Refine
Document Type
- Doctoral Thesis (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Ameisen (3)
- Südostasien (2)
- Ameisenpflanzen (1)
- Artensterben (1)
- Biodiversität (1)
- Biomechanik (1)
- Coccoidea (1)
- Ctenidae (1)
- Cupiennius salei (1)
- Domatien (1)
Institute
In over 100 genera of tropical angiosperms, one or more species possess specialised structures for housing ants. The longevity and intimacy of these associations has often facilitated an increasing specialisation of both the ants and the plants, leading to a number of highly specific and obligate symbioses. Early literature contained only few anecdotal reports of the ant genus Cladomyrma WHEELER inhabiting (unidentified) plants. This work presents the new findings on Cladomyrma and its host plants that accumulated over the last two decades. My studies of Cladomyrma reveal that there is a largely overlooked community of south-east Asian plant-ants and their associated plants. Currently the genus consists of at least 12 species. Cladomyrma has been thought to be restricted to the ever-wet part of the West Malesian floristic region, comprising the Malay Peninsula, Borneo, and Sumatra, but recent collections from Thailand and Vietnam indicate that species of the genus penetrate the seasonal tropical forests of Continental Asia. Cladomyrma inhabits 24 plant species belonging to a surprisingly extensive range of plant taxa: Callerya, Saraca, Spatholobus (Fabaceae), Crypteronia (Crypteroniaceae), Drypetes (Putranjivaceae), Ryparosa (Achariaceae), Strychnos (Loganiaceae), Neonauclea (Rubiaceae), Luvunga (Rutaceae) and Sphenodesme (Verbenaceae). In terms of taxonomic diversity on the genus and family level the range of hosts utilised by Cladomyrma is one of the broadest ever recorded for any live stem-nesting plant-ant lineage worldwide. This work provides a species-level overview of all Cladomyrma host plants known from Borneo, the Malay Peninsula and Sumatra, including descriptions of ant-housing structures (domatia), ant inhabitant identity, onset of colonisation during plant ontogeny, nest structure, occupancy rate, and considerations of results obtained from herbarium specimens. Both the regularity of ant association and the degree of morphological specialisation toward myrmecophytism are assessed. The behavioural traits of Cladomyrma are compatible with traits exhibited by other protective plant-ants. This work demonstrates that all species of Cladomyrma investigated (dianeae, maschwitzi, yongi, petalae) confer antiherbivore protection to young leaves of its host. The ants also attack and repell or kill herbivorous insect larvae encountered on young foliage. Cleaning behaviour appears to be a trait shared by all members of the genus, and the two species tested (maschwitzi, petalae) successfully removed termite eggs experimentally placed onto young leaves. Another trait common to all known species of the genus is that the ants preferentially patrol young shoots and leaves ('neophily'). These behavioural traits of Cladomyrma likely reduce stem damage and pathogenic infection of their host. The ants prune encroaching vegetation (tested in dianeae maschwitzi, petalae, yongi, observed in crypteroniae) and attack paper tape used to mark host plants (observed in andrei, dianeae, hobbyi, nudidorsalis, maschwitzi, yongi, petalae). If these traits combined translate into a better reproductive success of the hosts has yet to be verified. Evidence for lifetime fitness benefits is particularly difficult to quantify for the long-lived woody host plants of Cladomyrma. The predominant food source of Cladomyrma appears to be the honeydew of scale insects (Coccidae and Pseudococcidae) which the ants tend inside their nest cavities. Observations on scale insect acquisition by Cladomyrma foundress queens show that hemipteran trophobionts are not transported by the queens on their nuptial flight but they nevertheless arrive on the host plant independently of the ants. Entry into nest chambers is facilitated by small holes kept open by the foundress queen. Most Cladomyrma species have been recorded from only one or two (three) host plant species (andrei, crypteroniae, hobbyi, maschwitzi, nudidorsalis, scopulosa, yongi), but two species, Cladomyrma petalae and C. dianeae, are more catholic in their host usage; the first being a 'generalist' plant-ant colonising hosts across a broad taxonomic range, the second inhabiting several members of the genus Neonauclea. First results of host-choice experiments with C. petalae are presented and the potential mechanisms promoting host specificity are discussed. My studies of the Cladomyrma/plant associations indicate that codiversification and host shifts or host expansions, rather than cospeciation, shape the pattern of species interactions in this system. Finally, I propose a scenario in which three key traits of Cladomyrma –access to live stems, utilisation of indirect food rewards via trophobionts and 'neophily'– are hypothesised to favour niche differentiation and the acquisition of new hosts over evolutionary time.
Weltweit stellen die tropischen Tieflandregenwälder die Zentren der Artenvielfalt und Biodiversität dar. Sie sind das komplexeste aller terrestrischen Ökosysteme. Zu der Frage nach den Ursachen ihrer Artenvielfalt und deren Aufrechterhaltung gibt es neben theoretischen Erklärungsansätzen bisher kaum Studien, die versuchen, die Artenvielfalt eines Taxons bedingende ökologischen Faktoren kausal zu untersuchen. Die vorliegende Arbeit hatte zum Ziel, diese Thematik mit Hilfe eines neuen Forschungsansatzes aufzugreifen. Die Artenabnahme eines Taxons und die sie potentiell verursachenden Faktoren sollten entlang eines Höhengradienten aufgenommen werden, um im Umkehrschluß Hinweise zu finden, welche Bedingungen für die Aufrechterhaltung der Artenvielfalt entscheidend sind. Ameisen boten sich aufgrund ihrer starken Artenabnahme mit zunehmender Höhe besonders als Untersuchungsobjekt an. Sie nehmen zudem eine Schlüsselrolle im Ökosystem Tieflandregenwald ein, stellen unter den Invertebraten eine der taxonomisch mit am besten bearbeiteten Gruppen dar, und selbst einzelne Individuen können aufgrund ihrer eusozialen und seßhaften Lebensweise definitiv dem Fundort bzw. der Fundhöhe zugeordnet werden. Der grundlegende Versuchsansatz bestand darin, alle Untersuchungen vergleichend in Boden- und Vegetationsstratum durchzuführen. Dementsprechend wurden entlang des Höhengradienten in beiden Straten die Artenabnahme der Ameisen sowie abiotische und biotische Parameter aufgenommen. Weiterhin wurde eine Art (Diacamma sp.) exemplarisch herausgegriffen, um eventuelle Veränderungen ihrer Ökologie zu erfassen. Die Abnahme der Artenvielfalt von Ameisen am Boden und in der niederen Vegetation verläuft unterschiedlich. Dieser Unterschied ist jedoch nicht auf grundlegend unterschiedliche Faktoren zurückzuführen, sondern auf deren unterschiedliche Ausprägung entlang des Höhengradienten. Es handelt sich hier in beiden Straten zusammenfassend vor allem um vier Faktoren: Temperatur, Feuchtigkeit (umfaßt relative Luftfeuchtigkeit, Nebel, Regen und Staunässe), Nistraumverknappung und Nahrungsverknappung. Die in dieser Studie festgestellte signifikant positive Korrelation von Arten- und Temperaturabnahme betont die besondere Bedeutung des Parameters Temperatur. Diese wirkt einerseits durch eine Beeinträchtigung des Stoffwechsels direkt auf adulte Tiere und Brut und andererseits indirekt über die Veränderung abiotischer (Feuchtigkeit und Nistraum) und biotischer (Nahrung) Parameter. Die jeweiligen relativen Anteile von direktem und indirektem Temperatureinfluß, die mit zunehmender Höhe zur Artenabnahme führen, sind mit den vorliegenden Daten nicht quantifizierbar. Zudem verändern sich die Relationen entlang des Höhengradienten. Anhand ökologischer Überlegungen kann dennoch eine Einschätzung der jeweiligen Bedeutung der Einzelfaktoren vorgenommen werden. Der direkte Einfluß von Temperatur wird in der vorliegenden Studie mehrfach verdeutlicht. Diacamma sp. zeigt beispielsweise eine verminderte Leistungsfähigkeit durch eine signifikant geringere Bauaktivität mit steigender Höhe. Zudem scheint Diacamma sp. in der Lage zu sein, die Architektur ihrer Nester so zu verändern, daß sie thermoregulatorisch der Temperaturabnahme entgegenwirkt. Diese ethologische Flexibilität ermöglicht Diacamma sp., ihr Vorkommen über ihre physiologische Toleranz hinaus auszudehnen. Ein weiterer Hinweis auf einen direkten Temperatureinfluß ergibt sich aus der generellen Reduktion der Koloniegrößen mit zunehmender Höhe. Sie könnte unter anderem durch eine verringerte Fouragieraktivität begründet sein. Weiterhin nimmt die Nestdichte in beiden Straten in dem Höhenbereich signifikant ab, in dem die Durchschnittstemperaturen unter den ökologisch für Ameisen kritischen Schwellenwert von 20°C sinken. Der überwiegende Teil der Ameisen beider Straten nistet in thermoregulatorisch ungünstigem Nistraum (z.B. kleines Totholz, Laub, Humusschicht, Karton). Daher kann die Temperaturabnahme direkt zu einer Nistraumverknappung führen. Am Boden hat die temperaturinduzierte Zunahme von Staunässe mit steigender Höhe einen zusätzlichen negativen Effekt auf die Ressource Nistraum. Insbesondere die Schicht, in der die meisten Nester gefunden wurden (Humus-Wurzel-Schicht), ist davon betroffen. Zudem führt die signifikant an Höhe zunehmende Humus-Wurzel-Schicht dazu, daß der Oberboden im Übergang zwischen Tiefland- und unterem Bergregenwald immer weniger als Nistraum zur Verfügung steht. Im Bergregenwald hingegen treten durch vermehrten Epiphytenbewuchs für Bodenameisen neue Nistmöglichkeiten in der niederen Vegetation auf. In der Vegetation werden durch zunehmende Feuchtigkeit die Kartonnester instabil und damit in größeren Höhen unbrauchbar. Zudem trägt die temperaturabhängige Veränderung der Wuchsform des unteren Bergregenwaldes durch eine räumliche Verkleinerung des Gesamtlebensraumes zu einer Reduzierung der Nist- und Nahrungsressourcen bei. Die Nahrungsverfügbarkeit für Ameisen wird am Boden und in der niederen Vegetation ebenfalls negativ von Temperatur und Feuchtigkeit beeinflußt. Am Boden wird die Nahrungsverknappung z.B. durch den signifikant zunehmenden Nistabstand und den signifikant abnehmenden Beuteeintrag / Zeit von Diacamma sp. Kolonien deutlich. Es ist anzunehmen, daß Nahrungsmangel bei ihrer Verbreitungsgrenze von 1050 m eine wichtige Rolle spielt. Die Nahrungsverknappung für die räuberisch lebenden Bodenameisen wird vermutlich vor allem durch die Abnahme wichtiger Beutegruppen (z.B. Termiten) verursacht. Weiterhin hindert (Stau)Nässe kleine Ameisenarten (die große Mehrheit der hier gesammelten Arten) an der Nahrungssuche. In der niederen Vegetation verursacht der Wechsel des Florentyps auf Familienniveau zwischen Tieflandregenwald und Bergregenwald mit großer Wahrscheinlichkeit eine entscheidende Verknappung der Nahrungsressourcen über die Abnahme von Pflanzen mit extrafloralen Nektarien und der mit Ameisen assoziierten Trophobionten. Die Arten- und Abundanzabnahme der Ameisen verstärkt diese Tendenz wiederum durch negative Rückkopplung, da eine geringere Nachfrage das Angebot bzw. die Produktion der Nahrungssubstrate reduziert. Die vorliegenden Ergebnisse geben weiterhin Hinweise, welche Faktoren bei der Faunenverarmung in anthropogen veränderten Habitaten eine wichtige Rolle spielen können. Der größte Teil der Artenvielfalt des untersuchten primären Regenwaldes wird von kleinen Arten gestellt. Diese wiederum weisen in besonderem Maße eine Sensibilität gegenüber mikroklimatischen Veränderungen auf. Insbesondere abiotische Extreme wie Nässe und niedrige Temperaturen oder Trockenheit in Kombination mit hohen Temperaturen sind Faktoren, die sie am Fouragieren und Nisten hindern können. Daher trägt eine gut ausgebildete Laubstreu- bzw. Humusschicht grundsätzlich zur Artenvielfalt der Bodenameisen bei. Die Laubstreuschicht dient als Fouragierstratum, die Humusschicht als Hauptniststratum, und beide zusammen wiederum sind ein Schutz gegen die Austrocknung des Oberbodens. Ihre Bewahrung sowie die eines möglichst ausgewogenen Mikroklimas sind Grundvoraussetzung für die Vermeidung einer Artenverarmung. Für die niedrige Ausbreitungsgrenze von Ameisen an feucht-tropischen Höhengradienten (ca. 2300 m) scheinen spezielle Charakteristika ihrer eusozialen Lebensweise entscheidend zu sein. Hier sind insbesondere die ökologische Notwendigkeit geschützten Nistraums, energieaufwendiger Fouragierleistung und hoher Brut-Entwicklungstemperatur sowie die Unfähigkeit zur aktiven Nest- Temperaturerhöhung zu nennen. Historisch tiergeografische Gründe scheinen für die starke Abnahme der Ameisenvielfalt mit zunehmender Höhe bzw. für ihre Ausbreitungsgrenzen eine eher untergeordnete Rolle zu spielen. Temperaturabnahme allein bedingt jedoch nicht zwingend eine Artenabnahme, wie im unteren Bergregenwald an der gleichbleibenden Artenzahl des Bodenstratums deutlich wird. Die Bodenameisen müssen hier Lösungswege gefunden haben, dauerhaft mit weit unter 20°C liegenden Temperaturen, starker Nässe und geringer Sonneneinstrahlung zurecht zu kommen. Insofern können in den submontanen und montanen Bereichen der Regenwälder Höhenspezialisten vermutet werden, die jedoch nicht die subalpinen Regionen erreichen. Zusammenfassend ist festzuhalten, daß für eine hohe Artenvielfalt von Ameisen eine relativ hohe Temperatur, ausgewogen hohe Feuchtigkeit, Nistraumvielfalt und Nahrungsmenge sowie -qualität von entscheidender Bedeutung sind. Eine nähere experimentelle Analyse ihres jeweiligen relativen Gewichtes und ihrer konkreten Wirkweise auf einzelne Arten bzw. Artengruppen wäre für die Zukunft wünschenswert.
Zur Untersuchung der Zusammensetzung und Diversität von Bambusameisengemeinschaften (Hymenoptera, Formicidae) sowie ausgewählten Nischenparametern der beteiligten Ameisenarten, wurden auf dem Gelände des Gombak Field Studies Centre (University Malaya, Selangor, Westmalaysia) fünf Haine von Riesenbambusarten (Gigantochloa scortechinii, G. thoii, Bambusoidea) gefällt und abgesammelt. Es wurden Hinweise auf deterministische oder stochastische Strukturierungsmechanismen der Ameisengemeinschaften gesucht. Hierzu wurden verschiedene Fragestellungen anhand der Multiplen Regression untersucht. Zusätzlich wurden Stichproben von Bambusschößlingen und jungen Bambushalmen hinsichtlich der Nutzungsweise und Besiedlung durch Ameisen studiert. In der vorliegenden Arbeit werden die Ergebnisse der Auswertung auf Hainebene, d. h. der Bambusameisenzönosen als Ganzes betrachtet, vorgestellt. 1. In fünf Bambushainen wurden bisher 66 nistende Ameisenarten aus 21 Gattungen und 6 Unterfamilien identifiziert. Die drei gattungs
Im Gegensatz zu den Arbeiterinnen der sozial lebenden Wespen und Bienen sind alle Ameisen flügellos. Die Flügellosigkeit der Ameisenarbeiterinnen bedingt, dass selbst kleinste Räume in der Erde oder in Holz von Kolonien besiedelt werden können. Sie war eine wichtige Voraussetzung für ihre Vorherrschaft auf dem Boden. Die für bodennistende Arten als Baumaterial in Frage kommende Erde hat jedoch die Eigenschaft, dass z. B. starke Regenfälle die Stabilität der Bauwerke negativ beeinflussen können. Deshalb und weil Erde in den höheren Regionen des Laubdaches schwierig zu beschaffen ist, sind Erdnester für den Übergang zum Leben in den Baumkronen wenig geeignet. Höhlungen in verrottendem Holz stehen aufgrund der schnellen Zersetzung in den Tropen nur für einen relativ kurzen Zeitraum und wenig regelhaft zur Verfügung. Der dadurch vorherrschende Mangel an Nistraum im tropischen Regenwald ist möglicherweise der wichtigste Faktor der Koloniegrößeregelung bei Ameisen. Erst mit dem Übergang zu aktivem Freinestbau ist es den Ameisen gelungen, sich (i) unabhängig von natürlichen Höhlen zu machen und dadurch große Kolonien zu etablieren, (ii) den Kronenraum als Habitat dauerhaft zu erschließen, (iii) negativen Witterungseinflüssen entgegenzuwirken und (iv) vorhandene Nahrungsressourcen in diesem Stratum permanent zu nutzen. Die in der vorliegenden Arbeit untersuchten freinestbauenden Ameisen sind selbst in der Lage, additiv Nistraum zu schaffen. Die Vertreter dieser Gilde legen ihre Nester nicht in der Erde oder in natürlichen oder selbst ,ausgeräumten-- Hohlräumen von Bäumen an, sondern konstruieren aktiv frei in der Laubregion der Holzgewächse Nisträume bzw. Unterstände, indem sie Material zusammentragen oder herstellen, mit dem eine Abschottung des Brut- und Nahrungsraumes gegenüber der Umwelt erreicht wird. Die erfolgreiche Besiedlung der Kronenregion war den Ameisen nur durch veränderte Bautechniken und eine verbesserte und angepasste Materialverwendung möglich. Gegenstand der vorliegenden Dissertation war zunächst die Bestandsaufnahme der freinestbauenden Ameisen der Baumkronenregion südostasiatischer Regenwälder. Der erste Schritt einer Analyse der Freinestkonstruktionen von Ameisen bestand darin, die Vielfältigkeit der verwirklichten Nestformen zu erfassen und darzustellen, Gemeinsamkeiten und Unterschiede herauszuarbeiten und die beteiligten Ameisenarten zu identifizieren. Im zweiten Teil der Arbeit wurden intensiv die proximaten Mechanismen des aktiven Nest- und Pavillonbaus untersucht. Dazu wurden die einzelnen Schritte der Nestentwicklung für sieben Ameisenarten aus sechs Gattungen in allen Details dargestellt und zusammenfassend beschrieben. Es wurde ermittelt, welche Baumaterialien die verschiedenen Ameisen nutzen und wie diese Materialien verwendet werden. Zur Bestimmung der verschiedensten Nesttypen wurden neben architektonischen Unterschieden auch Differenzen in der Substratwahl, Materialbeschaffenheit und in der Funktion der Nestkonstruktionen berücksichtigt. Als weiteres Kriterium zur Klassifikation arborealer Nestanlagen diente die Verschiedenartigkeit der Materialbearbeitung und der Substratvorbereitungen durch die Ameisen. Einige dieser Nestcharakteristika sind quantitativer, andere qualitativer Natur. Im Verlauf der Untersuchung wurden 1767 Kolonien bearbeitet und eingeordnet. Davon konnten insgesamt 100 Arten bzw. Morphospezies bestimmt und als echte Freinestbauer im Sinne der vorher formulierten Definition charakterisiert werden. Die ermittelten Arten verteilten sich auf acht Gattungen aus den drei Unterfamilien Formicinae, Dolichoderinae und Myrmicinae. Diese drei Unterfamilien gelten als die am weitesten entwickelten Ameisen und dominieren in der Kroneregion tropischer Regenwälder. Auffallend an dieser höher entwickelten Gruppe von Ameisen ist die Tendenz, pflanzliche Produkte als Hauptnahrungsressource zu nutzen. Die artenreichste Gattung Polyrhachis (39 Arten) gehört der Unterfamilie Formicinae an; zusammen mit den Gattungen Camponotus (10) und Oecophylla (1) wurden allein 50 Arten aus dieser Unterfamilie gefunden. In der Gattung Camponotus konnten zwei Untergattungen (C. Karavaievia, C. Myrmotarsus) mit freinestbauenden Arten ermittelt werden. Mit 29 identifizierten Arten aus drei Gattungen stellten die Myrmicinae die zweitgrößte Unterfamilie, wobei allein 23 Arten auf die Gattung Crematogaster entfielen. In den beiden anderen Myrmicinen-Gattungen Monomorium (5 Arten) und Myrmicaria (1 Art) fanden sich nur vergleichsweise wenige Vertreter mit Freinestbau. Die dritte Unterfamilie, die Dolichoderinae, wird durch die Gattungen Dolichoderus und Technomyrmex mit zusammen 21 Arten repräsentiert. Die als Freinestbauer ermittelten Ameisenarten zeigen hinsichtlich ihrer Koloniestruktur und Nestorganisation einige nennenswerte Parallelen. Die Mehrzahl der Arten lebt in polydomen Kolonieverbänden, die ihre manchmal mehr als 200 Nestanlagen meist nur auf eine einzelne oder wenige Nestpflanzen verteilen. In den Gattungen Camponotus und Monomorium sind alle Arten polydom organisiert, bei Dolichoderus und Technomyrmex sind es 90 % und bei Crematogaster 70 %. Polydomie findet man auch bei Myrmicaria arachnoides und Oecophylla smaragdina. Als weitere Gemeinsamkeit fällt ins Auge, dass mit Ausnahme von Myrmicaria arachnoides und Polyrhachis spp. funktionell als Stallnester zu charakterisierende Nestkonstruktionen überwiegen. Insbesondere bei Technomyrmex (100 %), Dolichoderus (100 %), Camponotus (70 %), Crematogaster (82 %), aber auch bei Monomorium (100 %) und Oecophylla smaragdina besteht eine ausgeprägte Tendenz, die Honigtau liefernden Trophobionten und die Brut in denselben Bauten unterzubringen. Bei den meisten Arten besteht somit ein enger Zusammenhang zwischen Freinestbau und trophobiotischer Ernährungsweise. Diese enge räumliche Vereinigung von Nahrungs- und Nistressourcen bildet die Basis für die Entwicklung individuenreicher, konkurrenzstarker und ökologisch dominanter Ameisenarten in der Kronenregion. Insgesamt wurden 22 unterscheidbare Nesttypen ermittelt und in allen Einzelheiten dargestellt. Auf 47 Bildtafeln wurden dazu fotografisch und zeichnerisch die Charakteristika der verschiedenen Nesttypen hinsichtlich der Nestarchitektur und ethologischer Besonderheiten der beteiligten Ameisenarten abgebildet. Während die Anzahl der freinestbauenden Ameisenarten sicherlich nur annähernd erfasst werden konnte, ist bei der Darstellung der verschiedenen Nesttypen zu erwarten, dass die erfolgreichsten, auf der Basis ethoökologischer sowie material- und substrattechnischer Unterschiede ermittelten Erscheinungsformen aufgeklärt werden konnten. Die vorgenommene Unterteilung der Hauptkategorie ,Nestsubstrat-- in drei blattgebundene und zwei stammgebundene Unterkategorien zeigte, dass die zweifach geschützte und materialsparende Position zwischen Blättern, von zusammen 13 Arten aus den Gattungen Polyrhachis (6), Camponotus (Karavaievia) (2), Oecophylla (1) und Crematogaster (3) präferiert wurde. Nester auf der vergleichsweise ungeschützten Blattoberseite wurden nur von Arten der Gattung Polyrhachis gebaut. Die bevorzugte Position der Polyrhachis-Nester war auf der Blattunterseite, 67 % aller Polyrhachis Nester waren dort lokalisiert. Die Nester der Untergattung Camponotus (Karavaievia) waren zu 75 % und die von Technomyrmex, Monomorium und Myrmicaria gar zu 100 % auf der Blattunterseite angebracht. Zusammen betrachtet waren 64 % aller im Rahmen der vorliegenden Arbeit aufgenommenen Nestbauten auf der Unterseite einzelner Blätter zu finden. Von allen Nestbauten auf Stamm- und Astoberflächen waren 75 % von Crematogaster-Arten besiedelt. Diese Nestposition konnte ansonsten nur noch bei zwei Polyrhachis-Arten und bei der mit Epiphyten assoziierten Camponotus (Myrmotarsus) gefunden werden. Je nach Anteil der hauptsächlich verarbeiteten Baustoffe kann man in vier Nestmaterialtypen unterteilen: (i) Nester aus toten pflanzlichen Materialien, (ii) Pilznester, (iii) Seidennester und (iv) Wurzelnester (Ameisengärten). Am häufigsten vertreten waren die aus Larvalseide gefertigten Webenester der Gattungen Polyrhachis, Camponotus (Karavaievia) und Oecophylla; insgesamt 45 % aller Funde gehörten zu dieser Materialgruppe. Fremde Seide konnten neben drei Polyrhachis-Arten auch drei Arten aus der Gattung Dolichoderus verarbeiten. Bemerkenswert ist der hohe Anteil pilzbewachsener Nestbauten. In allen drei Unterfamilien fanden sich Arten, die zu unterschiedlichen Teilen Pilze in ihren Nestern hielten. In der Gattung Technomyrmex waren 70 % aller älteren Nester vollständig aus Pilzhyphen gebildet. Mehr als die Hälfte des Nestmaterials von Monomorium-Nestern bestand ebenfalls aus einem dichten Pilzmyzel. Pilze bildeten auch in den Nestern von einigen Arten der Gattungen Dolichoderus, Crematogaster und Camponotus (Myrmotarsus) die maßgebliche Materialkomponente. Folgt man der bisher verwendeten Begriffsdefinition, die arboreale Ameisennester in der Regel nach den hauptsächlich verwendeten Baumaterialien einteilt, so muss man zu den bislang bekannten Karton- und Seidennestern die dritte Gruppe der Pilznester hinzufügen. Die Wahl des jeweiligen Baumaterials wirkt sich direkt auf die angewandten Bearbeitungsmechanismen und die Art und Weise der Nestfixierung und Neststabilisierung aus. Die Vertreter der Myrmicinen-Gattungen Myrmicaria und Monomorium zeigten in der Materialnutzung sowie bei der Stabilisierung und Fixierung der Konstruktionen gattungsspezifische Eigenheiten. Die Festigung der Nestbauten werden über H- Brückenstabilisierung (Myrmicaria) und Trichomstabilisierung (Monomorium) erreicht. Pilzhyphenstabilisierte Nester bauen Vertreter der Gattungen Technomyrmex, Dolichoderus und Crematogaster. Wobei innerhalb der beiden letztgenannten Gattungen noch eine Reihe weiterer Fixierungsmechanismen auftreten können. Bei Dolichoderus und Crematogaster sind die Methoden der Materialverfestigung sehr vielfältig und haben jeweils eine große Radiation erfahren (Stabilisierung durch Fremdseide, Pilze, Wurzeln und Klebstoff). Den Camponotus-Arten war die Eroberung der Baumkronenregion mit Hilfe von wurzelstabilisierten Ameisengärten (C. (Myrmotarsus)) und mit der Verwendung klebriger Larvalseide (C. (Karavaievia)) möglich. Beschränkt auf Seide zur Nestfixierung sind die Arten der Gattungen Oecophylla und Polyrhachis. Das bestimmende Element in der Nestarchitektur von fast allen Ameisennestern ist die Bogenkammer oder der Bogengang. Die innere Architektur von Oecophylla-Nestern weicht praktisch als einzige von dieser weit verbreiteten ,Bogenkammer-Struktur-- ab. Bei allen anderen Ameisenarten sind die Nestkammern in der Höhendimension in etwa auf die Größe einer einzelnen Arbeiterin beschränkt. Wegen der kooperativen Zusammenarbeit vieler Arbeiterinnen bei Oecophylla wird die Korrelation von Kammerhöhe und Körpergröße in dieser Gattung aufgehoben. Morphologische Besonderheiten, die als Anpassung an das Leben in Freinestern gedeutet werden könnten, konnten in der vorliegenden Arbeit bei keiner der untersuchten Arten festgestellt werden. Bei Bienen, Wespen und bei den Termiten wird überwiegend eine modellierende Bearbeitungstechnik angewandt. Die körpereigenen, flüssig-adhäsiven Substanzen (Wachs, Sekret und Kot) werden dazu oft noch mit Wasser verdünnt. Auch viele Ameisenarten verarbeiten wassergetränktes Material, nur einige wenige Vertreter der Gattung Crematogaster versetzen es allerdings mit klebenden Sekreten. Die durch das Baumaterial und dessen Fixierung am Substrat vorgegebene Verschiedenartigkeit der Bearbeitungstechniken hat bei den Ameisen zu sehr komplexen Verhaltensweisen geführt. So zum Beispiel das gezielte Verzahnen von Blatthaaren und das Verbinden von Baustoffen ohne die Zugabe von Leim. Weiter bearbeiten Ameisen Materialien, indem sie sie mit Fäkalien und anderen nährstoffreichen Substanzen düngen und so das Wachstum von Pilzhyphen und Wurzelfasern aktiv lenken. Die Seidenweber zeigen mit dem Verspinnen noch eine zusätzliche Möglichkeit der Materialbearbeitung bei Ameisen. Im Vergleich mit anderen sozialen Insekten findet man innerhalb der Ameisen eine mehr generalisierte Bautechnik, die möglicherweise variabler und effizienter ist als die Spezialisierung auf nur eine Materialkomponente. Generell sind die Freinestbauer, anders als die weitgehend deterministisch eingenischten obligaten Pflanzenameisen, bei der Auswahl des Nistplatzes nicht auf vorgegebene Hohlraumstrukturen (Domatien etc.) ganz bestimmter Pflanzen angewiesen, sondern erhöhen ihre Beweglichkeit in der Nistplatzwahl durch die Auswahl vergleichsweise häufig zu findender Substrattypen und Nestmaterialien. Bei allen untersuchten Freinestbauern konnte keine Spezialisierung auf eine bestimmte Pflanzenart festgestellt werden. Stochastische Besiedlungsprozesse gewinnen damit in dieser Ameisengilde, im Vergleich mit den myrmekophytischen Ameisenarten, an Bedeutung. In der vorliegenden Dissertation konnte erstmalig experimentell gezeigt werden, dass die bislang nur aus der Neotropis bekannten Ameisengärten auch im paläotropischen Faunengebiet zu finden sind. Die erstaunlichen Ähnlichkeiten zwischen neotropischen und paläotropischen Ameisengarten-Assoziationen deuten darauf hin, dass es in den unterschiedlichen tropischen Gebieten zu einer konvergenten und parallelen Entwicklung von ähnlich präadaptierten Ameisen und Pflanzen gekommen ist. Freinestbau ist mehrfach unabhängig voneinander entstanden. Sehr wahrscheinlich stand bei vielen Ameisen die Sicherung von Trophobiosestellen am Anfang der Entwicklung. Denkbar ist ebenso, dass die Vergesellschaftung von Epiphyten und Ameisen bei einigen Gruppen die Basis für die Evolution von Freinestbau war. Die Fertigung ausgedehnter Schutzbauten außerhalb der Nester, wie man sie beispielsweise bei der Myrmicinen-Gattung Pheidole findet, könnte ebenfalls die Evolution von frei gestalteten Nestern initiiert haben. Insgesamt wird deutlich, dass Konkurrenzvermeidung und die Erweiterung des Nistraum- und Nahrungsspektrums die drei bestimmenden Faktoren in der Evolution des Nestbauverhaltens von Ameisen waren. Anders als bei Wespen und Termiten fehlt den Ameisen jegliche Prädisposition für die Produktion von liquiden Klebesubstanzen. Sie haben vielfältige Wege gefunden, Wasser zum Nest zu transportieren und damit ihren Möglichkeiten entsprechende Verarbeitungs- mechanismen anzuwenden. Die fehlende gemeinsame Prädisposition der Ameisen für eine dauerhafte Fixierung von Baumaterialien, wie sie für freie Nestkonstruktionen notwendig ist, hat viele verschiedene Lösungen hervorgebracht und ist einer der Gründe für die hohe Variabilität der Freinestbauten bei Ameisen. Die in der vorliegenden Arbeit gezeigte variable Nistbiologie hat einen wichtigen Einfluss auf die Abundanzstrukturen tropischer arborealer Arthropodengemeinschaften und ist in hohem Maße für den großen Erfolg der Ameisen in diesem Habitat verantwortlich.
Organisation und Steuerung des Treiberameisenverhaltens südostasiatischer Ponerinen der Gattung Leptogenys Treiberameisen zeichnen sich durch eine einzigartige Kombination aus Wanderverhalten (häufige Umzüge) und koordinierter Massenjagd (kollektive Raubzüge) aus. Obwohl allgemein angenommen wird, daß die Kommunikation dieser Ameisen zu einem bedeutenden Teil durch Spurpheromone erfolgt, sind bisher in den drei Unterfamilien Ecitoninae, Dorylinae und Aenictinae nur wenige Drüsen bekannt, die derartige Pheromone produzieren. Welche Rolle einzelne Pheromonkomponenten bei der Koordination des komplexen Schwarmverhaltens spielen, wurde bislang noch nicht untersucht. In der Gattung Leptogenys gibt es ein weites Spektrum verschiedener Ökotypen, u.a. auch Arten, die echtes Treiberameisenverhalten zeigen. Bei sieben malaiischen Leptogenys-Arten wurde die Koordination des kollektiven Verhaltens auf Basis der Kommunikation zwischen den Einzelindividuen untersucht. Bei allen Arten wurden mehrere Spurpheromone entdeckt, die in den Gift- und in den Pygidialdrüsen lokalisiert waren. Ökologisch verschiedene Arten wiesen Unterschiede im Kommunikationssystem auf. Die Koordination des Treiberameisenverhaltens von L. distinguenda wurde besonders ausführlich untersucht. Diese Art besitzt ein Mehr-Komponenten-Signalsystem, bei dem die einzelnen Pheromone multiple Funktionen erfüllen. Die Pygidialdrüse enthält eine Pheromonkomponente, die ca. 20 min lang gute Spurfolge bewirkt. Sie dient der Orientierung einzelner Individuen und damit dem Koloniezusammenhalt. Aufgrund konzentrationsabhängiger Spurfolge und durch Modulation der Spurkonzentration kann eine langsame Rekrutierung auf neues Territorium mit diesem Pheromon koordiniert werden. Die Giftdrüse enthält zwei Pheromone. Eine sehr flüchtige Substanz (4-Methyl-3-Heptanon) bewirkt nur 1-2 min lang eine außerordentlich starke Attraktion sowie Erregung, Beschleunigung der Fortbewegung und Aggressivität. Mit dieser Komponente werden Beuterekrutierungen koordiniert. Die starke Wirkung kann das Verhalten zahlreicher Tiere und auf diese Weise sogar die Vorstoßrichtung ganzer Raubzüge beeinflussen. Aufgrund der extremen Flüchtigkeit des Pheromons ist dieser Einfluß jedoch nur momentan, so daß die Raubzugformation außerordentlich dynamisch ist. Eine zweite Komponente der Giftdrüse bewirkt bis zu 5 min lang gute Spurfolge ohne Erregung. Diese Substanz dient ebenfalls dem Koloniezusammenhalt. In den chemischen Spuren können Komponenten gemischt und der Informationsgehalt dadurch variiert werden. Zudem reagieren einzelne Tiere je nach Motivation nur auf bestimmte Komponenten, was situationsspezifisches Verhalten ermöglicht. Beute eintragende Arbeiterinnen folgen selektiv einer Komponente der Pygidialdrüse und ignorieren Komponenten der Giftdrüse. Auf diese Weise steuern sie gezielt das Nest an. In ähnlicher Weise fungieren beim Nestumzug hoch konzentrierte Spuren aus Pygidialdrüsensekret als Leitlinie zum neuen Nest. Umziehende Tiere meiden zudem sehr empfindlich das Sekret der Giftdrüse. Auf diese Weise werden Raubzugspuren klar unterschieden und nicht betreten, so daß beide für Treiberameisen charakteristischen Verhaltensweisen synchron ausgeführt werden können. Der Nestumzug wird mit einem distinkten, mechanischen Signal ausgelöst. Im Notfall kann ein Umzug oder Raubzug mit einer spezifischen Alarmsubstanz aus der Mandibeldrüse abrupt beendet werden. Dies ist z.B. von Bedeutung, wenn sich artgleiche Kolonien begegnen. Das Kommunikationssytem von L. distinguenda zeigt, wie komplexes Verhalten mit einem minimalen Satz an Signalen koordiniert werden kann. Nach den Ergebnissen der vorliegenden Arbeit reicht ein einziges Pheromon bei weitem nicht aus, um treiberameisentypisches Verhalten zu realisieren. Treiberameisen sind besonders reich an Myrmekophilen. Die Integration dieser Ameisengäste vor allem in das Kommunikationssystem ihrer Wirte wurde in der vorliegenden Arbeit ebenfalls untersucht. Dabei wurden unterschiedliche Strategien vorgefunden, mit denen Myrmekophile den häufigen Umzügen ihrer Wirtskolonie folgen. Ein Teil der Arten läßt sich von den Ameisen auf der Brut aufsitzend in das neue Nest tragen. Diese Arten reagieren i.d.R. nicht auf die Pheromonspuren der Ameisen. Ein anderer Teil ist in der Lage, den Pheromonspuren aktiv zu folgen. Diese Fähigkeit ist erstmalig bei einer Spinne (Gamasomorpha maschwitzi) nachgewiesen worden. Einen besonders bemerkenswerten Gast stellt die neu beschriebene Lungenschnecke Allopeas myrmecophilos dar. Sie sondert selektiv bei Kontakt mit L. distinguenda ein spezifisches Attraktionssekret ab, welches die Ameisen dazu veranlaßt, die Schnecke mit den Mandibeln aufzunehmen und ins Nest zu tragen. A. myrmecophilos ist der erste nachgewiesene Fall eines Myrmekophilen aus dem Stamm der Mollusken.
Die Interaktion zwischen der Kannenpflanze Nepenthes bicalcarata und der mit ihr assoziierten Camponotus schmitzi stand im Zentrum der Arbeit. Dabei wurden vier Themenbereiche zur genaueren Bearbeitung ausgewählt. Drei davon (Kapitel 3, 5 und 6) sind in vier Artikeln bereits in Fachzeitschriften publiziert worden (siehe Kapitel 14.1.2). Die Untersuchungen aus Kapitel 4 sind noch unveröffentlicht. Entsprechend den sich entwickenden Ergebnissen wurden zudem auch vergleichende Untersuchungen zu anderen mehr oder minder im gleichen Habitat vorkommenden Nepenthes Arten, N. gracilis, N. ampullaria, N. mirabilis var echinostoma, N. rafflesiana und N. albomarginata durchgeführt.
Obligate Mutualismen gehören zu den bevorzugten Studienobjekten zur Erforschung der Mechanismen und Faktoren, welche Artenvielfalt hervorbringen und erhalten. Die Bestäubung der diözischen Pionierbaumgattung Macaranga (Euphorbiaceae) war bislang unbekannt, und Untersuchungen zur Myrmekophytie in Macaranga beschränkten sich in der Vergangenheit auf die Jugendphase der Assoziation mit Ameisen. Während als gesichert galt, dass die Partnerorganismen in Myrmekophytie- und Bestäubungssystemen voneinander profitieren, blieben Konflikte bzw. Konfliktlösungen in diesen Mutualismen weitgehend unerforscht. Ziel der vorliegenden Untersuchung war es, die Bestäubung der Ameisenpflanzengattung Macaranga aufzuklären und potentielle Konflikte der Fortpflanzung von Macaranga mit dem Myrmekophytiesystem zu analysieren. Die insgesamt 16-monatigen Freilanduntersuchungen in Malaysia und Indonesien wurden in 6 Aufenthalten (1998-2001) durchgeführt. Von 27 Macaranga-Arten wurden Daten zur Blütenbiologie erhoben. Die Hauptuntersuchungsart war M. hullettii. Zusätzlich fanden Untersuchungen der Infloreszenzmorphologie aller westmalesischen Macaranga-Arten in den Herbarien des Forest Research Institute Malaysia (FRIM) und des Nationaal Herbarium Nederland in Leiden statt. 1) Die Bestäubung von Macaranga Von 27 der 61 Macaranga-Arten, welche auf der Halbinsel Malaysia und den großen Sundainseln Borneo und Sumatra vorkommen, wurden insgesamt 28544 Blütenbesucher gesammelt und das Verhalten der dominierenden Blütenbesucher beobachtet. Bei 52% der Arten dominierte eine Thripsart der Gattung Neoheegeria (Phlaeothripinae; Thysanoptera), bei 15% Thripse der Gattung Mesothrips (Phlaeothripinae, Thysanoptera), bei 11% Wanzen (Miridae und Anthocoridae; Heteroptera), bei 4% Thripse der Tribus Terebrantia, bei 4% Rüsselkäfer, und bei 15% diverse andere Insekten der Ordnungen Coleoptera, Hymenoptera und Diptera. Für den dominierenden Blütenbesucher Neoheegeria spec. wird gezeigt, dass er als effektiver Bestäuber von M. hullettii fungiert. Der Pollentransfer von männlichen zu weiblichen Bäumen und der Samenansatz nach ausschließlichem Zugang von Thripsen zu den Blüten konnte nachgewiesen werden. Die Thripse durchlaufen ihre Larvalentwicklung in weiblichen und männlichen Blütenständen. Der Vergleich der Blühzeiten von M. hullettii und der Entwicklungsdauer von Neoheegeria spec. erbrachte, dass die Dauer der Anthese des Wirtes und die der Entwicklung der Thripse aufeinander abgestimmt ist. Männliche Blütenstände öffnen ihre Knospen zeitlich vor den weiblichen Blütenständen, sodass eine Vermehrung der Thrips-Bestäuber-Population in männlichen Bäumen vor dem Beginn der Blühzeiten beider Geschlechter stattfinden kann. Die Analyse der Bestäubungstypen zeigte, dass blütenbedeckende Hüllblättchen mit Trichomnektarien als Belohnung für bestäubende Thripse und Wanzen dienen. Dieses Merkmal wird für thrips- und wanzenbestäubte Macaranga-Arten als homolog angesehen. Die Blütendeckblättchen umschließen die Blüten so eng, dass nur kleinsten Insekten der Zugang zu den Blüten gewährt wird. Neoheegeria-bestäubte Macaranga-Arten zeichnen sich durch ein reduziertes Androeceum und ein wenig strukturiertes Tectum der Pollenkörner aus. Die Bestimmung der Blühzeiten von 7 sympatrischen Macaranga-Arten erbrachte, dass Arten mit den gleichen Bestäubern zeitlich isoliert sind. Dagegen weisen Arten, deren Blühzeiten sich überschneiden, verschiedene Bestäuber auf. 2) Interaktionen der Reproduktion von Macaranga mit der Myrmekophytie Konflikte zwischen den Bestäubern und den Partnerameisen von Macaranga konnten nicht beobachtet werden. Dafür trat ein anderer, schwerwiegender Konflikt in Erscheinung, der drastische, negative Auswirkungen auf die Fortpflanzung von Macaranga hatte. Die Partnerameisen zerstörten zeitweise die Blüten ihrer Wirte. Dieses Kastrations-Verhalten zeigte sich bei mehreren Crematogaster-Arten, die verschiedene Macaranga-Arten besiedeln. Im Gombaktal, ein Hauptuntersuchungsgebiet im Tieflandregenwald Westmalaysias, trat das Kastrationsphänomen am häufigsten bei M. hullettii auf. 56% der Population wurde von ihren Ameisenbesiedlern (hauptsächlich C. msp. 4) kastriert. Das Phänomen wies eine ungleichmäßige Verteilung auf: Blütenzerstörung korrelierte signifikant negativ mit der Baumgröße. Die Analyse verschiedener Kolonie- und WirtspflanzenParameter ergab Hinweise, dass nicht Nahrungs- bzw. Nistraumlimitierung sondern die Koloniegröße ein entscheidender Faktor für dieses Verhalten war. Ab einer bestimmten Koloniegröße setzte nicht nur das Kastrationsverhalten aus, sondern auch die Außenaktivität der Ameisen nahm stark ab. Gleichzeitig stieg die Brutzunahme deutlich an, und die regelmäßige Geschlechtstierproduktion setzte ein. Die Ergebnisse deuten darauf hin, dass Crematogaster (Decacrema), welche noch nicht ihre reife Koloniegröße erreicht haben, die Blüten ihres Wirtsbaumes zerstören, wenn dieser vor den Ameisen mit der reproduktiven Phase einsetzt. Aufgrund der daraus resultierenden Kosten für die Wirtspflanze könnte die Crematogaster-Art (msp. 4) als "unpassender" Partner von M. hullettii angesehen werden. Während die Schutzwirkung gegen Herbivorie an jungen Blättern durch C. msp. 4 aus früheren Untersuchungen gut belegt ist, fungiert diese Ameisenart durch ihr Kastrationsverhalten teilweise als Parasit in der Assoziation mit M. hullettii. Es wird ein Modell vorgeschlagen, in dem die Kastration als ein Konflikt zwischen den Partnern über das Einsetzen der Reproduktionsphase angesehen wird. "Passende" Partner sind folglich daran erkennbar, dass sich das Einsetzen ihrer Reproduktionsphasen weitgehend synchronisiert hat. Aus dieser Hypothese ergibt sich, dass der dominierende Ameisenbesiedler C. msp. 4 von M. hullettii im Tiefland des Untersuchungsgebietes nicht als "echter" Mutualist anzusehen ist. In den submontanen Regionen ist M. hullettii ausschließlich mit C. msp. 3 assoziiert. Letztere Crematogaster-Art wird als der eigentliche "passende" Partner vorgeschlagen, während C. msp. 4 als "echter" Mutualist einer zweiten Macaranga-Art, M. bancana, diskutiert wird. Auf der Basis der gewonnenen Ergebnisse und der Grundlage von jüngsten phylogenetischen Analysen von Macaranga werden Überlegungen zur Evolution der Bestäubungs- und Myrmekophytiesysteme vorgestellt.
Durch Längenmessungen an Exuvien wurden die Größenverhältnisse von Beinlängen, Drehachsenlängen der Beingelenke und der Fläche des Carapax bei C. salei ermittelt. Für die hydraulisch gestreckten Femoro- Patellar- und Tibio-Metatarsalgelenke wurden die Volumen-Winkel-Kennlinien bestimmt. Das Sprungverhalten wurde durch Hochgeschwindigkeits-Videoaufnahmen (Bildfrequenz 500 Hz) mit drei Kameras dokumentiert. Aus den volumetrischen, kinematischen und morphometrischen Daten wurden die Volumenverschiebungen berechnet, die bei Sprungbewegungen auftreten. Aus der prosomalen Volumenverschiebung konnte der korrespondierende Carapaxhub berechnet werden. Mit einer Miniatur- Kraftmeßplattform und einem mit Schrittmotoren getriebenen "x-y-z-Tisch" wurden Steifigkeiten des Prosomas von Perania nasuta Schwendinger, 1989 und ausgewählten anderen Taxa bestimmt. Bei Cupiennius salei gibt es zwei unterschiedliche Sprungtypen: Unvorbereitete Sprünge als Reaktion auf sehr plötzliche Störungen zeichnen sich durch eine große Vielfalt der Bewegungsmuster aus. Vorbereitete Sprünge zeigen charakteristische Beinstellungen und Kontaktphasenmuster: Zunächst erfolgt eine etwa 20 ms dauernde Ausholbewegung, anschließend beginnt die 22 - 42 ms dauernde Beschleunigungsphase. Die Körperlängsachse vollzieht während der Beschleunigungsphase eine Vorwärtsrotation um etwa 50°, die nach dem Verlust des Bodenkontaktes der Beine gestoppt und umgekehrt wird. Dies erfolgt wohl durch ein kontrolliertes Bremsen des Ausstoßes des Sicherheitsfadens. Bei vorbereiteten Sprüngen konnten Sprungweiten bis zu 0.43 m beobachtet werden, die maximalen vertikalen Geschwindigkeiten betrugen 0.07 - 0.82 ms-1, maximale horizontale Geschwindigkeiten lagen bei 0.65 - 1.25 ms-1. Bei vorbereiteten Sprüngen wurden vertikale Beschleunigungen von 0.74 – 33.70 ms-2 und horizontale Beschleunigungen von 20.5 – 68.4 ms-2 erreicht. Die Kontaktphasen der Beine enden in einer charakteristischen Reihenfolge: Die Vorderbeine haben meist keinen Bodenkontakt, die dritten Beine heben nach durchschnittlich 37 % und die vierten Beine nach durchschnittlich 69 % der Dauer der Beschleunigungsphase ab. Zuletzt verlieren die zweiten Beine den Bodenkontakt. Zu Beginn der Beschleunigungsphasen richten sich innerhalb von durchschnittlich 4.6 ms Stacheln auf der Oberfläche der Beine auf. Die Stachelaufrichtung erfolgt bei Drucken von etwa 35 bis etwa 65 kPa. Dies zeigt einen Druckanstieg in den Beinen auf Werte von ³ 65 kPa während der Beschleunigungsphase an. Der Hauptanteil der Volumenverschiebungen in den Beinen wird durch Bewegungen der Femoro-Patellargelenke verursacht. Die Bewegungen der Tibio-Metatarsalgelenke bewirken nur geringe Volumenverschiebungen. Aufgrund der anatomischen Struktur der Trochantero- Femoralgelenke sind die bei Bewegung dieser Gelenke verschobenen Volumina vernachlässigbar klein. Die Abschätzung der zur Beinstreckung bei Sprüngen erforderlichen Carapaxverschiebungen ergab sehr geringe Werte, es sind nur Verschiebungen um wenige 1/100 bis 1/10 mm erforderlich. Für die vollständige Streckung aller Beine muß der Carapax nur um 10% der aufgrund der anatomischen Gegebenheiten maximal möglichen Strecke verschoben werden. Bei den Untersuchungen an Perania nasuta wurden prosomale Steifigkeiten von mehr als 3500 Nm-1 für Weibchen und mehr als 6500 Nm-1 für Männchen ermittelt. Das Prosoma von Perania nasuta ist sehr viel rigider als bei anderen Spinnen (Pholcus: 131 Nm-1, Zelotes: 79 Nm-1, Pardosa: 72 Nm-1, Dysdera: 1900 Nm-1). Die Carapaxverschiebung, die den zur vollständigen Beinstreckung erforderlichen Volumentransport bewirkte, würde bei Perania eine Verformungsarbeit von bis zu 27.56 myJ erfordern, bei den anderen Spinnen nur maximal 1.67 myJ (Dysdera). Das Sprungverhalten von Cupiennius salei läßt sich keinem der bislang beschriebenen Sprungtypen zuordnen. Hinsichtlich der Sprungweite und Geschwindigkeiten sind die Sprungleistungen von Cupiennius mit denjenigen von Salticiden vergleichbar. Die geringen Carapaxverschiebungen beim Sprung lassen sich im Sinne einer Optimierung der Arbeit extrinsischer coxaler Muskeln interpretieren. Eine Minimierung von Carapaxverschiebungen sollte die Koordinierbarkeit der Bewegungen der Coxae erhöhen, weil ein stärker formkonstanter Bezugsrahmen gegeben ist. Dementsprechend lassen sich Bein- und Carapaxdimensionen bei verschiedenen Spinnentaxa im Hinblick auf die jeweiligen Lokomotionsstrategien interpretieren. Die Untersuchungen an Perania nasuta bestätigen die von Kropf (in Vorb.) aufgestellte Hypothese einer starken Versteifung des Prosoma. Die Druckpumpe scheint hier im Opisthosoma lokalisiert zu sein. Hinsichtlich der möglichen Vorteile einer solchen Entwicklung lassen sich einerseits die besseren Bedingungen der Arbeit extrinsischer coxaler Muskeln im vollständig steifen "Gestell" des Prosoma nennen, andererseits könnte aufgrund entsprechender Lokomotionsmodi bei Perania keine Notwendigkeit zur schnellen Verschiebung großer Haemolymphvolumina aus dem Prosoma bestehen, so daß eine leistungsfähige prosomale Druckpumpe wegfallen konnte.
Traditionell-morphologisch begründete Hypothesen zur Großphylogenie der Metazoa sind im Verlauf der letzten Jahre durch molekularbiologische Untersuchungen grundsätzlich in Frage gestellt worden. Die molekularbiologisch begründete Metazoen-Großphylogenie wird seit einem Übersichtsartikel von ADOUTTE et al. (2000) meist als „New Animal Phylogeny“ bezeichnet (kurz: NAP); sie beinhaltet eine Restrukturierung des Stammbaumes (kladogenetischer Aspekt) und die Infragestellung einer morphologischen Komplexitätssteigerung nach dem Schema acoelomat-pseudocoelomat-coelomat (anagenetischer Aspekt). Hinsichtlich der Kladogenese steht die Neueinteilung der Bilateria in drei Superphyla Deuterostomia, Ecdysozoa und Lophotrochozoa im Vordergrund; die Genealogie innerhalb dieser drei Großgruppen ist aber z.Z. relativ schlecht aufgelöst, so daß sich Vergleichsmöglichkeiten mit morphologischen Vorgängermodellen schnell erschöpfen. Aus diesem Grunde wird in vorliegender Arbeit der anagenetische Aspekt als Ausgangspunkt für eine umfassende morphologische Interpretation der molekularbiologischen Resultate gewählt. Momentan wird auf molekularsystematischer und vergleichend-entwicklungsgenetischer Basis davon ausgegangen, daß die frühesten Bilaterier eine acoelomate Organisation aufwiesen, von hier aus eine relativ komplexe, polymer-coelomate Organisation erwarben, welche dann aber in zahlreichen Bilaterierlinien sekundär reduziert wurde. Die ursprünglich acoelomate Organisation wird rezent nur durch eine sehr isolierte Linie, die Acoela (ggf. auch Nemertodermatida) vertreten, während alle anderen Bilaterier von einem polymer-coelomaten „Urbilaterier“ abstammen sollen. In vorliegender Arbeit wird die Auffassung vertreten, daß die morphologische Deutung eines solchen anagenetischen Szenarios am ehesten anhand der Hydroskelett-Theorie von W. F. GUTMANN (1972 et mult.), sowie späteren auf diesem Entwurf aufbauenden Arbeiten (insbesondere der Gallertoid-Hypothese, BONIK et al. 1976) möglich ist, d.h. auf konstruktionsmorphologischer Grundlage. Um den Nachweis einer weitgehenden Übereinstimmung von NAP und Gallertoid-Hydroskelett-Theorie zu führen, werden für 36 Metazoenbaupläne (4 Nonbilaterier, 32 Bilaterier) aktuelle molekularphylogenetische Befunde den jeweiligen konstruktionsmorphologischen Interpretationen gegenübergestellt. Für die vier Nonbilateria-Linien ergibt sich eine Vereinbarkeit auf kladogenetischer Ebene insbesondere dann, wenn die Placozoa vor den Porifera abzweigen (z.Z. aufgrund von mtDNADaten anzunehmen); auf anagenetischer Ebene aufgrund von Studien, welche die „Diploblastica/ Triploblastica“-Unterteilung in Frage stellen (Mesoderm-Problem). Für die Bilateria ist u.a. festzuhalten, daß im Rahmen der Hydroskelett-Theorie kein Schwestergruppenverhältnis Annelida + Arthropoda angenommen wurde, so daß die umstrittene neue Großgruppe Ecdysozoa unproblematisch ist: Ecdysozoa werden durch Ableitung der „Aschelminthen“ von polymeren Vorformen einer Deutung zugänglich. Die Molekularsystematik der Annelida, aber auch der Deuterostomia ist mit konstruktionsmorphologischen Interpretationen vereinbar, bei den Deuterostomia v.a. der hochderivierte Status der Pterobranchia und Tunicata. Als kennzeichnendste Übereinstimmung ist die Einordnung der Tentaculata als hochabgeleitete Protostomier hervorzuheben, was sowohl als „Grundstein“ der NAP gilt (HALANYCH et al. 1995) als auch eine sehr spezifische Position der Hydroskelett-Theorie darstellt. Es wird gefolgert, daß die Gallertoid- Hydroskelett-Theorie zentrale Resultate der NAP besser zu integrieren vermag als andere Entwürfe. Konsequenzen für merkmalsmorphologische Deutungen werden aufgezeigt.
11 mit Salix spp. assoziierte Gallmücken-Arten (Diptera: Cecidomyiidae: Oligotrophini) wurden einer morphometrischen Analyse unterzogen. Dabei fanden 18 allgemeine und 10 geschlechtsspezifische Merkmale Berücksichtigung. Von sechs Arten wurden darüber hinaus 10 larvale Merkmale morphometrisch erfasst. Insgesamt wurden 325 Imagines und 45 Larven vermessen. Die Ergebnisse lassen eine neue systematische Einteilung auf Gattungs- und Artebene zu. Neben der morphologisch und biologisch bereits vorher eindeutig zu differenzierenden Gattung Iteomyia ist eine Aufteilung des verbleibenden Artenschwarms in drei Gruppen erkennen. Als wesentliche trennende Merkmale zeigen sich Antennen und geschlechtspezifische Charakteristika wie die Länge des Ovipositors bei den Imagines und die Ausbildung der für die Larven charakteristischen Spatula. Die morphologische Differenzierung findet ihre Entsprechung in qualitativen, biologischen Merkmalen der Tiere. Aus diesem Grund wird die Aufteilung der auf Salix spp. gallenbildenden Cecidomyiidae in mindestens vier Gattungen vorgeschlagen. Die Gattung Iteomyia behält ihren aktuellen Status und wird von der einzigen Art repräsentiert, die auf der Blattflächen von Weiden Gallen erzeugt (I. capreae). Die Dasineura-Gruppe enthält die sich in Blattrandgallen entwickelnden Gallmücken (D. auritae, D. marginemtorquens und D. roskami) sowie die inquilinen Arten, die zur Verpuppung einen Kokon anlegen und mindestens zwei Generationen im Jahr realisieren (in der vorliegenden Arbeit untersucht: D. schreiteri). In Rabdophaga werden jene Taxa integriert, die sich im Sproßbereich ihrer Wirtspflanzen unmittelbar unter der Rindeentwickeln, ohne ausgeprägte Gallenbildungen auszulösen (in der vorliegenden Arbeit untersucht: R. saliciperda und R. repentiperda) Ihre Entwicklung ist univoltin, die Verpuppung erfolgt ohne Anfertigung eines Kokons. In einer noch genauer zu definierenden vierten Gruppierung (hier provisorisch mit dem Gattungsnamen „Salicicola“ bezeichnet) fasst die Arten zusammen, die an den Sprossen ihrer Wirtspflanzen deutliche Gallenbildungen hervorrufen. Auch sie sind univoltin und verpuppen sich im Sproßbereich ohne Anfertigung eines Kokons. Die Zuordnung des in der vorliegenden Studie nicht untersuchten Artenkomplexes, den Knospengallenerzeugern, ist noch nicht geklärt. Eine endgültige Klärung der hier vorgeschlagenen systematischen Einteilung kann nur das Ergebnis einer umfassenden Revision sämtlicher mit Salix spp. assoziierten Gallmücken sein. Die polyphage Weidenrosenmücke Rabdophaga rosaria lässt sich mit Hilfe einer Hauptkomponenten-Analyse morphometrisch in vier Cluster gruppieren, die in der systematischen Aufteilung der von ihnen genutzten Salix spp. (alba, aurita/caprea/cinerea, purpurea und repens) ihre Entsprechung finden. Die festgestellte Auftrennung der Weidenrosenmücke illustriert anschaulich die Idee der sequentiellen Evolution, nach der aufgrund der engen phänologischen, biochemischen und physiologischen Interaktionen zwischen spezialisierten Phytophagen und ihren Wirtspflanzen eine schrittweise hochgradige Anpassung der beteiligten Organismengruppen zu erwarten ist. Wie im vorliegenden Fall steht am Ende solch einer Entwicklung die Herausbildung sogenannter Biotypen, deren Eigenständigkeit durch morphologische Unterschiede untermauert wird. Die Cecidomyiidae Iteomyia capreae ruft je nach genutzter Wirtspflanzenart verschiedene Gallenformen mit unterschiedlichem Verteilungsmuster auf den Blattflächen hervor. Die sich in den beiden Gallentypen entwickelnden Tiere unterscheiden sich morphologisch und lassen sich in Abhängigkeit der von ihnen genutzten Wirtspflanze ähnlich wie Rabdophaga rosaria in zwei Biotypen einteilen. Die auf Salix caprea lebenden Tiere weisen eine geringere Gallenzahl pro Blatt auf als die auf S. cinerea lebenden Tiere. Die beiden Biotypen zeigen signifikante Unterschiede hinsichtlich ihrer Fertilität. Der S. caprea-Typus, der seine einkammrigen Gallen über die gesamte Blattfläche verteilt, zeigt eine höhere Fruchtbarkeit als der S. cinerea-Typus, der ein- bis mehrkammrige Gallen entlang des Blattmittelnervs anlegt. Gleichzeitig zeigen sich signifikante Unterschiede in der durch Parasitoiden hervorgerufenen Mortalität. Die kleinen, über die gesamte Blattfläche verstreuten Gallen des S. caprea-Typs weisen eine geringere Parasitierungsrate auf als die großen, am Mittelnerv konzentrierten Gallen des S. cinerea-Typs. Von acht der elf untersuchten Gallmückenspezies wurde der Feindartenkomplex analysiert. Zu diesem Zweck wurden an 30 Standorten in Deutschland und Dänemark über 7500 Gallen gesammelt und in Zucht genommen. Aufgrund der vielkammrigen Gallen einzelner Arten konnten insgesamt mehr als 12500 Gallenkammern auf ihre Artenzusammensetzung hin analysiert werden. Insgesamt konnten 57 Parasitoiden-Arten nachgewiesen werden, die sich auf sieben Familien parasitischer Hymenopteren verteilen. Am artenreichsten vertreten sind die Pteromalidae und Platygasteridae mit einem Anteil von jeweils 24,56 % (14 spp). Der Artenreichtum ist mit fast zehn Spezies pro Gegenspielerkomplex ungewöhnlich hoch und liegt deutlich über den Werten anderer Gallenerzeuger-Gruppen. 27 Spezies (47,37 %) konnten keiner bekannten Art zugeordnet werden. Es wird vermutet, dass sich darunter zahlreiche, für die Wissenschaft neue Arten befinden. Insgesamt 42 spp. (73,7 %) der nachgewiesenen Parasitoidenarten wurden nur aus einer der untersuchten Wirtsarten gezüchtet, lediglich fünf Arten attackierten mehr als zwei der untersuchten Wirtsarten. Das Verhältnis von Idiobionten (töten den Wirt zum Zeitpunkt der Parasitierung ab) zu Koinobionten (erlauben dem Wirt zunächst ein weiteres Wachstum) ist mit 53,3 % zu 46,7 % annähernd gleich. Für 37 Taxa (64,91 %) konnten Angaben über ihre Wirtsbindung gemacht werden. Es zeigte sich, daß der Feindkomplex der untersuchten Gallmücken von stark spezialisierten Arten dominiert wird. Alle Arten sind bisher nur an gallenerzeugenden oder zumindest endophytisch lebenden Wirten nachgewiesen worden, 28 spp. sind darüber hinaus auf gallenbildende Cecidomyiidae spezialisiert, 10 spp. parasitieren nur cecidogene Gallmücken auf Weiden. Am artenreichsten war mit 24 spp. der Gegenspielerkomplex des Blattgallenerzeugers Iteomyia capreae, gefolgt von den Blattrandgallenerzeugern Dasineura auritae (12 spp.) und D. marginemtorquens (11 spp.), dem Sproßgallenerzeugern Rabdophaga salicis (10 spp.) und der Inquilinen-Art Dasineura schreiteri (10 spp.) sowie der unmittelbar unter der Rinde ihrer Wirtspflanzen lebenden sogenannten Schrotschuß-Gallmücke R. saliciperda (6 spp.). Mit nur drei bzw. vier Arten erwiesen sich die Gegenspielerkomplexe der Weidenrosen-Gallmücke Rabdophaga rosaria und der Sproßgallen erzeugenden R. degeeri am artenärmsten. Die Ähnlichkeits-Analyse der jeweiligen Gegenspielerspektren ließ eine große Eigenständigkeit erkennen, die geringen Ähnlichkeiten sprechen für einen hohen Anteil von Spezialisten in den Parasitoidenkomplexen. In den Gegenspielerspektren dominierten nur jeweils zwei bis fünf Arten. 19 der 57 Arten wiesen eudominante oder dominate Abundanz-Werte auf. Dabei waren vor allem die Arten der Gattungen Synopeas, Torymus, Platygaster und Aprostocetus von größerer Bedeutung für die Mortalitätsraten ihrer Wirte. Die Erreger der verschiedenen Gallentypen waren unterschiedlichen Mortalitätsraten durch Parasitoide unterworfen. Dasineura auritae und D. marginemtorquens, die Erzeuger von Blattrandgallen, wiesen die höchsten durchschnittlichen Parasitierungsraten auf (43,04 %), die Inquiline D. schreiteri die geringste (20,25 %). Die Sproßgallenerzeuger Rabdophaga salicis und R. degeerii wiesen nur eine geringfügig höhere Mortalität durch Parasitierung (24,31 %) auf, gefolgt von der Weidenrosen-Gallmücke Rabdophaga rosaria (25,47 %) und den Blattgallen von Iteomyia capreae (31,26 %). Der Feindkomplex der untersuchten Cecidomyiidae wurde mit dem der an Salix spp. gallenbildenden Tenthredinidae verglichen. Bislang sind für die mit Salix spp. assoziierten cecidogenen Gallmücken und Blattwespen in Nord- und Mitteleuropa über Gegenspielerarten nachgewiesen worden, von denen lediglich sieben in beiden Wirtsfamilien auftreten. Brutparasiten, die vor allem bei den Blattgallenerzeugern (Pontania spp.) vorhanden sind, fehlen bei den Gallmücken völlig. Sowohl Cecidomyiidae als auch Tenthredinidae werden vor allem von spezialisierten Parasitoiden attackiert, deren Wirtskreis sich auf diese gallenbildenden Herbivoren-Gruppen beschränkt. Innerhalb der Gegenspielerspektren sind jeweils über 80 % der Parasitoidenarten bislang nur in einem Gallentyp nachgewiesen worden. Der Artenpool der Blattwespen-Parasitoiden wird mit fast 60 % von den Ichneumonoidea dominiert. Bei den Gallmücken fehlt diese ParasitoidenÜberfamilie völlig, hier sind die Chalcidoidea mit über 70 % der Arten das bestimmende Element. Dagegen stellen die in den Tenthrediniden-Gallen lediglich mit zwei Arten vertretenen Platygasteroidea im Gegenspielerspektrum der Cecidomyiidae mehr als 25 % aller Spezies. Bei den Blattwespen tritt nur ein knappes Drittel der Parasitoidenarten, deren Biologie näher bekannt ist, als Koinobionten auf. Bei den Gallmücken erhöht sich der Anteil dieser Feindarten-Gilde auf über 50 %. Vergleicht man die einzelnen Gallentypen, so sind auch in der Parasitierungs-Strategie der beteiligten Arten große Unterschiede zu verzeichnen. Die meisten Parasitoide der Tenthredinidae befallen junge Wirtslarven, bei den Gallmücken ist dagegen der Typ des Junglarven-Parasitoiden nur selten anzutreffen: Wird ein frühes Wirtsstadium angegriffen (in der Regel durch Koinobionten), so erfolgt bereits die Belegung des Wirtseies. Blattwespen weisen höhere Mortalitätsraten als Gallmücken auf. Darüber hinaus zeigt sowohl bei den Blattwespen als auch bei den Gallmücken die durch Parasitierung hervorgerufene Mortalität prägnante Unterschiede zwischen den einzelnen Wirtsarten und Gallentypen, aber auch innerhalb einer Art gibt es je nach Lokalität und Untersuchungsjahr deutliche Schwankungen. Bei den Tenthredinidae liegt die durchschnittliche Parasitierungsrate der Blattgallenerzeuger (53,3 %) deutlich über den Werten der Sproßgallenerzeuger (41,7 %) Entsprechende große Unterschiede lassen sich für die Blattrandgallenerzeuger (43,04 %) und Sproßgallenerzeuger (24,31 %) der Cecidomyiidae feststellen.