Refine
Year of publication
Document Type
- Doctoral Thesis (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- NADH-Dehydrogenase <Ubichinon> (2)
- NADH:ubiquinone oxidoreductase (2)
- Yarrowia lipolytica (2)
- Atmungskette (1)
- Cytologie (1)
- Eisen-Schwefel-Zentrum N1a (1)
- HRGXE-Motiv (1)
- Histologie (1)
- Inhibitor Binding Pocket (1)
- Inhibitorbindetasche (1)
Institute
- Biochemie und Chemie (6)
- Medizin (5)
- Biowissenschaften (3)
- Physik (1)
Gegenstand dieser Arbeit ist die Untersuchung der Genexpression der axonalen wachstumsassoziierten Proteine NAP-22, GAP-43 und CAP-23 in den dopaminergen Neuronen der Substantia nigra pars compacta (SNc), einer im Mesencephalon gelegenen Zellregion, relativ zu der Genexpression eines Referenzgens. Als Versuchstiere dienten sechs Monate alte, männliche CB6F1 Wildtypmäuse sowie sechs Monate alte, männliche CAP-23 transgene (CAP-23tg) Tiere, die das wachstumsassoziierte Protein CAP-23 überexprimieren. Die dopaminergen Zellen der SNc wurden zunächst morphologisch charakterisiert und ihre Ausdehnung im Mittelhirn durch alternierende Immunfärbungen der Tyrosinhydroxylase, einem Schlüsselenzym der Dopaminsynthese, sowie Toluidinblaufärbungen ermittelt. Anschließend wurden die Neurone durch die Methode der Lasermikrodissektion (LMD) im Zellverband isoliert. Hierfür war die Optimierung der Toluidinblaufärbung erforderlich, mit dem Ziel, sowohl eine gute Färbung der Neurone als auch eine hohe RNA-Nativität zu erzielen. Die RNA wurde isoliert und nach Integritätsprüfung in cDNA umgeschrieben. Daraufhin erfolgte die Analyse der Genexpression der beschriebenen Gene durch die quantitative Echtzeit-Polymerase-Kettenreaktion (qRT-PCR). Dabei war feststellbar, dass das Transgen Cap-23 in den transgenen Tieren stärker exprimiert wird als das Endogen Nap-22. Es zeigte sich jedoch kein signifikanter Unterschied der Expression von endogenem Nap-22 und endogenem Gap-43 in den CAP-23tg Tieren im Vergleich zu der Expression in den Wildtypmäusen. Das bedeutet, dass die Überexpression von Cap-23 in den transgenen Tieren die Expression der mRNA der beiden endogenen wachstumsassoziierten Proteine NAP-22 und GAP-43 nicht beeinflusst. Auf Grundlage der in dieser Arbeit vorgelegten Ergebnisse soll in Folgeexperimenten untersucht werden, inwieweit die Überexpression von CAP-23 die Reorganisationsfähigkeit dopaminerger Neuronen der SNc nach einer Schädigung beeinflusst, wie sie zum Beispiel beim Menschen im Verlauf des Morbus Parkinson beobachtet wird.
Fettsäuren erfühlen vielfältige Funktionen im Organismus. Sie sind Brennstoffmoleküle, intrazelluläre Signalmoleküle und sie stellen wichtige Bestandteile biologischer Membranen dar. Der Abbau von Fettsäuren findet im Mitochondrium statt. Da langkettige Fettsäuren nicht ohne weiteres die Mitochondrienmembran überwinden können, benötigen sie einen Transportmechanismus, das so genannte Carnitin-Palmitoyltransferase- System. Zu diesem System gehören die Carnitin-Palmitoyltransferase-(CPT)-I an der Aussenseite, und die CPT-II an der Innenseite der Mitochondrienmembran, welche beide maßgeblich am Transport der Acylgruppe der Fettsäuren in Form von Acyl-CoA in das Innere des Mitochondriums beteiligt sind. CPT-I ist bei diesem Transport der geschwindigkeitbestimmende Schritt und existiert in zwei Isoformen, eine vom hepatischen (CPT-Ialpha) und einem vom muskulären Typ (CPT-Iß). Ziel dieser Arbeit war die Untersuchung der CPT-Ialpha in kultivierten Mesangiumzellen der Rattenniere und primären Hepatocyten der Rattenleber unter Bedingungen, die an der Entstehung und Progression entzündlicher Prozesse in diesen Organen beteiligt sind:
1) Hypoxie,
2) Stickstoffmonoxid (NO),
3) extrazelluläre sekretorische Phospholipasen A2 (sPLA2). Die Wahl der o.g. Bedingungen wurde aus folgenden Gründe gewählt: Viele Entzündungsreaktionen zeichnen sich durch eine massive Produktion von NO und einer erhöhten Sekretion von sPLA2 sowie durch eine lokale Durchblutungsstörung des Gewebes aus, was zu einer Sauerstoff-Unterversorgung der Zellen führt. Die CPT-Ialpha ist zudem mit einem Schlüsselenzym der Ketogenese, der mitochondrialen Hydroxymethylglutaryl-CoA-Syntase (mHG-CoA-Syntase) gekoppelt. Daher wurde die Wirkung von Hypoxie und exogenen sPLA2s auch auf die mHG-CoA-Syntase Expression untersucht. Diese Arbeit ist in vier Teile gegliedert.
1.) Zunächst wurden optimale Bedingungen erarbeitet, die mit einem spezifischen Antiserum mittels Western-Blot-Analyse erfolgreich zur Detektion des CPT-Ialpha Proteins in den verwendeten Zellsystemen führten. Zudem wurde mit Hilfe des Proteinsynthese-Inhibitors Cycloheximid keine Abnahme der CPT-Ialpha Proteinmengen festgestellt. Unter unstimulierten Bedingungen scheint dieses Protein demnach einem langsamen ‚turn-over’ zu unterliegen.
2.) In einer früheren Arbeit in Mesangiumzellen wurde gezeigt, dass durch DETANO- und Interleukin 1ß (IL-1ß)-Stimulation freigesetztes NO einen stimulierenden Effekt auf die CPT-Ialpha-Protein und -mRNA Expression aufweist. In der vorliegenden Arbeit wurde nun der NO-stimulierende Effekt auf den CPT-Ialpha-Promotor untersucht, um die Regulation der Transkription dieses Enzyms zu untersuchen. Es wurde festgestellt, dass sowohl DETA-NO als auch IL-1ß eine signifikante Steigerung der Promotor-Aktivität des -4495/+19 CPT-Ialpha Promotorkonstrukts induzieren, die mit dem Anstieg der mRNA- und Proteinexpression korreliert. Bezogen auf frühere Untersuchungen in Ratten- Hepatocyten zur Beteiligung der cytosolische Guanylatcyclase (cGC) und cyclischem Guanosinmonophosphat (sGMP) an der CPT-Ialpha Aktivität, wurde nun auch in Mesangiumzellen die Rolle des NO/cGMP-Signal-Weges in der Regulation des CPT-Ialpha untersucht. Es zeigte sich, dass die NO-induzierte CPT-Ialpha Expression durch den sGC-Inhibitor ODQ gehemmt werden konnte. Zudem induzierte YC-1 (ein sGC–Aktivator) die CPT-Ialpha Proteinexpression. Daraus konnte gefolgert werden, dass in Mesangiumzellen das unter proinflammatorischen Bedingungen gebildete NO die Expression der CPT-Ialpha über die Aktivierung der cGMPvermittelten Signaltransduktion reguliert.
3.) Zur Untersuchung des Einflusses von Hypoxie auf die CPT-Ialpha und mHMG-CoA Synthase-Expression in Rattenmesangiumzellen und -hepatocyten wurden zwei verschiedene Hypoxie-Modelle gewählt: a) Stimulation der Zellen mit CoCl2 oder mit dem Fe2+-Chelator Desferrioxamin unter normoxischen Bedienungen oder b) Kultivierung der Zellen in einer luftdichten Kammer, die mit einer 3%igen oder 1%igen O2-Mischung begast wird. In Measangiumzellen wurde die CPT-Ialpha Protein- und mRNA- Expression durch CoCl2, Desferrioxamin und 3% O2- vermittelte Hypoxie verstärkt. In Gegensatz dazu erhöht CoCl2 in den Hepatocyten nur die CPT-Ialpha Proteinmenge, während die mRNA-Expression unbeeinflusst blieb. Dagegen wurde in den Hepatocyten die CPT-Ialpha mRNA-Expression durch Desferrioxamin verstärkt und durch 1% O2 Hypoxia gehemmt. Solche unterschiedliche Auswirkungen von zwei hypoxischen Modellsystemen auf die CPT-Ialpha Protein- und mRNA-Expression in Mesangiumzellen und Hepatocyten könnten durch zellspezifische Regulationsmechanismen erklärt werden. Weiterhin wurde in beiden Zellsystemen die mRNA-Expression der mHMG-CoA Synthase unter allen eingesetzten hypoxischen Bedingungen reduziert. Dies bedeutet, dass die Ketogenese O2-abhängig abläuft und unter Hypoxie herunter reguliert wird.
4.) Der letzte Teil der vorliegenden Arbeit befasst sich mit der Regulation der CPTIalpha Expression durch exogene sPLA2s in Mesangiumzellen und Hepatozyten. Auf Grund früherer Arbeiten war bekant, dass bei entzündlichen Prozessen sPLA2s in großen Mengen in Extrazellularräume und Körperflüssigkeiten sezerniert werden, um dort ein breites Spektrum von Fettsäuren aus Phospholipiden freizusetzen. Die Arbeitshypothese war, dass die auf diesem Weg freigesetzten Fettsäuren eine Hochregulation der CPT-Ialpha induzieren könnten. Es konnte gezeigt werden, dass es in Mesangiumzellen, die mit rekombinanten oder gereinigten sPLA2s exogen behandelt wurden, zu einer Erhöhung der CPT-Ialpha Expression auf Protein-, mRNAund Promotor-Ebene kommt. In Hepatocyten konnte ebenfalls eine verstärkte CPTIalpha-Proteinexpression festgestellt werden. Ein synergistischer Effekt mit TNF-alpha konnte nur auf Protein- und mRNA-Ebene, nicht jedoch auf Promotorebene beobachtet werden, was auf einen gemeinsamen Mechanismus der Promotor-Aktivierung durch sPLA2s und TNF-alpha schließen lässt. Wurden die Zellen gleichzeitig mit den Mitogen-aktivierten-Protein-Kinase (MAPK)-Inhibitoren PD 98059 and U0126 behandelt, wurde diese Hochregulation der CPT-Ialpha gehemmt. Daraus kann gefolgert werden, dass der sPLA2-induzierte Effekt auf die CPT-Ialpha -Expression durch die bereits bekannte sPLA2-induzierte Aktivierung der MAPK vermittelt wird. In Mesangiumzellen wurde weiterhin gezeigt, dass sPLA2s in Koinkubation mit TNF-alpha die mRNA Expression der mHMG-CoA Synthase stark induziert . In dieser Arbeit konnte also gezeigt werden, dass unter den gewählten proinflammatorischen Bedingungen die CPT-Ialpha sowohl auf der Ebene der Genexpression als auch auf Proteinebene reguliert wird. Auch die an die CPT-Ialpha gekoppelte mHMG-CoA Synthase wird in ihrer mRNA-Expression moduliert, sodass Effekte auf die Ketogenese zu vermuten sind. Zukünftige Arbeiten könnten zeigen, ob CPT-Ialpha als ein mögliches Target für die Entwicklung neuer Therapie- Strategien zur Verbesserung der Energiebilanz und damit auch der Überlebungsrate bei entzündlichen Erkrankungen dienen kann.
Zusammen mit anderen b 2 Sympathomimetika wird Terbutalin schon seit langem in der Behandlung chronisch obstruktiver Lungenerkrankungen (COLE) eingesetzt. Dabei wurde mehrfach von schweren unerwünschten kardialen Wirkungen nach der Anwendung von Terbutalin berichtet. Die Tatsache, daß die COLE in der Regel mit chronisch hypoxiegeschädigten Herzen assoziiert sind, gab Anlaß, die Auswirkungen von Terbutalin auf hypoxiebelastete isolierte Rattenherzen und deren Mitochondrien zu untersuchen. Dafür wurde das zunächst für 20 Minuten normoxisch arbeitende Rattenherz (working rat heart) einer fünfzigminütigen Hypoxiephase ausgesetzt, während der es mit Terbutalin in Konzentrationen zwischen 1,1 und 225,3 ng/ml perfundiert wurde (0,5, 1, 5, 10 und 100 nmol Terbutalin auf 100 ml Perfusionspuffer). Die Perfusionsgeschwindigkeit betrug 2 ml/min. Der Hypoxiephase folgte eine siebzigminütige Reoxygenierungsphase, in der in zehnminütigen Abständen das Herzminutenvolumen (HMV), die Herzfrequenz und der Koronarfluß dokumentiert wurden. Nach Abschluß der Reoxygenierungsphase wurden die myokardialen Mitochondrien isoliert, um die ATP Synthese und ATPaseAktivitäten sowie die Membranfluidität zu messen. Zusätzlich wurden zwei Versuchsreihen ohne Hypoxiephase durchgeführt (mit 1 und 100 nmol Terbutalin), um die alleinige Wirkung von Terbutalin auf die Rattenherzen zu untersuchen. Die Aortenflußmessung während der Reoxygenierung ergab eine generelle Reduzierung der Herzleistung im Vergleich zu den Kontrollherzen (ohne Terbutalinzugabe). Lediglich im 1 nmolVersuch (2,3 ng/ml) war zu Beginn der Reoxygenierungsphase eine signifikante Steigerung des HMV festzustellen. Jedoch hielt auch diese Steigerung nur für etwa zwanzig Minuten an. Alle anderen Versuchsreihen (mit 0,5, 5, 10 und 100 nmol Terbutalin) ergaben eine deutliche Verschlechterung der Herzleistung. Das HMV der Kontrollherzen betrug während der Reoxygenierung durchschnittlich etwa 75% des HMV vor der Hypoxiephase. Die Terbutalinherzen erreichten abgesehen vom 1 nmolVersuch, wo ein HMVMaximum von etwa 80% erreicht wurde, Aortenflußwerte, die zwischen 30% und 70% der Ausgangswerte lagen. Eine Besonderheit ergab sich beim 0,5 nmolVersuch. Hier fand sich eine Steigerung des Aortenflusses über den gesamten Verlauf der Reoxygenierung von etwa 48% auf 68%. Das Herz schien sich von einer anfangs starken Reduzierung des HMV wieder zu erholen. Bezüglich der Herzfrequenzen war eine weitgehende Korrelation zu den Herzminutenvolumina festzustellen, so daß eine Steigerung des HMV vermutlich Folge einer Herzfrequenzsteigerung ist und umgekehrt. Die Koronarflußmessungen ergaben eine Steigerung der Koronarperfusion, also eine Vasodilatation, ab einer Dosis von zwischen 1 nmol und 5 nmol Terbutalin. In höheren Dosen (10 nmol und 100 nmol) kam es zu einer deutlichen Reduzierung des Koronarflusses, was vermutlich auf die kardiotoxischen Wirkeigenschaften von Terbutalin zurückzuführen ist. Es zeigte sich also ein optimaler Wirkungsbereich, der zwischen 1 nmol und 5 nmol liegt. Die mitochondrialen Messungen ergaben eine generelle Reduzierung der ATPSyntheseAktivitäten (0,0150,03 µmol ATP/mg/min) und eine generelle Steigerung der ATPaseAktivitäten (0,71,65 µmol ADP/mg/min) im Vergleich zur Kontrolle (0,04 µmol ATP/mg/min bzw. 0,6 µmol ADP/mg/min). Dabei trat das ATPSynthese Aktivitätsmaximum bzw. das ATPaseAktivitätsminimum im 10 nmolVersuch auf. Die kleinste ATPSynthese Aktivität (0,015 µmol ATP/mg/min) wurde beim 1 nmolVersuch, wobei gleichzeitig das HMVMaximum erreicht wurde, gemessen. Es kann also von einem erhöhten Energiebedarf, der nicht durch eine gesteigerte ATPSyntheseAktivität gedeckt wird, ausgegangen werden. Vermutlich wird die ATPSynthese durch eine aufgrund hoher intramitochondrialer Kalziumspiegel gesteigerte Aktivität von ebenfalls H Gradienten abhängigen Kalziumcarriern kompetitiv' gehemmt. Die hohen intramitochondrialen Kalziumspiegel sind dabei eine Folge hypoxie bzw. reoxygenierungsbedingter Membrandefekte. Die Messungen der Membranfluidität ergaben keine nennenswerten Abweichungen von der Kontrolle. Dies ist ein Hinweis darauf, daß die kardiodepressiven Effekte nicht hauptsächlich auf hypoxiebedingte Mitochondrienmembrandefekte zurückzuführen sind, sondern viel wahrscheinlicher auf Terbutalinbedingte toxische Effekte. Die Experimente ohne Hypoxiephase ergaben mit 1 nmol Terbutalin (2,3 ng/ml) eine diskrete Steigerung des HMV, mit 10 nmol Terbutalin (22,5 ng/ml) eine deutliche Reduzierung. Dies läßt den Schluß zu, daß die kardiodepressive Potenz von Terbutalin durch zusätzliche Hypoxiebelastung verstärkt wird. Drei mögliche Mechanismen können für die kardiodepressiven Eigenschaften von Terbutalin verantwortlich gemacht werden. Zum einen führt eine hypoxiebedingte relative Überstimulation von bRezeptoren zur Entstehung von Sauerstoffradikalverbindungen, die zum Teil irreversible Zellschädigungen verursachen können. Die Entstehung von Sauerstoffradikalen wird durch die Reoxygenierung (oxidativer Streß) nach der Hypoxiephase noch verstärkt. Zum zweiten handelt es sich bei Terbutalin um einen partiellen Agonisten am bRezeptor. Vor allem in Verbindung mit oxidativem Streß, der durch die Reoxygenierung gegeben ist, wird die maximale Wirksamkeit partieller Agonisten reduziert, was sich auch auf die positiv inotropen Eigenschaften von Terbutalin auswirkt. Zum dritten kann von nicht über bRezeptoren vermittelten kardiotoxischen Effekten ausgegangen werden. Vermutlich ist eine dosisabhängige Kombination aller drei Mechanismen die Ursache für die Kardiotoxizität von Terbutalin. Es muß also von einer rezeptorvermittelten bmimetischen und von einer primär kardiotoxischen Wirkkomponente ausgegangen werden. In niedriger Dosierung (0,5 nmol) überwiegt die kardiotoxische Wirkkomponente, von deren Auswirkungen sich die Rattenherzen jedoch erholen konnten. Im 1 nmolVersuch war dann eine optimale Dosierung erreicht (1 nmol/100ml » 2,3 ng/ml), die gleichzeitig auch der effektiven Plasmakonzentration (beim Menschen) von Terbutalin entspricht. Hier überwiegt die bmimetische Wirkkomponente. In höherer Dosierung (10 nmol und 100 nmol) kommt es dann zur relativen Überstimulation von bRezeptoren, was zu den oben beschriebenen teils irreversiblen Myokardschäden führt.
Determination of the structure of complex I of Yarrowia lipolytica by single particle analysis
(2004)
Komplex I enthält ein Flavinmononukleotid sowie mindestens acht Eisen- Schwefel Zentren als redoxaktive Cofaktoren. Da ein wesentlicher Teil des mitochondrialen Genoms für Untereinheiten von Komplex I codiert, betrifft eine Vielzahl von mitochondrialen Erkrankungen diesen Enzymkomplex.
Komplex I wurde bisher aus Mitochondrien, Chloroplasten und Bakterien isoliert. Die Minimalform von Komplex I wird in Bakterien gefunden, wo er aus 14 (bzw 13 im Falle einer Genfusion) Untereinheiten besteht und eine Masse von etwa 550 kDa aufweist. Generell werden sieben hydrophile und sieben hydrophobe Untereinheiten mit über 50 vorhergesagten Transmembranhelices gefunden. Im Komplex I aus Eukaryoten wurde eine grössere Anzahl zusätzlicher, akzessorischer Untereinheiten nachgewiesen. Hier werden die sieben hydrophoben Untereinheiten vom mitochondrialen Genom codiert, während alle anderen Untereinheiten kerncodiert sind und in das Mitochondrium importiert werden müssen.
Die obligat aerobe Hefe Yarrowia lipolytica wurde als Modellsystem zur Untersuchung von eukaryotischem Komplex I etabliert. Die bisher am besten untersuchte Hefe Saccharomyces cerevisiae enthält keinen Komplex I. Hier wird die Oxidation von NADH durch eine andere Klasse von sogenannten alternativen NADH Dehydrogenasen durchgeführt. Auch Y. lipolytica enthält ein solches alternatives Enzym, das allerdings mit seiner Substratbindungsstelle zur Aussenseite der inneren Mitochondrienmembran orientiert ist. Durch molekularbiologische Manipulation konnte eine interne Version dieses Enzymes exprimiert werden, wodurch es möglich ist, letale Defekte in Komplex I Deletionsmutanten zu kompensieren. Mittlerweile wurden alle Voraussetzungen geschaffen, um kerncodierte Untereinheiten von Komplex I aus Y. lipolytica gezielt genetisch zu verändern. Die Proteinreinigung wird durch die Verwendung einer auf einem His-tag basierenden Affinitätsreinigung erheblich erleichtert...
Protein-Protein Interaktionen der NADH: Ubichinon-Oxidoreduktase (Komplex I) aus Yarrowia lipolytica
(2010)
Protein-Protein Interaktionen der NADH:Ubichinon-Oxidoreduktase (Kolmplex I) aus Y. lipolytica In der inneren Mitochondrienmembran sind die Atmungskettenkomplexe I bis IV und die ATP-Synthase lokalisiert. Parallel zum Elektronentransport werden Protonen von der NADH:Ubichinon-Oxidoreduktase (Komplex I), der bihydrochinon:Cytochrom c-Oxidoreduktase (Komplex III) und der Cytochrom c-Oxidase (Komplex IV) über die Membran in den Intermembranraum gepumpt. Der resultierende chemiosmotische Gradient wird von der ATPase verwendet um ATP zu generieren. Die NADH:Ubichinon- xidoreduktase ist der Startpunkt des Elektronentransfers. Der Komplex I wurde in verschiedenen Organismen in Interaktion mit Komplex III und IV beobachtet. Diese funktionellen Einheiten werden als Respirasomen oder Superkomplexe bezeichnet (Pfeiffer und Schägger, 2000). Der Komplex I in prokaryotischen Zellen stellt die kleinstmögliche Variante dieses Enzyms dar. Da er in der Lage ist, alle bioenergetischen Reaktionen durchzuführen, werden die beteiligten 14 Untereinheiten als zentrale Untereinheiten bezeichnet (Fearnley et al. 1992). In den Eukaryoten findet sich ein Enzym, das je nach Organismus bis zu 31 weitere, sogenannte akzessorische Untereinheiten aufweist. Da diese Untereinheiten keine Homologie mit bakteriellen Proteinen aufweisen, wird davon ausgegangen, dass sie eher eine Funktion im Assemblierungsprozess ausüben als am Elektronentransfer oder der Translokation der Protonen beteiligt zu sein. Ziel dieser Arbeit war es daher mögliche Interaktionspartner des Komplex I oder weitere Untereinheiten zu finden. Für die Detektion möglicher Interakteure sollten neben einem Two-Hybrid-Screen noch weitere Methoden etabliert werden. Als Modellsystem wurde Yarrowia lipolytica verwendet. Unter Verwendung des BacterioMatchII® Systems konnte die mitochondriale Malat-Dehydrogenase, ein Enzym des Citrat-Zyklus, als ein Interaktionspartner des Komplex I gefunden werden. Bei der Reaktion entsteht NADH, das Energieäquivalent, welches dem Komplex I Elektronen liefert. Im Kontext des Substratchannelings deutet die Interaktion der mitochondrialen Malat- ehydrogenase auf hochgeordnete Stukturen im Matrixraum hin, die einen Transfermechanismus oder eine zielgerichtete Diffusion des NADH gewährleisten könnten. Durch die Kombination der Methoden Immunpräzipitation, Gelelektrophorese und MALDI-MS konnten erstmals Hinweise auf Superkomplexe in Y. lipolytica gefunden werden, was dann durch mehrdimensionale Gelelektrophorese bestätigt werden konnte. In dieser Arbeit konnten die Superkomplexe I1III2 ,I1III2IV1 und I1III2IV2 identifiziert werden. Ein vollständiges Respirasom mit einer Stöchiometrie von I1III2IV4 konnte nicht gezeigt werden. Desweiteren konnte die Anwesenheit eines Komplex I-Dimers nachgewiesen werden. In dem bisher postulierten Modell der respiratory strings werden die Superkomplexe durch tetramere Komplex IV-Module zu hochmolekularen Strukturen verknüpft (Wittig et al., 2006). Die detektierten Komplex I-Dimere lassen vermuten, dass sie zusammen mit dem tetrameren Komplex IV als Linker-Moleküle die Superkomplexe zu einem zweidimensionalen respiratory patch verbinden. Zudem konnte eine neue Untereinheit des Komplex I, genannt NEBM, durch das Zusammenspiel von LILBID- und MALDI-Massenspektrometrie und Gelelektophorese identifiziert werden. Durch MALDI-Massenspektrometrie wurde diese Untereinheit de novo sequenziert. Die Charakteristik des identifizierten Proteins entspricht den sogenannten single-transmembrane domain Untereinheiten (Brandt et al., 2005; Brandt 2006), die eventuell eine Funktion in der Assemblierung des Komplex I einnehmen könnten. Weder bei den Messungen der NADH:HAR- noch der dNADH:DBQ-Aktivität zeigte der Deletionsstamm enzymatisch aktiven Komplex I. Weder in blau-nativer Elektrophorese noch in silbergefärbten 2D SDS-Gelen war ein Komplex I noch ein Subkomplex sichtbar und auch In-Gel-Aktivitäts-Tests verliefen für die Detektion von Komplex I im Deletionsstamm negativ. Erst durch eine Western Blot Analyse konnte ein Subkomplex mit einer Größe von ca. 300kDa detektiert werden. Unter Berücksichtigung der für den Rinderkomplex vorgeschlagenen Einteilung des Komplex I in die Subkomplexe Iα und Iβ (Brandt et al. 2006) könnte der detektierte Subkomplex Iβ zugeordnet werden, da er zwei Untereinheiten beinhaltet, die diesem Komplex zuzuordnen sind. Die NEBM Untereinheit könnte also an der Assemblierung der NADH:Ubichinon-Oxidoreduktase beteiligt sein. Erstmals konnten Superkomplexe in Y. lipolytica Mitochondrien nachgewiesen werden. Die Identifizierung der neuen NEBM Untereinheit vervollständigt die Kenntnisse über die Untereinheitenzusammensetzung. Das Wechselspiel mit anderen Proteinen und die Zusammensetzung des Komplexes können für die Strukturaufklärung und zur Analyse des Reaktionsmechanismus wichtig sein. Somit leisten diese Ergebnisse einen wichtigen Beitrag zur Charakterisierung der NADH:Ubichinon-Oxidoreduktase aus Y. lipolytica.
Strukturelle und funktionelle Untersuchungen am Cytochrom-bc1-Komplex aus Paracoccus denitrificans
(2005)
Cytochrom bc-Komplexe sind zentrale Enzyme energietransduzierender Elektronen-transportketten. Anerkanntes Funktionsprinzip ist der Q-Zyklus; mechanistische Details insbesondere der Chinoloxidation am Qo-Zentrum sind noch unklar. Ein Verständnis des Qo-Zentrums ist auch von Interesse, da hier Inhibitoren in Form von Fungiziden und Malariatherapeutika wichtige Anwendung finden. In den vergangenen Jahren wurde eine Reihe mitochondrialer Komplexe kristallographisch charakterisiert, die Struktur eines bakteriellen Enzyms steht jedoch aus. Hauptziel dieser Arbeit war es, Ansätze zur Strukturaufklärung des bc1-Komplexes aus Paracoccus denitrificans (P.d.) zu finden, der als homologes Enzym mitochondrialer Komplexe bei einfacher genetischer Zugänglichkeit ein wichtiges Modellsystem darstellt. In der vorliegenden Arbeit wurde auf die Kristallisation des bc1-Komplexes aus S. cerevisiae aufgebaut, die mit Hilfe monoklonaler Antikörperfragmente (Fv) gegen die Rieske-Untereinheit (ISP) erreicht wurde; die Fv-Fragmente erleichtern die Ausbildung von Kristallkontakten. Die Epitopregion des Hefeenzyms wurde genetisch auf den bakteriellen Komplex übertragen, um dessen Ko-Kristallisation mit dem bereits verfügbaren Fv zu ermöglichen. Punktuelle Anpassungen führten zu keiner signifikanten Bindung, ein weitergehender Austausch des entsprechenden ISP-Bereichs verbesserte die Bindung hingegen deutlich. Die besten Ergebnisse konnten mit chimären Enzymen erzielt werden, bei denen die gesamte ISP-Ektodomäne durch das Hefe-Homologe ersetzt wurde. Aufbauend auf dieser Arbeit scheint die Fv-vermittelte Kristallisation des Enzyms ein greifbares Ziel. Eine komplementäre Strategie zielte auf die strukturelle Charakterisierung der Rieske-Ektodomäne (ISF). Das klonierte ISF wurde in E. coli überexprimiert, lag jedoch fast vollständig in inclusion bodies vor. Das ISF konnte in eine lösliche Form rückgefaltet werden, die anschließende chemische Rekonstitution zum Holo-Protein gelang jedoch nur mit einer Ausbeute von ~ 1 %. Die geringe Menge an löslichem ISF, die sich nach Expression in E. coli isolieren lässt, trägt kein [2Fe-2S]-Zentrum. Durch Koexpression der für die Biogenese von Eisen-Schwefel-Zentren relevanten Gencluster konnte die lösliche ISF-Fraktion in vivo in die Holo-Form konvertiert werden. Auch hier war aber die Gesamtausbeute für strukturelle Untersuchungen zu gering. Eine homologe Expression in P.d. war nur für das komplette ISP nachweisbar, nicht für das verkürzte ISF. Durch gerichtete Mutagenese konnte hier erstmals gezeigt werden, dass das bakterielle Rieske-Protein über den Tat-Translokationsweg in die Membran inseriert. Die Kristallstrukturen mitochondrialer bc1-Komplexe zeigen ein dimeres Enzym. Die Assoziation des bakteriellen Komplexes wurde in dieser Arbeit mit der analytischen Ultrazentrifugation untersucht, und auch hier wurde eindeutig ein Dimer nachgewiesen. Dynamische Messverfahren deuteten jedoch auf einen höheren Assoziationszustand hin. Es bleibt unklar, ob diese Diskrepanz durch Formparameter oder die Detergenzbindung begründet ist oder ob unter bestimmten Versuchsbedingungen möglicherweise Tetramere vorliegen. In situ ist der bc1-Komplex strukturell mit den Komplexen I und IV sowie dem Elektronenüberträger Cyt c552 assoziiert. Die Analyse verschiedener Deletionsstämme zeigte, dass Komplex I der Atmungskette durch diesen Superkomplex stabilisiert wird. Dieser Befund konnte kürzlich in anderen Arbeiten auch an menschlichen Mitochondrien bestätigt werden. Neben strukturellen Aspekten wurden am bc1-Komplex auch die H+-Translokation und die Chinonbindung untersucht. Da chemische Modifikationsexperimente zeigen, dass ein saurer Rest im ISP eine kritische Rolle für die Kopplung von H+-Translokation und Elektronentransport spielt, wurden durch gerichtete Mutagenese kombinatorisch saure Reste gegen entsprechende Säureamide ersetzt. Die biochemische Charakterisierung wurde nur für eine Fünffach-Mutante durchgeführt; diese erwies sich jedoch als zu instabil, um verlässliche Daten aus H+-Pumpexperimenten zu gewinnen. Die Charakterisierung der übrigen Mutanten scheint lohnenswert, da der relevante Aminosäurerest auch in anderen Arbeiten noch nicht identifiziert werden konnte. Der Gehalt des aufgereinigten Enzyms an spezifisch gebundenem Chinon wurde FTIR-spektroskopisch quantifiziert. Eine Stöchiometrie von ~ 3 Chinonmolekülen/Monomer stützt das double occupancy-Modell, demzufolge zwei Substratmoleküle am Qo-Zentrum binden; das dritte Chinon bindet am Qi-Zentrum. Partielle Extraktion des Chinons und Messungen bei verschiedenen pH-Werten zeigten, dass die Substratbindung mit Protonierung eines sauren Rests einhergeht. Möglicherweise handelt es sich dabei um Glu295 des Cytochrom b, das auf Basis der Kristallstrukturen als primärer H+-Akzeptor am Qo-Zentrum diskutiert wird. Aufbauend auf dieser Arbeit können die an der Chinonbindung beteiligten Reste durch Mutagenese identifiziert werden.
Mitochondial NADH:ubiquinone oxidoreductase (complex I) the largest multiprotein enzyme of the respiratory chain, catalyses the transfer of two electrons from NADH to ubiquinone, coupled to the translocation of four protons across the membrane. In addition to the 14 strictly conserved central subunits it contains a variable number of accessory subunits. At present, the best characterized enzyme is complex I from bovine heart with a molecular mass of about 980 kDa and 32 accessory proteins. In this study, the subunit composition of mitochondrial complex I from the aerobic yeast Y. lipolytica has been analysed by a combination of proteomic and genomic approaches. The sequences of 37 complex I subunits were identified. The sum of their individual molecular masses (about 930 kDa) was consistent with the native molecular weight of approximately 900 kDa for Y. lipolytica complex I obtained by BN-PAGE. A genomic analysis with Y. lipolytica and other eukaryotic databases to search for homologues of complex I subunits revealed 31 conserved proteins among the examined species. A novel protein named “X” was found in purified Y. lipolytica complex I by MALDI-MS. This protein exhibits homology to the thiosulfate sulfurtransferase enzyme referred to as rhodanese. The finding of a rhodanese-like protein in isolated complex I of Y. lipolytica allows to assume a special regulatory mechanism of complex I activity through control of the status of its iron-sulfur clusters. The second part of this study was aimed at investigating the possible role of one of these extra subunits, 39 kDa (NUEM) subunit which is related to the SDRs-enzyme family. The members of this family function in different redox and isomerization reactions and contain a conserved NAD(P)H-binding site. It was proposed that the 39 kDa subunit may be involved in a biosynthetic pathway, but the role of this subunit in complex I is unknown. In contrast to the situation in N. crassa, deletion of the 39 kDa encoding gene in Y. lipolytica led to the absence of fully assembled complex I. This result might indicate a different pathway of complex I assembly in both organisms. Several site-directed mutations were generated in the nucleotide binding motif. These had either no effect on enzyme activity and NADPH binding, or prevented complex I assembly. Mutations of arginine-65 that is located at the end of the second b-strand and responsible for selective interaction with the 2’-phosphate group of NADPH retained complex I activity in mitochondrial membranes but the affinity for the cofactor was markedly decreased. Purification of complex I from mutants resulted in decrease or loss of ubiquinone reductase activity. It is very likely that replacement of R65 not only led to a decrease in affinity for NADPH but also caused instability of the enzyme due to steric changes in the 39 kDa subunit. These data indicate that NADPH bound to the 39 kDa subunit (NUEM) is not essential for complex I activity, but probably involved in complex I assembly in Y. lipolytica.
Ziel dieser Arbeit war die Untersuchung der Rolle der i-AAA Protease in P. anserina, besonders während des Alterns des Ascomyceten. Die dazu durchgeführten Untersuchungen führten zu folgenden Ergebnissen:
1. Unter Standardbedingungen ist der PaIap-Deletionsstamm langlebiger als der Wildstamm, ohne feststellbare physiologische Beeinträchtigungen aufzuweisen. Dass dies auf den Verlust von PaIap zurückzuführen ist, bestätigen die PaIap-Revertantenstämme, in denen das Gen wieder eingeführt wurde, wodurch deren Lebensspanne wieder Wildtyp-artig ist. Dies zeigt, dass PaIAP zelluläre Prozesse beeinflusst, die die Lebensspanne kontrollieren.
2. Bei Hitzestress weist der PaIap-Deletionsstamm dagegen eine höhere Hitzesensitivität auf als der Wildstamm, was sich in einer verkürzten Lebensspanne und der Störung vitaler Funktionen äußert. Dies deutet auf eine mögliche Rolle von PaIAP bei der Hitzestressantwort hin.
3. Im Einklang mit dem hitzesensitiven Phänotyp des PaIap-Deletionsstamms konnte in mitochondrialen Extrakten des Wildtyps gezeigt werden, dass die Proteinmenge von PaIAP durch Hitzestress signifikant zunimmt. Gleichzeitig weisen mitochondriale Proteinextrakte von PaIap-Deletionsstämmen nach Hitzestress signifikant geringere Mengen an PaHSP60 und PaCLPP auf, zwei weiteren Komponenten der mitochondrialen Proteinqualitätskontrolle. Dies unterstreicht die Beteiligung von PaIAP an der Hitzestressantwort von P. anserina.
4. Darüber hinaus beeinflusst der Verlust von PaIap die Zusammensetzung der mitochondrialen Atmungskette und führt bei 27°C zu einer vermehrten Organisation der Komplexe in stabilere Superkomplexe. Dieser Mechanismus wird beim Wildstamm erst nach Hitzestress beobachtet, wogegen der PaIap-Deletionsstamm die Superkomplexmenge nicht mehr weiter steigern kann.
5. Die Genexpression von proteolytisch inaktiven Varianten von PaIAP (PaIAPE540Q bzw. PaIAPE540QG) kann den Phänotyp des PaIap-Deletionsstamms bei 27°C nicht komplementieren und führt ebenfalls zu einer Verlängerung der Lebensspanne von P. anserina. Dies liefert wichtige Informationen über den Mechanismus wie PaIAP die Lebensspanne von P. anserina beeinflusst, da dazu die proteolytische Aktivität von PaIAP benötigt wird.
6. Darüber hinaus zeigt die Analyse des PaIap/PaClpP-Deletionsstamms, dass sich die Mechanismen, wie PaIAP und PaCLPP die Lebensspanne von P. anserina beeinflussen, unterscheiden. Die unterschiedlichen zellulären Aufgaben werden auch bei Hitzestress deutlich, wovon der PaIap/PaClpP-Deletionsstamm noch stärker betroffen ist als durch die Deletion von PaIap bzw. PaClpP. Dies verdeutlicht, dass sich die Effekte der Deletionen der beiden Gene addieren.
Insgesamt konnte in dieser Arbeit gezeigt werden, dass die i-AAA Protease PaIAP auch bei P. anserina wichtige zelluläre Funktionen besitzt, die sich auf den Alterungsprozess des Ascomyceten auswirken. Dabei war es möglich verschiedene neue Mechanismen zu identifizieren, wie die i-AAA Protease diese Funktionen ausübt. Dazu gehören z.B. der Einfluss der proteolytischen Aktivität auf die Lebensspanne, die durch die Abwesenheit der i-AAA Protease ausgelöste Reorganisation der Atmungskettenkomplexe in stabile Superkomplexe, und die Induktion der Hitzestressantwort durch PaIAP. Diese Befunde tragen zum besseren Verständnis der zellulären Funktion der i-AAA Protease bei und stellen einen entscheidenden Ausgangspunkt für weiterführende Analysen der bislang wenig verstandenen Aufgaben der Protease dar.
Ligands of Iron-Sulphur Cluster N2: In this work the ubiquinone reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Y. lipolytica was studied by a series of point mutations replacing conserved histidines or arginines in the 49-kDa subunit. Although the missing 4th ligand of cluster N2 could not be found in the 49-kDa subunit of complex I, it was clearly demonstrated that iron-sulphur cluster N2 resides directly on the interface between the PSST and 49-kDa subunits. The results presented in this work show that residues in the 49-kDa subunit have strong influence on this redox centre and also on catalytic activity. The strong influence of Arg-141 and His-226 residues in 49-kDa subunit on this cluster can be deducted from complete loss of N2 signals in EPR spectra such as in case of mutants H226A and R141A. In the case of mutant H226M the EPR signal from cluster N2 was shifted and cluster N2 even lost the pH dependence of its redox midpoint potential and became more similar to the other so called 'isopotential' clusters. Specifically in the case of mutants R141M and R141K the characteristic signature of cluster N2 became undetectable in EPR spectra. However, specific dNADH:DBQ oxidoreductase activity that could be inhibited with the specific complex I inhibitors DQA and rotenone was not absolutely abolished but rather reduced. These reductions in complex I activity did not correspond to similar reductions in the specific EPR signal of cluster N2 as it was observed in the His-226 mutant series. No indications could be found that these mutations had modified the magnetic properties of cluster N2, resulting in different EPR spectra. From these observations it could be concluded that both mutants R141K and R141M virtually or entirely lack iron-sulphur cluster N2. The rates in complex I activity could be reconciled with electron transfer theory: After removal of a single redox centre in a chain, electron transfer rates are predicted to be still much faster than steady-state turnover of complex I. These results from mutants R141K, R141M and also the result from mutant H226M that protons are being pumped even if the redox midpoint potential of cluster N2 is not pH dependent questions the prominent role in the catalytic mechanism of complex I that has been ascribed to cluster N2. Histidine 91 and 95 were found to be absolutely essential for activity of complex I since in both mutants complex I was fully assembled and artificial NADH:HAR activity was parental whereas complex I specific dNADH:DBQ activity was abolished. The signal from cluster N2 in EPR spectra was parental for all His-91 and -95 mutants. Mutations at the C-terminal arginine 466 affected ubiquinone affinity and inhibitor sensitivity but also destabilised complex I. All these results provide further support for a high degree of structural conservation between the 49-kDa subunit of complex I and the large subunit of water soluble [NiFe] hydrogenases. Remodelling of Human Pathogenic 49-kDa Mutations in Y. lipolytica: Y. lipolytica has been proven a good system for studying complex I properties and thus also for studying defects that occur in humans. In this work pathogenic mutations in the 49-kDa subunit of complex I were recreated and studied. The P232Q mutant showed non-assembly of complex I and this is probably the cause why this mutation was lethal in patients. The mutants R231Q and S416P were parental for the content, artificial and also specific complex I activity, Km for DBQ and IC50 for DQA. From these results we can conclude that these two residues Arg-228 and Ser-413 in mammalian cells have specific structural importance for the 49-kDa subunit even if they are not directly involved in catalytic process.
Proton-translocating NADH:ubiquinone oxidoreductase (complex I) transports two electrons from NADH to membranal ubiquinone: in this process protons are translocated across the membrane, producing 40% of the total proton gradient between matrix side and intermembrane space. Mitochondrial complex I contains at least 46 subunits in mammals, and has a molecular weight of around 1000 kDa. Electronic microscopy analysis showed that complex I has an L-form, which consists of two domains: a peripheral “arm” (hydrophilic domain) and a membrane “arm” (hydrophobic domain). The peripheral domain, which protrudes into the matrix, contains one non-covalently bound flavin mononucleotide (FMN) and the iron-sulfur clusters N1a, N1b, N2, N3, N4 and N5 as redox active groups. They transport electrons from NADH to ubiquinone. Cluster N2 is supposed to be the immediate electron donor to ubiquinone by virtue of its highest and pH dependent redox midpoint potential (Em,7 –150 mV). The exact location of the tetra-nuclear cluster N2 is still object of discussion. The TYKY and the PSST subunits contain three binding motifs for tetranuclear clusters which are formed by twelve cysteins. In an effort to investigate the “ubiquinone reduction module” of complex I, in the first part of this work site directed mutagenesis of the TYKY and PSST subunits has been carried out. Mutant strains were characterised in terms of complex I content, catalytic activity and EPR signature of cluster N2. The second part of this work was aimed at developing a substrate inducible version of the internal alternative NADH:ubiquinone oxidoreductase (NDH2i). A substrate inducible NDH2i is expected to offer a “switch” between complex I activity dependent (no NDH2i activity) and independent (NDH2i activity) cell growth, by changing between activating and non-activating substrates. This strategy would allow the screening for two types of complex I mutants, which is a prerequisite for realising a random PCR mutagenesis of single subunits of complex I, that allows the production of a high number of point mutations in relatively short time. Y. lipolytica complex I deficiency mutant strains could be easily identified, by virtue of their inability to survive under complex I dependent growth conditions (no NDH2i activity). By this way, amino acids that have an important role for complex I structure or function could be identified by subsequent sequence analysis. Each of the twelve cysteines that form the above mentioned three binding motifs for iron-sulfur cluster have been mutagenised. In mutant mitochondrial membranes, no assembled complex I could be detected. From these data one may conclude that the mutagenised 6 SUMMARY 92 cysteines play an important role for complex I stability, or that are a prerequisite for complex I assembly in Y. lipolytica, but there is not direct evidence indicating that any of the four mutagenised residues acts as a ligand. Two aspartates in the PSST subunit, Asp-99 and Asp-115, were found to be essential for complex I catalytic activity. EPR spectroscopic analysis indicated that the electron transfer to N2 cluster was not blocked and implied that this was not the reason for the loss of catalytic activity. From these data it can be concluded that D99 and D115 play a vital role for complex I NADH:ubiquinone reductase activity, but are not ligands for cluster N2 and that their position is not close enough to the cluster to influence directly its electromagnetic environment. Three mutations, identified in the PSST and TYKY homologous subunits of patients affected with Leigh syndrome (V119M in PSST, P78L and R101H in TYKY) were reconstructed in the obligate aerobic yeast Y. lipolytica. This approach may help to understand the aetiology of the Leigh syndrome, in terms of the ability of complex I to oxidize NADH and to transport electrons. In fact, all three mutations showed effects on electron transport, reducing the VMax by about 50%. Mutant V119M in the PSST subunit, which had a lethal effect in two patients that were homozygous for this mutation, affects a fully conserved residue. Overall, the results from site directed mutagenesis carried out so far support the theory that the “catalytic core ” (N2 cluster and quinone binding site) of complex I has been evolved from the electron transfer module of the [Ni-Fe] hydrogenases. In fact, mutagenesis of residues that are fully conserved between complex I and [Ni-Fe] hydrogenases, showed dramatic effects on complex I in terms of assembly (cysteine mutants) or catalytic activity (D99-D115). Differently, changing aspartate 174 and glutamic acid 185 (not fully conserved, Fig 4.1A) had little or no effect on the Michaelis-Menten parameters and N2 EPR signal. In recent years Y. lipolytica has been developed as a yeast genetic system to study mitochondrial complex I. The present work introduced the promoter for the isocitrate lyase (pICL1) as a useful tool for the substrate selective expression of the internal version of the alternative NADH:ubiquinone oxidoreductase (pICL1-NDH2i). This allows to rescue complex I deficiencies “in vivo” selectively by growth on acetate (or ethanol) medium. The integration of the pICL1-NDH2i construct into the genome of Y. lipolytica and subsequent deletion of nuclear-coded subunits like PSST, TYKY and 49 kDa, would contribute to further develop this organism as a useful genetic model for studying subunits of mitochondrial complex I by site directed mutagenesis.