Refine
Year of publication
Document Type
- Doctoral Thesis (79)
Has Fulltext
- yes (79)
Is part of the Bibliography
- no (79)
Keywords
- Gentherapie (2)
- HIV (2)
- Heterologe Genexpression (2)
- Membrane Proteins (2)
- NMR-Spektroskopie (2)
- gene therapy (2)
- APOBEC3G (1)
- AlignMe (1)
- Alignment (1)
- Aminosäurensequenz (1)
Institute
- Biochemie und Chemie (55)
- Biochemie, Chemie und Pharmazie (21)
- Pharmazie (4)
- Biowissenschaften (1)
- Georg-Speyer-Haus (1)
The focus of this research was to understand the molecular mechanism that lies behind the insertion of tail-anchored membrane proteins into the ER membrane of yeast cells. State-of-art instruments such as LILBID, and Cryo-EM, combined with the introduction of direct electron detectors, were used to analyze the proteins that capture tail-anchored proteins near the ER membrane and help their releases from a chaperone, an ATPase named Get3. Get3 escorts TA proteins to the ER membrane, where both Get3 and the TA proteins interact sequentially to Get3 membrane bound receptors Get1 and Get2. Get1 and Get2 are homologs of mammalian WRB and CAML.
The native host was used to separately produce Get1, Get2, and the Get2/Get1 single chain constructs. The studies showed that when Get1 is expressed alone, Get1 does not seems to be located in the ER membrane but rather in microbodies like shape organelles (or peroxisome). Interestingly, Get1 seems to be located in the ER membrane when it is linked to Get2 as single chain construct.
The localization study of Get2/Get1 fused to GFP shows from the fluorescence intensity that Get2/Get1.GFP has a tube-like morphology or membrane-enclosed sacs (cisterna), implying that Get2/Get1 is actually targeted to the ER membrane and is likely functional. In other words, Get1 and Get2 stabilize each other in the ER membrane.
The expression of Get2/Get1 was found to be already optimum when expressed as single chain construct because the fluorescence counts did not improve when additives such as DMSO or histidine were added. However, when Get1 and Get2 are expressed separately, additives improve their protein production yield. In 1 liter culture, Get1 yield is increased by about 3 mg and Get2 by 1.8 mg. This can be explained by the space that Get1 and Get2 should occupy within the ER membrane as they must coexist with other membrane components to maintain the homeostasis of the cell. Hence, if there were no gain for single chain construct expression, it meant that Get2/Get1 was already well expressed on its own in ER membrane and has reached its optimum expression without the help of additives. The Get2/Get1 overexpression is more stable, tolerated and less toxic for the cells to express it at a high level.
DDM has proved to be the best detergent from the detergents tested to solubilize Get1, Get2, and Get2/Get1.
Thereafter, Get1, Get2 (data not shown), and Get2/Get1 were successfully purified in DDM micelles.
Furthermore, for the first time using LILBID, the actual study has shown that Get1 and Get2 are predominantly a heterotetramer (2xGet1 and 2xGet2) but higher oligomerization may exist as well.
Get3 binds to Get1 in a biphasic way with a specific strong binding of an affinity of 57 nM and the second of 740 nM nonspecific indicative of heterogeneity within the interaction between Get1 and Get3. This heterogeneity is caused by the presence of different conformation of either protein. However, in order to characterize a high-resolution structure model of a specific target one needs highly homogenous and identical molecules of the target protein or complex in solution. The homogeneity increases the chances of growing crystals during crystallography as the good homogeneity will likely generate a perfect packing of unit cells stack (also known as crystal lattice) in the three-dimensional spaces. The same truth goes for the single particles analysis Cryo-EM, especially for smaller complexes where having less or no conformation alterations of specific targets will enable the researcher to classify the particles in 2D and 3D, therefore improving the signal-to-noise-ratio that will ultimately lead to high-resolution structure determination.
Get1, Get2/Get1 and chimeric variants (tGet2/Get1, T4l.Get2/Get1, T4l.Get2.apocyte.Get1) were crystallized but none of the crystals could diffract due to heterogeneity.
This heterogeneity was not only occurring upon the binding of Get3 to its membrane receptors, but seems to be already present within the receptors themselves through possibly different conformation.
In this Ph.D. thesis, the heterogeneity of purified Get2 and Get1 as complex or individually in detergent is then, so far, the limiting factor for obtaining a high-resolution structure model of Get1 and Get2. As mentioned above, the heterogeneity observed was not due to the quality of the sample preparation but rather to the effect of different conformations that could have been native, or just because of the micelle used, as it was proven by the 3-D heterogeneity classification by Cryo-EM.
In general, crosslinking is one way to keep the integrity of protein complexes, however it appeared not to improve the sample quality when it was analyzed in micelles. Often the integrity of some membrane proteins is affected when they are solubilized and purified in detergents.
Finally, in this study, the structural map of Get2 and Get1 complex linked with chimeric protein T4 lysozyme and apocytochrome C b562RIL gene was obtained at 10 Å. However, this single chain construct has a density map corresponding to heterodimer species (one Get1 and Get2). Therefore, based on those data the tertiary structure of Get2/Get1 in micelle is poorly defined. It could be that the membrane extraction in DDM and the purification destabilizes the structure of the complex.
Cancer cells, in general and especially Rhabdomyosarcoma (RMS) cells have been reported to be highly susceptible to oxidative stress. Based on this knowledge we examined whether the inhibition of the two main antioxidant defense pathways, i.e. the thioredoxin (TRX) and the glutathione (GSH) system, represents a possible new strategy to induce cell death in RMS. To do so, we combined the -glutamylcysteine synthetase (γGCL) inhibitor buthionine sulfoximine (BSO) or the cystine/glutamate antiporter (xc-) inhibitor erastin (ERA), both GSH depleting enzymes, with the thioredoxinreductase (TrxR) inhibitor auranofin (AUR) to evaluate synergistic cell death in the alveolar RMS (ARMS) cell line RH30 and the embryonal RMS (ERMS) cells RD.
Furthermore, we tried to unravel the underlying molecular mechanisms of AUR/BSO or AUR/ERA treatment in RMS cells. Thereby we showed that AUR/BSO as well as AUR/ERA treatment leads to proteasome inhibition characterized by the accumulation of ubiquitinated proteins, which is in agreement with the already published ability of AUR to inhibit proteasomeassociated deubiquitinases (DUBs) aside from TrxR. As a consequence, the protein levels of ubiquitinated short-lived proteins, like NOXA and MCL-1, increase upon treatment with AUR/BSO or AUR/ERA. Consistently, we could detect an increased binding of NOXA to MCL-1. Interestingly, not only NOXA protein levels but also mRNA levels rise upon treatment, pointing to a transcriptional regulation of pro-apoptotic NOXA through AUR/BSO or AUR/ERA combination treatment. The fact that siRNA mediated knockdown of NOXA rescues cells from combination treatment-induced cell death strengthens the role of NOXA as an important regulator of cell death induction. Apart from proteasome inhibition and subsequent NOXA accumulation, AUR cooperates with BSO or ERA to trigger BAX/BAK activation, which is needed for cell death induction, too. Additionally, loss of mitochondrial membrane potential (MMP) as well as caspase activation and PARP cleavage is detected after treatment of RMS cells with AUR/BSO or AUR/ERA.
Except of apoptotic cell death we also detected features of iron-dependent ferroptosis after treatment with AUR/BSO or AUR/ERA. This is not surprising, since BSO and ERA already have been described to induce ferroptotic cell death. Although lipid peroxidation takes place in both cell lines, only in RH30 cells, cell death seems to be partially ferroptosis-dependent, since especially in this cell line AUR/BSO- or AUR/ERA-induced cell death can be rescued with different ferroptosis inhibitors.
Although both combination treatments, AUR/BSO as well as AUR/ERA, induce production of reactive oxygen species (ROS), only the thiol-containing ROS scavengers GSH and its precursor N-acetylcysteine (NAC), but not the non-thiolcontaining antioxidant α-Tocopherol (α-Toc), consistently prevent proteasome inhibition, NOXA accumulation and cell death.
Additionally, we demonstrated that BSO and ERA abolish AUR-mediated upregulation of GSH thereby releasing the AUR cytotoxic effect on RMS cells, in line with the described ability of cysteines to inhibit the function of AUR. Together, this points to the conclusion that GSH depletion, rather than an increase in ROS levels, is important for AUR/BSO- or AUR/ERA-induced cell death.
In conclusion, through revealing that the antitumor activity of AUR is enhanced in combination with GSH depleting agents, we identified redox homeostasis as a new and promising target for the treatment of RMS cells.
G-protein coupled receptors (GPCRs) are a predominant class of cell-surface receptors in eukaryotic life. They are responsible for the perception of a broad range of ligands and involved in a multitude of physiological functions. GPCRs are therefore of crucial interest for biological and pharmaceutical research. Molecular analysis and functional characterisation of GPCRs is frequently hampered by challenges in efficient large-scale production, non-destructive purification and long-term stability. Cell-free protein synthesis (CFPS) provides new production platforms for GPCRs by extracting the protein synthesis machinery of the cell in an open system that allows target-oriented modulations of the synthesis process and direct access to the nascent polypeptide chain. CFPS is fast, reliable and highly adaptable. Unfortunately, highly productive cell-free synthesis of GPCRs is often opposed by low product quality. This thesis was aimed to adapt and improve some of the new possibilities for the cell-free production of GPCRs in high yield and quality for structural and pharmaceutical analysis. An E. coli based CFPS system was applied to synthesise various turkey and human Beta-adrenergic receptor (Beta1AR) derivatives as well as human Endothelin receptors type A and B (ETA and ETB) constructs. Both receptor families are important drug targets and pharmacologically addressed in the treatment of several cardiovascular diseases. CF-synthesis was mainly performed in presence of nanodiscs (ND), which are reconstituted high density lipoprotein particles forming discoidal bilayer patches with a diameter varyring from 6 to approx. 15 nm. The supplementation of ND in the CF-synthesis reaction caused the co-translational solubilisation of the freshly synthesised GPCRs. The fraction of the solubilised GPCR that was correctly folded was analysed by the competence to bind its ligand alprenolol or Endothelin-1, respectively. Both the solubilisation efficiency and the ability to fold in a ligand binding competent state was strongly affected by the lipid composition of the supplied ND. Best results were generally achieved with lipids having phosphoglycerol headgroups and unsaturated fatty acid chains with 18 carbon atoms. Furthermore, thermostabilisation by introduction of point mutations had a large positive impact on the folding efficiency of both Beta1AR and ETB receptor. Formation of a conserved disulphide bridge in the extracellular region was additionally found to be crucial for the function of the ETB receptor. Disulphide bridge formation could be enhanced by applying a glutathione-based redox system in the CFPS. Further improvements in the quality of ETB receptor could be made by the enrichment of heat-shock chaperones in the CF-reaction. Depending on the receptor type and DNA-template, roughly 10 – 30 nmol (350 – 1500 µg) of protein could be synthesised in 1 ml of CF-reaction mixture. After the applied optimisation steps, the fractions of correctly folded receptor could be improved by several orders of magnitude and were finally in between 35% for the thermostabilised turkey Beta1AR, 9% for the thermostabilised ETB receptor, 6.5% for the non-stabilised ETB receptor, 1 - 5% for non-stabilised turkey Beta1AR and for human Beta1AR isoforms and 0.1% for ETA receptor. Therefore, between 2 and 120 µg of GPCR could be synthesised in a ligand binding competent form, depending on the receptor and its modifications. Correctly folded turkey Beta1AR and ETB receptors were thermostable at 30°C and could be stored at 4°C for several weeks after purification. Yields of the thermostabilised turkey Beta1AR were sufficient to purify the receptor in a two-step process by ligand-binding chromatography to obtain pure and correctly folded receptor in the lipid bilayer of a ND. Furthermore, a lipid dependent ligand screen could be demonstrated with the turkey Beta1AR and significant alterations in binding affinities to currently in-use pharmaceuticals were found. The established protocols are therefore suitable and highly competetive for a variety of applications such as screening of GPCR ligands, analysis of lipid effects on GPCR function or for the systematical biochemical characterisation of GPCRs. Most promising for future approaches appears to address the suspected bottlenecks of intial insertion of the GPCR-polypeptide chain in the ND bilayer and the thermal stability of the receptors. Nevertheless, the estabilised protocols for the analysed targets in this thesis are already highly competitive to previously published production protocols either in cell-based or cell-free systems with regard to yield of functional protein, speediness and costs. Moreover, the direct accessibility and other general characteristics of cell-free synthesis open a large variety of possible applications and this work can therefore contribute to the molecular characterisation of this important receptor type and to the development of new pharmaceuticals.
Der 2‘-Desoxyguanosin-Riboschalter gehört zur unter Bakterien weit verbreiteten Klasse der Purin-Riboschalter. Allerdings wurden 2‘-Desoxyguanosin-bindende Riboschalter bisher ausschließlich in M. florum gefunden, damit stellt diese RNA eine Ausnahme unter den ansonsten verbreiteten Purin-Riboschaltern dar. In der vorliegenden Arbeit wurde ein NMR-Strukturmodell des IA-Aptamer-2‘-Desoxyguanosinkomplexes erstellt und anhand der mittels NMRSpektroskopie zugänglichen strukturellen Informationen sowohl Struktur und Dynamik des freien RNA-Aptamers als auch des 2‘-Desoxyguanosinkomplexes charakterisiert. Dabei wurde insbesondere der Einfluss von Mg2+ auf Struktur und Dynamik der jeweiligen Zustände sowie auf den durch 2‘-Desoxyguanosin induzierten Faltungsprozess untersucht.
Mg2+-Ionen modulieren die Faltungstrajektorien von sensorischen RNA-Domänen. Die Übertragbarkeit von Mg2+-abhängigen Charakteristika der RNA-Faltung innerhalb verschiedener Messmethoden ist durch die schlechte Vergleichbarkeit der relativen Konzentrationsverhältnisse eingeschränkt. Die NMR-spektroskopisch beobachtbaren Mg2+-Einflüsse sollten also unter besonderer Berücksichtigung der für NMR benötigten vergleichsweise sehr hohen RNAKonzentrationen mit Ergebnissen aus kalorimetrischen oder fluoreszenzspektroskopischen Messungen interpretiert werden. Die in der NMR-Spektroskopie üblichen hohen Probenkonzentrationen befinden sich in dem Regime, in dem auch der physikalische Effekt des verdrängten Volumens eine Rolle zu spielen beginnt. Demnach ist es für die RNA-Moleküle im NMR-Probenröhrchen bei Konzentrationen von 5-10 mg/ml auch ohne Zugabe von Mg2+ entropisch günstiger, kompakte Konformationen einzunehmen. Die Relevanz des Effekts des verdrängten Volumens für die RNA-Faltung unter NMR-Bedingungen und unter zellulären Bedingungen ist Gegenstand der aktuellen Forschung und wird in dieser Arbeit am Beispiel des IA-Aptamers diskutiert.
Der oft einzigartige Bindungsmodus ubiquitärer Metaboliten durch bakterielle Riboschalter (Montange and Batey, 2006) ermöglicht prinzipiell den Einsatz von RNA-Aptameren in vivo, ohne mit zellulären Proteinsystemen zu interferieren (Mulhbacher et al., 2010). Therapeutische Ziele sind beispielsweise die Anwendung von Riboschaltern gegen bakterielle Pathogene beziehungsweise gegen pathogene Bakterien selbst. Eine weitere Rolle wird RiboschalterElementen zukünftig als Bausteine in der synthetischen Biologie zukommen (Dixon et al., 2010; Knight, 2003; Topp and Gallivan, 2008). Hierfür ist es von grundlegender Bedeutung, Charakterisierung von Struktur als Basis für das Verständnis von Funktion unter zellulären Bedingungen zu etablieren. Im Rahmen einer Zusammenarbeit mit Robert Hänsel aus dem Arbeitskreis von Prof. Dr. Volker Doetsch wurde am Beispiel des IA-Aptamers und einer nichtnatürlichen Sequenzvariante gezeigt, dass eine strukturelle Charakterisierung von Riboschaltern mittels in cell NMR-Spektroskopie möglich ist. In Zusammenarbeit mit Karl von Laer aus der Arbeitsgruppe von Prof. Dr. Beatrix Suess wurden beide RNA-Aptamer hinsichtlich ihrer Funktion in einem biologischen Assay getestet. Die Ergebnisse dieser Experimente zeigten eine deutliche Korrelation von Struktur und Funktion in vivo, während Diskrepanzen zwischen Struktur in vitro und Funktion in vivo demonstriert werden.
Weiterhin wurde im Rahmen dieser Arbeit gezeigt, dass eine gewisse strukturelle Flexibilität der Bindungstaschen regulatorischer RNA-Motive für Selektion und Adaption während Evolution nötig ist. Beispielsweise wurde für den Guanin-Riboschalter gezeigt, dass der nicht-native Ligand 2‘-Desoxyguanosin zur Komplexbildung des Aptamers führt. Demnach könnte die Bindung von 2‘-Desoxyguanosin im Guanin-Riboschalter bereits evolutionär angelegt sein und die Entstehung des IA-Aptamers nach Genomreduktion der Mesoplasmen begünstigt haben. Das IA-Aptamer dagegen bindet Guanin nicht, stattdessen besitzt M. florum auf Guanin spezialisierte Sequenzvarianten dieses Riboschalters (Kim et al., 2007). Strukturell hochauflösende Einblicke in unterschiedliche Zustände der Bindungstasche im G-Aptamer-Thioguaninkomplex, die durch die Lösung der Kristallstruktur des GLoop-Aptamers ermöglicht wurden, unterstützen die Hypothese einer anpassungsfähigen Bindungstasche im G-Aptamer. Für B. subtilis wäre es interessant, die physiologische Bedeutung der Komplexbildung des G-Aptamers mit 2‘-Desoxyguanosin zu untersuchen.
The endoplasmic-reticulum-associated protein degradation pathway ensures quality control of newly synthesized soluble and membrane proteins of the secretory pathway. Proteins failing to fold into their native structure are processed in a multistep process and finally ubiquitinated and degraded by the proteasome in order to protect the cell from proteotoxic stress. My thesis covers structural as well as functional studies of various protein components that constitute the protein complexes that are responsible for this process.
One sub-project addressed the mechanism of glycan recognition by Yos9 as part of the ERAD substrate selection. NMR solution structures of the mannose-6-phosphate homology (MRH) domain of Yos9 both in a free and glycan bound conformation reveal a gripping movement of loop regions upon binding of correctly processed glycan structures.
The main projects focused on revealing the mechanism of efficient ubiquitin chain assembly by the ERAD ubiquitination machinery. This included the investigation of the role of the ERAD components Cue1 and Ubc7 in processive ubiquitin chain formation, how ubiquitin chain conformations change during elongation, how the conformation of a chain is impacted by interacting proteins and finally understand the activity regulation of the ERAD E2 enzyme Ubc7 by its cognate RING E3 ligases. Nuclear magnetic resonance (NMR) analysis and fluorescence-based ubiquitination assays show that the CUE domain of Cue1 contributes with its proximal binding preference as well as with its position dependent accelerating effect to efficient ubiquitin chain formation. This is required to efficiently drive degradation of substrates. Specific ubiquitin binding events dictate and coordinate the spatial arrangement of the E2 enzyme relative to the distal tip of a chain. This process can be further accelerated by RING E3 ligases that promote Ubc7 activity by more than ~20 fold via inducing allosteric changes around the catalytic cysteine. My results additionally suggest a model where Ubc7 dimerization results in proximity induced activation of the E2. This data ensures rapid diubiquitin formation that is followed by a CUE domain assisted chain elongation mechanism where Cue1 acts in an E4 like fashion.
How ubiquitin binding events can modulate the conformations of a ubiquitin chain were investigated by pulsed electron-electron double resonance (PELDOR) spectroscopy combined with molecular modeling. This shows that K48-linked diubiquitin samples a broad conformational space which can be modulated in distinct ways. The CUE domain of Cue1 uses conformational selection of pre-populated open conformations to support ubiquitin chain elongation. In contrast, deubiquitinating enzymes shift the conformational distribution to weakly or even non-populated conformations to allow cleavage of the isopeptide bond that connects adjacent ubiquitins. Ubiquitin chain elongation increases the sampled conformational space and suggests that this high conformational flexibility might contribute to efficient proteasomal recognition.
5-LO is the key enzyme in the biosynthesis of proinflammatory leukotrienes. It catalyses the conversion of arachidonic acid to the hydroperoxy intermediate 5(S)-hydroperoxy-6- trans-8,11,14-cis-eicosatetraenoic acid (5-HpETE). In a second step 5-LO catalyses a dehydration reaction forming the unstable epoxide intermediate 5(S)-trans-5,6-oxido-7,9- trans-11,14-cis-eicosatetraenoic acid (leukotriene A4 , LTA4). The 5-LO gene is subjected to versatile regulation mechanisms. Apart from regulation by DNA-methylation and histone acetylation / deacetylation 5-LO gene expression can be regulated by the differentiation inducers calcitriol (1,25-dihydroxyvitamin D3) and transforming growth factor beta (TGFβ) 5-LO gene expression. In the myeloid cell lines Mono Mac 6 (MM6) and HL-60, differentiation with both agents caused a prominent upregulation of 5-LO mRNA level, of 5-LO protein expression and of 5-LO activity. Treatment with calcitriol alone already has an impact on 5-LO gene expression which is additionally potentiated by TGFβ treatment. Previous nuclear run-off analysis and reporter gene analysis could not associate the 5-LO promoter with the induction of 5-LO mRNA expression mediated by calcitriol and TGFβ. Inclusion of the 5-LO coding sequence (cds) and inclusion of the 5-LO cds plus the last four introns of the gene (J to M) in the 5-LO promoter construct pN10 led to an enhanced reporter gene activity. The inductions were dependent on vitamin D receptor (VDR) and retinoid x receptor (RXR) cotransfection. Therefore the work was concentrated on identifying elements outside the 5-LO promoter region which contribute to the calcitriol / TGFβ effect on 5-LO mRNA expression. Insertion of the LTA4 hydrolase coding sequence – a coding sequence of similar size - instead of the 5-LO cds led to a loss of the calcitriol / TGFβ effect (pN10LTA4Hcds 1-fold induction). Therewith, it was proven that the presence of the 5-LO cds is crucial for the upregulating effect of calcitriol / TGFβ on 5-LO mRNA level. Cloning of the SV40 promoter instead of pN10 upstream of the 5-LO cds still showed inducibility by treatment with the inducers which argues for a promoter unspecific effect. Insertion of the 5-LO cds in a promoterless basic vector (pGL3cds) displayed same inductions by calcitriol / TGFβ treatment as the 5-LO promoter 5-LO cds construct (pN10cds). Thus, the effect of the inducers is not dependent on the 5-LO promoter under the in vitro conditions of the reporter gene assay. Hence, further cloning was done with promoterless constructs. Through 5-LO cds deletion constructs a positive regulating region in exon 10 to 14 was discovered. To adapt the natural gene context the last four introns (J-M) of the 5-LO gene were inserted in a promoterless construct containing exon 10 to 14 (pGL3cdsΔABInJM). 5end deletion constructs of it revealed putative vitamin D responsive elements (VDREs) in exon 12 and intron M. Mutation of the putative VDREs led to a reduced calcitriol effect –more prominent when the putative VDRE in intron M was mutated (reduction of 40%). Moreover another putative VDRE in exon 10 with an adjacent SMAD binding element (SBE) was detected. SMAD proteins are effector proteins of TGFβ signalling. Gelshift experiments demonstrated in vitro binding of the VDR-RXR heterodimer to those three putative VDREs. By chromatin immunoprecipitation (ChIP) assay in vivo binding of VDR and RXR was shown to the VDRE in the region of exon 10, exon 12 and intron M. 8h and 24h incubation with calcitriol / TGFβ resulted in enhanced expression of VDR in each of the examined regions. The VDR is able to bind to the VDRE without its ligand, whereas this goes along with corepressor recruitment and thus the VDR has a repressive effect on transcription. Histone H4 acetylation was increased when MM6 cells were treated for 8h or 24h with calcitriol or the combination of calcitriol / TGFβ. This finding implies that at that point of time corepressors associated with the VDR are replaced by coactivators. It seems convincing that 5-LO transcription is mainly promoted by calcitriol alone which leads to a more accessible chromatin structure. Previous data indicated that calcitriol and TGFβ upregulate 5-LO RNA maturation and 5- LO transcript elongation. Thus several elongation markers were investigated by ChIP analysis: Histone H3 lysine 36 (H3K36) trimethylation and H4K20 monomethylation were detected in the analysed regions in exon 10, exon 12 and intron M. In region exon 10 the H3K36 trimethylation status was enhanced after 24h calcitriol or calcitriol / TGFβ treatment. An increased H4K20 monomethylation status in all regions was observed when MM6 cells were treated for 24h with calcitriol / TGFβ. 24h treatment with both agents also enhanced the recruitment of the elongation form of RNA polymerase II, which is phosphorylated at serine 2 of the carboxyterminal domain, to the investigated regions. These findings prove the positive regulating role for calcitriol and TGFβ on 5-LO transcript elongation. A putative mechanism of the effect of calcitriol and TGFβ on 5-LO RNA maturation might be the elevated phosphorylation of serine 2 of the RNA Polymerase II which is known to be followed by recruiting polyadenylating factors.
SIVsmmPBj-derived lentiviral vectors are capable of efficient primary human monocyte transduction, a capacity which is linked to the viral accessory protein Vpx. To enable novel gene therapy approaches targeting monocytes, in this thesis it was aimed to generate enhanced lentiviral vectors that meet the required standards for clinical applications with respect to gene transfer efficiency and safety. The vectors were tested for their suitability in a relevant therapeutic gene transfer approach. At first, it was investigated whether vectors derived from another Vpx-carrying lentivirus reveal the same capacity for monocyte transduction as SIVsmmPBj-derived vectors. A transduction experiment using HIV-2-derived vectors in comparison to PBj-derived vectors revealed a comparable transduction capacity, thus disproving the assumed uniqueness of the PBj vectors. The further generation and analysis of expression constructs for the vpx genes of HIV-2 and SIVmac demonstrated a similar functionality in monocyte transduction as the Vpx of PBj. As VpxPBj, both Vpx proteins facilitated monocyte transduction of a vpx-deficient PBj-derived vector system. For the generation of enhanced SIVsmmPBj and HIV-2 vector systems, only the transfer vectors were optimized, since the packaging vectors available already meet current standards. At first, several modifications were introduced into an available preliminary PBj-derived transfer vector by conventional cloning. The modifications included insertions of cPPT/CTS and WPRE as well as the deletions of the remaining pol sequence, the second exons of tat end rev, and the U3-region within the 3’LTR to generate a SIN vector. Thus, beside safety enhancement, the vector titers were also increased from 9.1x105 TU/ml achieved after concentration with the initial transfer vector up to 1.1x107 TU/ml with the final transfer vector. The PBj vector retained its capability of monocyte transduction when supplemented with Vpx. This conventional method of vector enhancement is time-consuming and may result in only sub-optimal vectors, since it depends on the presence of restriction sites which may not allow deletion of all needless sequences. Moreover, mutations may accumulate during the high number of cloning and amplification steps. Therefore, a new and easier method for lentiviral transfer vector generation was conceived. Three essential segments of the viral genome (5‘ LTR, RRE, ΔU3-3’ LTR) are amplified on the template of the lentiviral wild-type genome and fused by Fusion-PCR. Further necessary elements namely the cPPT/CTS-element, MCS, and PPT are included into the resulting vector by extension of the nucleotide primers used for the PCRs. The amplified and fused vector-scaffold can easily be integrated into a plasmid backbone, followed by insertion of the expression cassette of choice. By applying this approach, two novel lentiviral transfer vectors, based on the non-human SIVsmmPBj and the human HIV-2, were derived. Vector titers achieved for PBj and HIV-2 vectors supplemented with Vpx reached up to 4.0x108 TU/ml and 5.4x108 TU/ml, respectively. The capacity for monocyte transduction was maintained. Thus, safe and efficient, state of the art HIV-2- and PBj-derived vector systems are now available for future gene therapy strategies. Finally, the new vectors were used to set up an approach for gene correction of gp91phox-deficient monocytes for the treatment of X-linked chronic granulomatous disease (xCGD). The administration of autologous, gene-corrected monocytes to counteract systemic and acute infections could lead to a decreased infection load, dissolve granulomas and therefore improve the survival rate of hematopoietic stem cell transplantation (HSCT) which is the current treatment of choice for this disease. First, methods for analysis of gp91phox function were established. Next, they were employed to demonstrate the capacity of monocytes, obtained from healthy humans or mice, for phagocytosis, oxidative burst, and Staphylococcus aureus killing. The in vivo half-life of murine monocytes in the bloodstream and their distribution to specific tissues was determined. Lastly, HIV-1 vectors were used to transfer the gp91phox gene into monocytes from gp91phox-deficient mice. This resulted in the successful restoration of the oxidative burst ability in the cells. In summary, the general suitability of the new vectors for treatment of CGD by monocyte transduction was demonstrated. The results of the mouse experiments provide the foundation for future challenge experiments to evaluate the capability of gene-corrected monocytes to kill off microbes in vivo.
The research presented in this thesis characterizes U2AF homology motifs (UHM) and their interactions with UHM ligand motifs (ULM) in the context of splicing regulation. UHM domains are a subgroup of RNA recognition motifs (RRM) originally discovered in the proteins U2AF65 and U2AF35. Whereas canonical RRMs are usually involved in binding of RNA, UHM domains bind tryptophan containing linear protein motifs (ULM) instead. In the first article, we analyze the complex network of interactions between splicing factors and RNA that initiate the assembly of the spliceosome at the 3´ splice site of an intron. The protein U2AF65 binds a pyrimidine-rich element in introns and recruits U2snRNP by binding its protein component SF3b155. My contribution was to define the binding site of the protein U2AF65 to the intrinsically unstructured N-terminus of the scaffolding protein SF3b155. I could show that the UHM domain of U2AF65 recognizes a ULM in SF3b155, and that this binding site is not overlapping with the binding sites of other splicing factors, like p14, to SF3b155. As the U2AF65-UHM:SF3b155-ULM interaction is mutually exclusive with an interaction between U2AF65-UHM and a ULM in the splicing factor SF1, which was reported to initially recognize the branch point sequence, my results provide the molecular details on how SF3b155 replaces SF1 during spliceosomal reorganizations. In the second article, we show that overexpression of the UHM domain of the splicing factor SPF45 induces exon 6 skipping in the pre-mRNA of Fas (CD95/APO-1). I provide evidence for in vitro binding of SPF45-UHM to ULM sequences in the splicing factors U2AF65, SF1, and SF3b155. I crystallized free and SF3b155-bound SPF45 UHM and solved both structures by X-ray crystallography. The analysis of the complex interface and sequence differences in the ULMs allowed me to design mutations of SPF45-UHM, which selectively inhibit binding to distinct ULMs. After assessing the ULM binding properties in vitro, we could show that the activity of SPF45-UHM in influencing the splicing pattern of Fas relies on interactions with SF3b155 and/or SF1, but that an interaction with U2AF65 is dispensable. A mechanism for the activity of SPF45-UHM could thus be engaging in ULM interactions and thus interfering with the network of interactions that initiate the assembly of the spliceosome at the 3´splice site, as described above. In the third article, we describe an unusual flexible homodimerization mode of the UHM in the splicing factor Puf60, which enables simultaneous interactions with ULM sequences on other splicing factors. I could show that the NMR relaxation properties of Puf60-UHM are inconsistent with a model of a rigid dimer, but rather indicate a dimerization via a flexible linker. I identified a flexible loop in the peptide backbone of Puf60-UHM, and showed that mutiation of acidic residues in this loop impairs the dimerization. To analyze the dimerization interface in further detail, I solved the structure of Puf60-UHM by X-ray crystallography. The acidic residues in the flexible loop of one UHM dimer subunit mediate the dimerization by contacting basic residues on the β-sheet surface of the other dimer subunit. Differences in the four dimer interfaces observed for the eight molecules in the asymmetric unit of the crystal support the model of an undescribed, flexible mode of dimerization, and thus complement the NMR relaxation data. Furthermore, I could show that the Puf60-UHM dimer and U2AF65-UHM contact different ULM sequences on the SF3b155 N-terminus in vitro, thus providing a possible explanation for the mutual cooperative activation of Puf60 and U2AF65 in splicing assays described in the literature. The fourth article is a review about recent research on the recognition of DNA double strand breaks (DSB) by covalent histone modifications. The p53 binding protein 1 (53BP1) is a DSB sensor and a checkpoint protein for mitosis. Recent crystallographic evidence indicates that 53BP1 recognizes DSB sites by binding histone H4 dimetylated at lysine 20 (H4-K20). We provide a comprehensive overview of the atomic resolution structures that revealed how proteins can specifically recognize histone tail modifications, especially methylated lysines, to read the information stored in what is called the histone code.
Einige Teilergebnisse dieser Arbeit wurden bereits veröffentlicht: Mahnke K., Schönfeld K., Fondel S. et al (2007), Int. J. Cancer 120; 2723-2733 Depletion of CD4+CD25+ human regulatory T cells in vivo: Kinetics of Treg depletion and alterations in immune functions in vivo and in vitro Im ersten Teil dieser Arbeit wurde die Treg depletierende Wirkung von ONTAK, einem Fusionsprotein aus Interleukin-2 und Diphterietoxin, untersucht. Hierzu wurde ONTAK in Zellkultur auf humanen Lymphozyten getestet und anschließend Melanomapatienten verabreicht. ONTAK konnte sowohl in vitro als auch in vivo eine Depletion von Tregs induzieren, wenngleich der in vivo Effekt nicht vollständig war. Des Weiteren wurde der immunologische Effekt, der auf die Reduktion der Tregs zurückzuführen ist, untersucht. Hierzu wurden die Patienten mit DCP behandelt, welches normalerweise zu einer schwachen Entzündungsreaktion führt. Nach Treg Depletion wurden starke Kontaktekzeme in den Patienten induziert. Aufgrund dieser verstärkten Immunantwort erfolgte eine Applikation der Tumorpeptide MART1 und gp100 in das Kontaktekzem. Anschließend konnten peptidspezifische CD8 T-Zell Populationen detektiert werden, die sowohl INF-γ sekretierten, als auch zytotoxisch aktiv waren. Solche starken Immunantworten wurden bisher nur unter zu Hilfenahme starker Adjuvanzien induziert. ONATK führt bereits nach einmaliger Applikation zu einer Depletion regulatorischer T-Zellen in vivo. Dabei wird der Gehalt von 4 % regulatorischen T-Zellen im Blut auf einen Gehalt von 1 % gesenkt. Diese Depletion der Tregs verstärkt eine Immunisierung mit Peptiden, die eine starke CD8 T-Zell vermittelte Immunantwort induziert. Allerdings kam es zu keiner vollständigen Depletion der Tregs, was durch die geringe in vivo Halbwertszeit von ONTAK, sowie durch unbekannte Mechanismen der Treg Homöostase erklärt werden könnte. Die Wirkweise von ONTAK konnte nur im Blut, aber nicht in anderen Organen wie z.B. Lymphknoten erforscht werden, daher besteht die Möglichkeit, einer unvollständigen Depletion der Zellen in peripheren Organen. In wieweit Tregs im Blut mit anderen Zellen wechselwirken ist weitgehenst unerforscht. Die meisten Untersuchungen zeigen Zell-Zell Interaktionen in den Lymphknoten und im entzündeten Gewebe. Der Ort, an dem die Tregs aber wirklich ihr suppressives Potential auf andere Zellen entfalten, ist noch unbekannt. Hiermit beschäftigt sich der zweite Teil dieser Arbeit. Zur Beantwortung dieser Frage sollten Tregs in vivo in Mäusen in die Haut oder den Lymphknoten geleitet werden. Um das Vorhaben auszuführen, wurden die Zytokinrezeptoren CCR7, CCR9 und CCR10 sowie die Adhäsionsmoleküle PSGL-1, ESL-1 und CD103 kloniert und in zwei Expressionssystemen getestet. Ein lentivirales System zeigte eine schlechte Transduktionseffizienz, so dass ein zweites System mit einer Elektroporationstechnik, der Nucleofection gewählt wurde. Dieses führte zu Expressionseffizienzen von ca. 40 %. Zuerst wurde die Funktionalität der klonierten Moleküle in vitro in der murinen T-Zellline EL-4 in Transwell- und Flowchamberversuchen demonstriert, anschließend wurden murine in vitro expandierte Tregs nucleofiziert. Eine umfassende Analyse der nucleofizierten Zellen zeigte eine Heraufregulation von CD69 und eine Herunteregulation von CD62L, was auf eine Aktivierung der Zellen deutet. Mit einhergehender Aktivierung nahm auch die Apoptoserate der Zellen zu, diese konnte auch durch Modifikationen der Nucleofections- sowie der Kulturbedingungen nicht verringert werden. Nach einer Inkubationszeit von 16 Stunden nach der Nucleofection ließen sich noch adhäsive Eigenschaften der exprimierten Moleküle in der Flowchamber nachweisen. Im Suppressionstest, in dem die Zellen über einen Zeitraum von drei Tagen inkubiert wurden, waren die Zellen jedoch nicht mehr suppressiv. Daher wären die in vivo Versuche, die den suppressiven Einfluß der Tregs auf die Ohrschwellung in Abhängigkeit ihrer Lokalisation untersuchen sollten, erfolglos geblieben. Mit der Induktion der Apoptose stießen die hier verwendeten Methoden an ihre Grenzen. Zur Realisierung des Projekts müssten andere Transduktionssysteme oder Tregs aus knock out Mäusen verwendet werden. Regulatorische T-Zellen nehmen eine Schlüsselrolle bei der Suppression von anti-Tumor Immunantworten aber auch bei dem Schutz vor Autoimmunerkrankungen ein. Eine erfolgreiche Manipulation dieser Zellen in vivo oder in vitro bildet eine solide Basis für neuartige Immuntherapien gegen entsprechende Krankheiten. ONTAK ist ein wirkungsvolles Medikament, um die Anzahl der regulatorischen Zellen in vvo zu reduzieren. Es trägt dadurch zu einer verstärkten Immunantwort bei. Eine einmalige Gabe von ONTAK ist sicherlich nicht ausreichend, um Tumore zu bekämpfen, es kann aber Immuntherapien unterstützen. Eine Manipulation von Tregs, durch die Expression von Transgenen um ihr Migrationsverhalten in vivo zu beeinflussen und damit die Suppression von Autoimmunerkrankungen zu bedingen, ist noch nicht ausgereift und bedarf noch weiterer Forschung.
Das Ziel der vorliegenden Arbeit ist die Entwicklung eines geeigneten Assays (eines standardisierten Reaktionsablaufs) für die Analyse der Funktion und Aktivität der Transporter für organische Kationen (OCT) mit Hilfe der auf einer festkörperunterstützten Membran (SSM) basierenden Elektrophysiologie. Die zweite Kernaufgabe war die Entwicklung der Expressionssysteme für die heterologe OCT-Expression. In den neunzigen Jahren wurden neue Membranproteine, OCT1-3, identifiziert, die eine wichtige Komponente für den Transport der strukturell unterschiedlichen organischen Kationen im menschlichen Organismus darstellen (Gründemann et al., 1994; Koehler et al., 1997; Koepsell et al., 1998; Zhang et al., 1998). Da etwa fünfzig Prozent der in der Klinik gebräuchlichen Medikamente und viele andere exogene Substanzen (Xenobiotika) polare organische Verbindungen sind, die bei einem physiologischen pH-Wert (7,4) überwiegend in protonierter Form als Kationen vorliegen und mittels OCT aus dem Körper ausgeschieden werden, gehören diese Proteine zu den pharmazeutisch bedeutenden Zielmolekülen (Targets) bei der Entwicklung neuer Medikamente. Letztere stellt einen sehr langwierigen Prozess dar, der die Untersuchung zahlreicher Substanzbibliotheken auf ihre Wirkung auf bestimmte Targets voraussetzt. Aufgrund der rasanten technischen Entwicklung in der Laborautomatisierung und der digitalen Mikroskopie können mittlerweile mehrere tausend Wirkstoffkandidaten in Ultra-High-Throughput-Screenings (UHTS) am Tag getestet werden, von denen aber nur ein minimaler Prozentsatz eine erste positive Reaktion (Hit) mit dem Target zeigt. Die Ergebnisse aus dem primären Screening-Prozess werden in einem zweiten Screening-Prozess weiter bearbeitet. In diesen High-Content-Analysen (HCA) werden dabei entgegen den ersten Untersuchungen die Substanzen nicht mehr einzig auf ihre Interaktion mit dem Target getestet. Vielmehr werden möglichst alle Informationen gesammelt und Effekte analysiert. Zurzeit werden folgende Assays dafür eingesetzt (Geibel et al., 2006): 1) radioaktive Assays, wie Ligandbindungsassays, Flux-Assays; 2) Fluoreszenzassays auf Basis von spannungs- oder ionenabhängigen Farbstoffen; 3) Flux-Assays auf Basis von Atom-Absorptions-Spektroskopie (AAS); 4) manuelle patch-clamp-Assays. Allerdings können diese Assays wegen unterschiedlicher Einschränkungen nur begrenzt eingesetzt werden. So treten bei den Fluoreszenzassays aufgrund der Farbstoff-Substanz-Interaktionen oft falsche positive Ergebnisse auf. Methoden mit radioaktiv markierten Substraten sind aus sicherheitstechnischen Gründen mit hohem Aufwand und entsprechenden Kosten verbunden. Das patch-clamp-System verfügt zwar über eine hohe Sensitivität und einen hohen Informationsgehalt, ist jedoch für das Screening wegen des geringen Durchsatzes und erheblicher Kosten nicht effizient. Diese Beispiele zeigen die Notwendigkeit der Entwicklung neuer Techniken für die pharmazeutische Wirkstoffsuche. Die SSM-basierte elektrophysiologische Detektionstechnologie ermöglicht die Untersuchung der Transportproteine in ihren nativen Membranen mit hoher Sensitivität ohne Fluoreszenzmarkierung (Geibel et al., 2006; Kelety et al., 2006). Diese Methode hat besondere Vorteile gegenüber anderen bei der Erforschung von Transporter-Proteinen, die im Gegensatz zu Ionenkanälen relativ wenig Ladung pro Zeiteinheit (1-104 Moleküle s-1) transportieren, und viele Techniken wegen der geringeren Empfindlichkeit für deren Untersuchung nicht geeignet sind.