Refine
Year of publication
Document Type
- Doctoral Thesis (10)
- Master's Thesis (3)
- Bachelor Thesis (1)
- Diploma Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Dissertation (1)
- Numerical Renormalization Group (1)
- Quantenphysik (1)
- Quantum Impurity System (1)
- Rydberg (1)
- Topologische Zustände (1)
- Ultrakalte Quantengase (1)
- dynamical mean-field theory (1)
- lattice-supersolid (1)
- many-body blockade (1)
Institute
- Physik (15)
In this thesis we have studied the physics of different ultracold Bose-Fermi mixtures in optical lattices, as well as spin 1=2 fermions in a harmonic trap. To study these systems we generalized dynamical mean-field theory for a mixture of fermions and bosons, as well as for an inhomogeneous environment. Generalized dynamical mean-field theory (GDMFT) is a method that describes a mixture of fermions and bosons. This method consists of Gutzwiller mean-field for the bosons, and dynamical mean-field theory for the fermions, which are coupled on-site by the Bose-Fermi density-density interaction and possibly a Feshbach term which converts a pair of up and down fermions into a molecule, i.e. a boson. We derived the self-consistency equations and showed that this method is well-controlled in the limit of high lattice coordination number z. We develop real-space dynamical mean-field theory for studying systems in an inhomogeneous environment, e.g. in a harmonic trap. The crucial difference compared to standard DMFT is that we are taking into account that different sites are not equivalent to each other and thus take into account the inhomogeneity of the system. Different sites are coupled by the real-space Dyson equation. ...
Hofstadter-Hubbard physics
(2020)
The Hofstadter model, besides the Haldane and Kane-Mele models, is the most common tight-binding model which hosts topologically nontrivial states of matter. In its time-reversal-symmetric formulation the model can even describe topological insulators. Experimentally, the Hofstadter model was realized with ultracold quantum gases in optical lattices which is a wellcontrolled way to engineer quantum states of tight-binding Hamiltonians. Another established control parameter in ultracold quantum gases are twoparticle, on-site interactions, also known as Hubbard interactions. This work aims at introducing the reader to the concepts of topological states of matter, a collection of corresponding tight-binding models, and the methodology to treat interacting topological states with dynamical mean-field theory.We present recent results for inhomogeneous, interacting systems, spinimbalanced magnetic systems, propose experimental detection methods, and extensions to three-dimensional topological states.
Interacting ultracold gases in optical lattices: non-equilibrium dynamics and effects of disorder
(2012)
This dissertation aims at giving a theoretical description of various applications of ultracold gases. A particular focus is cast upon the dynamical evolution of bosonic condensates in non-equilibrium by means of the time-dependent Gutzwiller method. Ground state properties of strongly interacting fermionic atoms in box and speckle disordered lattices are investigated via real-space dynamical mean-field theory. ...
In the course of this thesis we discuss a certain kind of supersolid, the lattice-supersolid, which can be realized using quantum gases in an optical lattice trap. The lattice-supersolid, which simultaneously possesses off-diagonal and diagonal long-range order in its density matrix and also breaks the discrete translational symmetry of an underlying lattice, is induced by self-ordering of the gas due to strong long-range van der Waals interactions. In the considered scenario, the interactions are facilitated by the excitation of atomic Rydberg states, which exhibit enhanced van der Waals forces.
In the first part of this thesis (chapters 1-3), we review the relevant basics of quantum gases, Rydberg physics and introduce the extended Bose-Hubbard model. We start with the relevant methods and devices of the vast toolbox available in common quantum gas experiments, as well as consider the main concepts behind superfluidity and supersolidity. This is followed by an introduction of some basic concepts of Rydberg atoms in quantum many-body systems, with a focus on the facilitation of long-range interactions and the implementation in a theoretical model. Thereafter a brief introduction is given, on the realization of the Bose-Hubbard model in optical lattice systems and its extension to include Rydberg states, which concludes the introductory part of this thesis.
In the following part (chapters 4-6), we introduce the theoretical tools used to derive the results presented in the final part. First, an introduction to a real-space extension of bosonic dynamical mean-field theory (RB-DMFT) for bosonic systems with long-range interactions in the Hartree approximation is given. This method is based on the non-perturbative self-consistent evaluation of the lattice Green’s function, which also incorporates the effect of nearest neighbor correlations due to the non-condensed particles. Then we focus on a quasiparticle expansion of the Bose-Hubbard model, which has its foundation in linearized fluctuations of a static mean-field ground-state, allowing for the prediction of a vast range of experimentally relevant observables. Lastly, we introduce an efficient truncation scheme for the local bosonic Fock-basis, which allows for the simulation of phases with high condensate density at a vastly reduced computational effort.
In the final part (chapters 7 and 8), we discuss the application of both methods to itinerant bosonic gases in two-dimensional optical lattices, in order to predict the equilibrium ground-state phases, as well as the signatures of supersolidity and its formation in spectral functions and the dynamic and static structure factor. Specifically, we focus on two limiting cases. Firstly, we consider a two-component gas, as realized by two hyperfine ground states, for example, of rubidium-87, where one component is off-resonantly excited to a Rydberg state, which generates a soft-core shaped interaction potential. Secondly, we discuss the opposing limit, using near-resonant excitations
of Rydberg states, where the interacting component now directly corresponds to the Rydberg state, which interacts via a van der Waals potential. In both cases we discuss the rich variety of supersolid phases, which are found for a wide range of parameters. We also discuss how some of these phases can be realized in experiment.
In the subsequent appendices (A to D) we discuss some methodological details. Most notably, we consider the possible Fock-extension of the Hartree approximation (appendix A), introduced in the RB-DMFT treatment of the extended Bose-Hubbard model.
Seit Anbeginn der Festkörperphysik ist die Frage, warum manche Materialien metallisch sind, andere dagegen isolierend, von zentraler Bedeutung. Eine erste Erklärung wurde durch die Bändertheorie [23, 44] gegeben. Die Elektronen sind dem periodischen Potential der Rumpfatome ausgesetzt, wodurch ein Energiespektrum bestehend aus Bändern erzeugt wird und die Füllung dieser Bänder bestimmt die Leitungseigenschaften des Festkörpers. ...
In this thesis we discussed the expansion behaviour of an ultracold bosonic gas from an initial harmonic confinement. We studied the reaction of the non-interacting system to changes of the trap frequency ω and of the strongly interacting system to changes of the number of Mott insulating particles NMI in the initial state and the interaction U/J. The total number of particles is kept constant for the different simulations, which are performed by means of the Bosonic Gutzwiller approach...
Folgend auf den ersten Realisierungen von Bose-Einstein Kondensaten erschienen weitere innovative Experimente, die sich in den optischen Gittern gefangenen Quantengasen widmeten. In diesen zahlreichen, wissenschaftlichen Untersuchungen konnten die Eigenschaften von Bose-Einstein Kondensaten besser verstanden werden. Das Prinzip von Vielteilchensystemen, gefangen in einem periodischen Potential, bot eine Plattform zur Untersuchung weiterer Quantenphasen.
Eine konzeptionell einfache Modifikation von solchen Systemen erhält man durch die Kopplung der Grundzustände der gefangenen Teilchen an hoch angeregten Zuständen mithilfe einer externen Lichtquelle. Im Falle dessen, dass diese Zustände nahe der Ionisationsgrenze des Atoms liegen, spricht man von Rydberg-Zuständen und Atome, welche zu diesen Zuständen angeregt werden, bezeichnet man als Rydberg-Atome. Eines der vielen charakteristischen Eigenschaften von Rydberg-Atomen ist die Fähigkeit über große Entfernungen jenseits der atomaren Längenskalen zu wechselwirken. Im Rahmen von Vielteilchensystemen wurden dementsprechend Kristallstrukturen aus gefangenen Rydberg-Atomen experimentell beobachtet.
Nun stellt sich die Frage, was mit einem gefangenen Bose-Einstein Kondensat passiert, dessen Teilchen an langreichweitig wechselwirkenden Zuständen gekoppelt sind. Gibt es ein Parameterregime, in dem sowohl Kristallstruktur als auch Suprafluidität in solchen Systemen koexistieren können? Dies ist die zentrale Frage dieser Arbeit, die sich mit der Theorie von gefangenen Quantengasen gekoppelt an Rydberg-Zuständen auseinandersetzt.
In dieser Arbeit wurde das Verhalten von repulsiv gebundenen Teilchenpaaren (Dimeren) in eindimensionalen optischen Gittern untersucht. Repulsiv gebundene Teilchenpaare sind metastabile Zustände, die nicht im freien Raum, dafür aber in geordneten Potentialen, wie optische Gitter sie darstellen, vorkommen können. In einem analytischen Teil beschäftigten wir uns mit der Herleitung effektiver Hamiltonians für Dimersysteme. Diese wurden dann unter Verwendung des Time Evolving Block Decimation-Algorithmus (TEBD) numerisch untersucht...