombinanten Pichia ciferrii-Stämmen für die industrielle Anwendung wurden darüber hinaus drei neue Selektionssysteme etabliert. Zum einen wurde eine codon-optimierte Form des nat1-Gens genutzt, um eine Nourseothricin-Resistenz zu vermitteln. Zum anderen wurden stabile Uracil- bzw. Lysin-auxotrophe Pichia ciferrii-Stämme erzeugt, die mittels eines entsprechenden Integrationsvektors mit den Auxotrophie-Markergenen URA3 bzw. LYS2 aus Pichia ciferrii zu prototrophen Stämmen komplementiert werden konnten. Zusammengenommen mit der ersten gezielten Disruption eines Gens in Pichia ciferrii (SYR2, codiert für die Sphinganin-Hydroxylase) konnte somit auch die molekularbiologische Handhabbarkeit von Pichia ciferrii deutlich verbessert werden.
Das Thema der vorliegenden Arbeit war die molekulargenetische Charakterisierung der Funktion der Glukosesensoren Snf3 und Rgt2 in der Hefe S. cerevisiae. Snf3 und Rgt2 gehören zur Familie der Hexosetransporter. Sie unterscheiden sich von ihnen jedoch in ihrer Funktion als Glukosesensoren wie auch durch ihre ungewöhnlich langen Cterminalen Domänen. Snf3 und Rgt2 sind integrale Membranproteine, die als Reaktion auf extrazelluläre Glukose Signale auslösen, die zur Expression bestimmter Hexosetransporter führt. Einige Komponenten, die an der Signaltranduktion beteiligt sind, wurden bereits identifiziert. Jedoch ist der genaue Mechanismus, der zur Expression der Hexostransporter führt, noch nicht vollständig aufgeklärt. Im ersten Teil dieser Arbeit wurden die Proteine Snf3, Rgt2, Mth1, Std1 und Rgt1 auf direkte Interaktionen untereinander getestet, um Einblicke in den molekularen Mechanismus der Signaltransduktion zu erhalten. Desweiteren sollte festgestellt werden, ob die Protein-Wechselwirkungen von der C-Quelle abhängig sind. Es konnte gezeigt werden, dass zwischen den Membranproteinen Rgt2 bzw. Snf3 und den löslichen Proteinen Mth1 bzw. Std1 Interaktionen in Abhängigkeit von Glukose stattfanden. Diese Ergebnisse unterstützen das von Moriya und Johnston aufgestellte, gegenwärtige Modell für eine glukoseinduzierte HXT Genexpression. Im zweiten Teil dieser Arbeit wurde geprüft, ob sich aus dem Glukosesensor Snf3 durch eine Aminosäuresubstitution ein bifunktionaler Sensor für Glukose und Galaktose erzeugen läßt. Dazu wurden die für den Galaktosetransport verantwortlichen Aminosäuren in den homologen Positionen von Snf3 ausgetauscht. Die Bestimmungen der Regulation des Snf3-kontrollierten HXT7 Promotors ergaben, dass das mutierte Snf3 Protein, wie das Wildtyp-Snf3 Protein, eine normale Glukosesensorfunktion ausübt aber keine Galaktosesensorfunktion vorzeigt.