Refine
Year of publication
Document Type
- Doctoral Thesis (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Biochemie (1)
- Biochemistry (1)
- Chlorophyll (1)
- Crystallography (1)
- Kristallographie (1)
- Kristallzüchtung (1)
- Kryoelektronenmikroskopie (1)
- Kryokonservierung (1)
- Licht-Sammel-Komplex (1)
- Light-Harvesting Complex (1)
Institute
- Biochemie und Chemie (14)
- Biochemie, Chemie und Pharmazie (5)
- Biowissenschaften (1)
- MPI für Biophysik (1)
- Physik (1)
Electron tomography was used to investigate membrane proteins in a variety of contexts. A high-angle tilt holder, suitable for electron tomography was designed, constructed and characterised. 2D crystals of membrane proteins, NhaA and YidC, were examined as a resolution test, and a method established for determining planarity of crystals. A model for specific gold binding to NhaA crystals was also presented. ATP synthase, a membrane protein complex in mitochondria, were imaged in a frozen hydrated state. They were found to form ribbons of dimers at highly curved regions of the membrane. Dimers from bovine heart and rat liver were excised from the tomographic volumes and averaged. Based on the location of the dimers in the mitochondrion, a model was established whereby ATP synthase, a molecular motor driven by the proton motive force, benefits from the high curvature that it induces in the membrane. Whole yeast mitochondria, imaged by electron cryo-tomography, also contained long ribbons of dimeric ATP synthase. Multiple copies of an unknown membrane protein complex were visualised by electron cryo-tomography, excised and averaged. A general method for the identification of unknown proteins was presented to deal with this inevitable issue, as native tissues and organelles are imaged, and the structures of complexes determined in situ.
Membrane proteins are a diverse group of proteins that serve a multitude of purposes with one of the most important ones being transport. All kinds of substrates are shuffled over biological membranes with the help of dedicated proteins enabling the transport along and against a concentration gradient. Within the group of actively transporting proteins a diverse set of proteins that rely on an electrochemical gradient to facilitate transport of a substrate against its concentration gradient can be found. Those so-called secondary active
transporters are a group on integral membrane proteins ubiquitous to all cells. They allow the transport of all kinds of substrates like nutrients, ions, other metabolites and drugs over the hydrophobic barrier created by the cellular and organellar membrane. The gradients that provide the main driving force for most of the transporters are either sodium ions or protons, although transporters utilizing other ions or organic compounds are found as well. In case of exchangers two very similar substrates are transported in opposing direction over the membrane, one against its electrochemical gradient driven by the other.
Along with a structural diversity of the transporters concerning overall shape, oligomerization and number of transmembrane elements comes a mechanistic variety though still following the principle of alternating access. In humans the malfunction of secondary active transporters can lead to a physiological disorders such as epilepsy, depression or obesity.
The focus of this thesis was the structural and functional characterization of the secondary active transporter SeCitS from Salmonella enterica, a symporter of the 2-hydroxycarboxylate family. The transport of citrate as a bivalent ion is facilitated by the flux of sodium ions that have an inward-facing gradient over the inner membrane of Salmonella enterica. Transport experiments showed that the transport ratio is two sodium ions per citrate molecule, netting in an electroneutral transport. Compared to other members of the family the specificity of the transporter towards its main substrate is very high.
Structural information on the protein was initially obtained through 2D electron crystallography, which allowed the identification of the oval shaped dimer and a first hint towards a significant conformational change that the protein undergoes during its transport cycle. Using 3D crystallography, the X-ray structure of the transporter was solved. The protein crystalizes as a stable, but conformationally asymmetric dimer. As bound citrate can be readily identified in both protomers they can be assigned into an outward- and an inward-facing conformation, with the main citrate binding site in the outward-facing conformation.
One interesting feature of the crystal structure was the large surface available for multimerization, providing a platform for tight dimerization of the two protomers. On the other hand, SeCitS did not show a true cooperativity of transport. With those two aspects taken into account the question arose if any potential crosstalk between the monomers within the dimer takes place and influences transport (negative cooperativity) or the conformational distribution within the dimer (stabilization of the protein within the membrane).
The functional approach in answering this question was the use of mutated variants of the protein for cross-linking within one monomer. Two residues were chosen respectively to lock one of either conformation to be able to test for transport activity in the remaining protomer. The suitability of the residues was derived from the crystal structure (D112 – R205 to lock the inward-facing conformation and L337 – S412 for the outward-facing conformation). After initial promising results the final variants were not stable enough to be analyzed in transport assays.
To analyze the distribution of relative conformations within the dimer the protein was reconstituted into native-like lipid environment such as nanodiscs or saposin nanoparticles to be analyzed by cryo-electron microscopy. The first images were recorded and did yield promising 2D classes where the general features of the transporter were identified. Yet, an improved preparation is required to obtain a high resolution structure.
The key functional aspects of a transporter are its ability to bind and transport its substrates. In a set of experiments those features were investigated by a radioligand transport assay and by isothermal titration calorimetry (ITC). The transport properties of the protein were assessed in a filter assay using a radioactively labeled citrate as a read-out. The protein was reconstituted into proteoliposomes and subjected to different substrate conditions. Different ions were tested in its ability to drive or inhibit transport, but only sodium ions were able to drive transport and also not hindered by the presence of other ions...
The light-harvesting complex of photosystem II (LHC-II) is the major antenna complex in plant photosynthesis. It accounts for roughly 30% of the total protein in plant chloroplasts, which makes it arguably the most abundant membrane protein on Earth, and binds about half of plant chlorophyll (Chl). The complex assembles as a trimer in the thylakoid membrane and binds a total of 54 pigment molecules, including 24 Chl a, 18 Chl b, 6 lutein (Lut), 3 neoxanthin (Neo) and 3 violaxanthin (Vio). LHC-II has five key roles in plant photosynthesis. It: (1) harvests sunlight and transmits excitation energy to the reaction centres of photosystems II and I, (2) regulates the amount of excitation energy reaching each of the two photosystems, (3) has a structural role in the architecture of the photosynthetic supercomplexes, (4) contributes to the tight appression of thylakoid membranes in chloroplast grana, and (5) protects the photosynthetic apparatus from photo damage by non photochemical quenching (NPQ). A major fraction of NPQ is accounted for its energy-dependent component qE. Despite being critical for plant survival and having been studied for decades, the exact details of how excess absorbed light energy is dissipated under qE conditions remain enigmatic. Today it is accepted that qE is regulated by the magnitude of the pH gradient (ΔpH) across the thylakoid membrane. It is also well documented that the drop in pH in the thylakoid lumen during high-light conditions activates the enzyme violaxanthin de-epoxidase (VDE), which converts the carotenoid Vio into zeaxanthin (Zea) as part of the xanthophyll cycle. Additionally, studies with Arabidopsis mutants revealed that the photosystem II subunit PsbS is necessary for qE. How these physiological responses switch LHC-II from the active, energy transmitting to the quenched, energy-dissipating state, in which the solar energy is not transmitted to the photosystems but instead dissipated as heat, remains unclear and is the subject of this thesis. From the results obtained during this doctoral work, five main conclusions can be drawn concerning the mechanism of qE: 1. Substitution of Vio by Zea in LHC-II is not sufficient for efficient dissipation of excess excitation energy. 2. Aggregation quenching of LHC-II does not require Vio, Neo nor a specific Chl pair. 3. With one exception, the pigment structure in LHC-II is rigid. 4. The two X-ray structures of LHC-II show the same energy transmitting state of the complex. 5. Crystalline LHC-II resembles the complex in the thylakoid membrane. Models of the aggregation quenching mechanism in vitro and the qE mechanism in vivo are presented as a corollary of this doctoral work. LHC-II aggregation quenching in vitro is attributed to the formation of energy sinks on the periphery of LHC-II through random interaction with other trimers, free pigments or impurities. A similar but unrelated process is proposed to occur in the thylakoid membrane, by which excess excitation energy is dissipated upon specific interaction between LHC-II and a PsbS monomer carrying Zea. At the end of this thesis, an innovative experimental model for the analysis of all key aspects of qE is proposed in order to finally solve the qE enigma, one of the last unresolved problems in photosynthesis research.
This thesis presents a 5.9 Å map of yeast FAS obtained by cryo-electron microscopy using single particle analysis (SPA). The EM-map has been analyzed both by quantitative and qualitative analysis to aid in understanding of the structure and dynamics of yeast FAS. This study approaches the factors limiting the resolution in EM (>20 Å) and further discusses the possibilities of achieving higher-resolutions (<10 Å) in cryo-EM by single particle analysis. Here, SPA is highlighted as a powerful tool for understanding the structure and dynamics of macro-molecular complexes at near native conditions. Though SPA has been used over the last four decades, the low-resolution range (20-30 Å) of the method has limited its use in structural biology. Over the last decade, sub nanometer resolution (<10 Å) structures solved by SPA have been reported --both in studies involving symmetric particles, such as GroEL (D7) and asymmetric particles, such as ribosomes (C1). Recently, near-atomic resolution in the range of 3.8-4.2 Å has been achieved in cases of highly symmetric icosahedral viral capsid structures as well. The yeast FAS structure (D3) presented here is one of two low symmetry structures submitted to the EM-database in a resolution range of 5-6 Å; the other being GroEL (D7). Fatty acid synthase (FAS) is the key enzyme for the biosynthesis of fatty acids in living organisms. There are two types of FAS, namely the type II FAS system in prokaryotes, consisting of a set of individual enzymes, and type I FAS found in eukaryotes as a multienzyme complex. Yeast fatty acid synthase (FAS) is a 2.6 MDa barrel-shaped multienzyme complex, which carries out cyclic synthesis of fatty acids. By electron cryomicroscopy of single particles we obtained a 3D map of yeast FAS at 5.9 Å resolution. Compared to the crystal structures of fungal FAS, the EM map reveals major differences and new features that indicate a considerably different arrangement of the complex in solution, as well as a high degree of variance inside the barrel. Distinct density regions in the reaction chambers next to each of the catalytic domains fit well with the substratebinding acyl carrier protein (ACP) domain. In each case, this resulted in the expected distance of ~18 Å from the ACP substrate binding site to the active site of the catalytic domains. The multiple, partially occupied positions of the ACP within the reaction chamber provide direct insight into the proposed substrate-shuttling mechanism of fatty acid synthesis in this large cellular machine.
Die Atmungskette in der inneren Membran der Mitochondrien besteht aus fünf großen Enzymkomplexen. Die NADH-Dehydrogenase (I), Succinat-Dehydrogenase (II, indirekt), Cytochrom c-Reduktase (III) und Cytochrom c-Oxidase (IV) nutzen die Energie aus Elektronentransfers zum Aufbau eines Protonengradienten über die innere Mitochondrienmembran. Dieser wird anschließend von der FOF1-ATP-Synthase (V) als Energiequelle zur Phospho-rylierung von ADP verwendet. Für lange Zeit bestand eine Kontroverse, wie diese Proteine in der Membran organisiert sind. Nach dem „random collision“-Modell diffundieren sie frei als Einzelmoleküle und treffen sich nur zufällig, während sie nach dem „solid state“-Modell größere funktionelle Einheiten bilden. In den letzten Jahren gab es vermehrt Hinweise darauf, dass das letztere Modell das zutreffendere ist, da tatsächlich sogenannte Superkomplexe der Atmungskette in aktiver Form isoliert werden konnten. Schließlich konnte 2007 die erste drei-dimensionale Rekonstruktion eines Superkomplexes, bestehend aus Komplex I, dimerem Komplex III und Komplex IV publiziert werden. Aufgrund der Einschränkungen der verwendeten Negativkontrasttechnik hatte dieses Modell allerdings nur eine niedrige Auflösung und repräsentierte durch die Dehydrierung keinen nativen Zustand. Dadurch ließen sich die Strukturen der einzelnen Komplexe nur ungenau einpassen. Um diese Probleme zu umgehen, sollte eine Struktur unter Kryo-Bedingungen rekonstruiert werden. Um die für Kryo-EM benötigte größere Ausbeute und höhere Konzentration zu erzielen, wurde ein neues Reinigungsprotokoll für die Superkomplexe etabliert. Die wesentlichen Punkte darin sind der Austausch des für die Solubilisierung verwendeten Digitonins durch Amphipol A8-35 mittels ?-Cyclodextrin und eine anschließende Dichtegradienten-Ultrazentrifugation. Im BN-PAGE zeigten die auf diese Art gereinigten Superkomplexe das gleiche Banden- und Aktivitätsmuster wie Proben in Digitonin. Auch bei einer Einzelpartikelanalyse nach Negativ-kontrastfärbung konnten keine Unterschiede festgestellt werden und die Partikel zeigten ähnliche Orientierungen wie in der vorherigen Studie. Einige neue Ansichten ließen sich jedoch nicht zuordnen und stellten eventuell eine Verunreinigung mit größeren Superkomplexen dar. Da auch bei der Reinigung mit Amphipol die Proteinkonzentration letztlich nicht wesentlich erhöht werden konnte und sich die Superkomplexe nicht wie für Kryo-EM erforderlich in einen löchrigen Kohlefilm einlagerten, wurden die Proteine auf einem durchgehenden Kohlefilm in einer dünnen Pufferschicht vitrifiziert. Die dabei zu beobachtenden bevorzugten Orientierungen, sollten auch die Unterscheidung von verschiedenen Populationen von Superkomplexen erleichtern. Eine erste 3D-Rekonstruktion wurde mit Hilfe der „random conical tilt“-Methode errechnet. Dieses Modell wurde durch „projection matching“ bis zu einer Auflösung von 19 Å verfeinert, womit die Auflösung fast doppelt so hoch ist, wie bei der Rekonstruktion aus Negativ-kontrastfärbung (36 Å). Die Struktur repräsentiert einen natürlichen Zustand des Proteins und zeigt Details wie einzelne Domänen, Spalten zwischen Domänen und eine starke Krümmung des Membranarms von Komplex I, die zuvor nicht erkenn-bar waren. Die Amphipole bilden einen Gürtel um den Transmembranbereich. Die Röntgenstrukturen von Komplex I, III2 und IV konnten mit großer Präzision in die Dichtekarte eingepasst werden. Die wenigen kleinen Unterschiede zwischen Röntgenstrukturen und EM-Dichtekarte sind auf leichte Konformations-änderungen zurückzuführen. Die Kryo-EM-Rekonstruktion ist erheblich größer als die Rekonstruktion aus Negativfärbung, wodurch die enthaltenen Komplexe nur noch wenige punktuelle Kontakte haben. In den Zwischenräumen könnte eine spezielle Lipidumgebung die kleinen Elektronenüberträger Ubichinon und Cytochrom c in den Superkomplex integrieren. Ihre Bindestellen sind jeweils zueinander orientiert und die geringen Abstände, die zum ersten Mal bestimmt werden konnten, stützen die Hypothese eines gerichteten Substrattransfers über kurze Entfernungen. Von den möglichen Übertragungswegen scheint der kürzere mit weniger Transferreaktionen bevorzugt zu werden. Während der Entwicklung des neuen Reinigungsprotokolls für die Superkomplexe konnte zusätzlich eine neue Methode zur Rekonstitution von Membranproteinen entwickelt werden. Die solubilisierten Proteine werden dabei in Dichtegradienten mit steigenden Konzentrationen von ansolubilisierten Liposomen und Cyclodextrin zentrifugiert, wodurch ihnen langsam das Detergens entzogen und durch Lipid ersetzt wird. Proteoliposomen werden gleichzeitig von überschüssigem Lipid und Cyclodextrin-Detergens-Komplexen getrennt.
Transport of proteins into or across cellular membranes is mediated by the conserved and ubiquitous Sec-machinery. The Sec-homologue in the inner membrane of Escherichia coli is SecYEG. Sec-mediated insertion of numerous membrane proteins is aided by YidC, another protein integral to the inner membrane of Escherichia coli. YidC fulfils in addition the integration of a variety of membrane proteins Sec-independently. It belongs to a conserved but structurally uncharacterised family of proteins important for membrane protein biogenesis and comprises homologues in mitochondria and chloroplasts. By modification of a former crystallisation protocol two-dimensional crystals of SecYEG were grown in presence of the signal sequence peptide of LamB. Recording of structural data by electron cryo-microscopy and calculation of a difference structure comparing a former SecYEG projection structure with the one of SecYEG crystallised in presence of the substrate revealed several new and vacant densities. These hint to signal peptide binding close to the translocation pore and to significant rearrangements in proximity to the lateral exit site for transmembrane domains in SecYEG. The difference structure suggests that dimeric SecYEG is an asymmetric molecule consisting of one active and one inactive SecYEG monomer. Detergent removal from a mixture of purified YidC and lipids produced two-dimensional crystals that were highly dependent on the ionic strength and lipid composition for their growth. Electron cryo-microscopy on the frozen-hydrated crystals and image processing visualised structural details at about 10 Å resolution. Averaging two alternative projection structures in p2 and p121_a symmetry, respectively, yielded essentially the same features. Four YidC monomers form one unit cell (dimensions 82 x 71 Å, included angle 85 ° and 90 °, respectively) and seem to be arranged as two sets of dimers integrated in an anti-parallel fashion into the membrane. An area of low density in the centre of each YidC monomer resembles possibly a constriction of the membrane, which could have particular relevance for the integration of substrate proteins into the lipid bilayer.
Natrium/Protonen-Austauscher sind integrale Proteine biologischer Membranen und aufgrund ihrer funktionalen Abhängigkeit von einem elektrochemischen Gradienten der Klasse der Sekundärtransporter zugeordnet. Sie spielen eine essentielle Rolle sowohl in der Adaption von Bakterien an eine saline, alkalische Umgebung, als auch in der Regulation des intrazellulären pH- und Natriumhaushalts in Eukaryonten. Aufgrund der medizinischen Relevanz, unter anderem im Rahmen in der Behandlung des Herzinfarkts, besteht großes Interesse an der Struktur und den biochemischen Charakteristika des im Menschen ubiquitär vorkommenden Natrium/Protonen-Austauschers NHE1. Die heterologe und funktional aktive Produktion eukaryontischer Membranproteine stellt jedoch immer noch eine enorme Herausforderung dar, bei der sich das auf dem Semliki Forest Virus basierende Expressionssystem als gut geeignet erwiesen hat. Da die Überexpression von NHE1 mittels verschiedener eukaryontischer Expressionssysteme bisher kein kristallisationsfähiges Material liefern konnte, sollte in dieser Arbeit die heterologe Gewinnung von NHE1 mit dem Semliki Forest Virus Expressionssystem ermöglicht werden. Das Semliki Forest Virus Expressionssystem wurde auf Basis eines Vektorkonstrukts mit GFP zur späteren Übertragung der Parameter auf die Produktion von NHE1 etabliert. Konstrukte von NHE1 mit N- und C-terminalem Affinitäts-Tag wurden erfolgreich kloniert und zur Infektion von BHK-21 Zellkulturen eingesetzt. Dabei konnte beobachtet werden, dass der N-Terminus abgespalten wird und wahrscheinlich als Signalpeptid zum Einbau in die Membran dient. Das Protein wurde im Endoplasmatischen Retikulum lokalisiert, wo die Glykosylierung zum Transport in die Plasmamembran unterbleibt, was auf eine Interferenz mit der Virusinfektion zurückgeführt wurde. Eine Infektion der Zellen mit dem Semliki Forest Virus hat neben einem bereits bekannten massiven Anstieg des intrazellulären Natriumgehalts eine starke Alkalinisierung des Zytoplasma zur Folge. Ähnliches ist bisher über die Infektion von Zellen mit dem Poliovirus bekannt und stellt dort ein Schlüsselelement in der Sicherstellung der viralen Replikation dar, was auch für das Semliki Forest Virus zu gelten scheint. Die Expression von NHE1 konnte im 8 Liter-Maßstab optimiert und sowohl die Präparation als auch die Solubilisierung mit verschiedenen Detergenzien erfolgreich eingeführt werden. NHE1 erfährt jedoch bereits in vivo einen erheblichen proteolytischen Abbau, der sich während der Membranpräparation und Aufreinigung fortsetzt und zu einer Fragmentierung führt, die trotz des Einsatzes unterschiedlicher Kultivierungszeiten, Detergenzien, Additive oder Proteaseinhibitoren in vivo als auch in vitro nicht in einem Maße reduziert werden konnte, welches zur Gewinnung von kristallisationsfähigem Material erforderlich gewesen wäre. Es muss empfohlen werden einen in vivo Ansatz zu etablieren, um die proteolytische Degradation zu unterdrücken. Da die Virusreplikation nicht erforderlich ist, wäre Bafilomycin als Inhibitor der V-Typ ATPase geeignet, um die intrazelluläre Alkalinisierung und somit wahrscheinlich den Abbau von NHE1 zu verhindern. Ebenso erscheint der Einsatz von MG-132 zur spezifischen Inhibierung des Proteasoms Erfolg versprechend, was aber wegen hoher Kosten praktisch kaum in Frage kommt. Da man trotz individuell gelagerter Unterschiede zwischen den einzelnen Natrium/Protonen-Austauschern von einem ähnlichen Prinzip in Regulation und Transport ausgeht, wurden Strukturuntersuchungen mit Hilfe der Kryo-Elektronenmikroskopie am bakteriellen Natrium/Protonen-Antiporter NhaA aus Escherichia coli durchgeführt, um die strukturelle Basis der pH-Wahrnehmung und die Translokation von Natrium in das Periplasma besser zu verstehen. Die vorliegende Röntgen- und EM-Struktur repräsentieren den inaktiven Zustand, weshalb der eigentliche Ablauf des Transportvorgangs bisher biochemisch herzuleiten war, da bislang keine Kristalle im aktiven Zustand gezüchtet werden konnten. Durch die in situ Inkubation von 2D-Kristallen konnten aktive Zustände des Proteins direkt auf dem EM-Netz induziert und kryo-elektronenmikroskopisch festgehalten werden. Einzelne Datensätzen wiesen Reflexe bis zu 5 Å auf. Aus den angefertigten Projektionsdichte- und Differenzkarten ergaben sich pH- und Natrium-abhängige Konformationsänderungen. Die Röntgenstruktur wurde mit Hilfe des Molekularen Ersatzes in die EM-Struktur eingepasst und diente der Zuordnung und Interpretation der beobachteten Zustände als Basis. Die pH-abhängige Konformationsänderung wurde einem mit der funktional wichtigen Helix 9 assoziierten Bereich zugeordnet, welcher durch die Röntgenstruktur nicht definiert ist und wahrscheinlich die fehlenden Aminosäuren des regulatorisch relevanten N-Terminus enthält. Die beobachtete Konformationsänderung stellt das Entstehen einer besser geordneten Struktur dar und geht mit der pH-regulierten Aktivierung von NhaA zwischen pH 6 und 7 einher, weshalb dieser Bereich des Proteins zumindest als Bestandteil des sogenannten pH-Sensors betrachtet werden kann. Nach der vollständigen Aktivierung durch den pH-Wert, welche der folgenden Natrium-abhängigen Konformationsänderung vorauslaufen muss, konnte beobachtet werden, dass die Präsenz von Natrium im Rahmen der Ionentranslokation eine Bewegung des periplasmatischen Teils von Helix 4 induziert. Es wäre interessant, eine tiefergehende und genauere Charakterisierung der beobachteten Konformationsänderungen durch die Erstellung einer dreidimensionalen EM-Dichtekarte zu ermöglichen. Des Weiteren hat die eingehendere Untersuchung des röntgenkristallographischen Monomers nach der Einpassung in das physiologisch vorliegende Dimer der EM-Struktur sowohl eine für Membranproteine neuartige „Joint β-Sheet“ Dimerisierungsdomäne im Periplasma, als auch eine Verzahnung von Helix 7 und 9 an der Monomer-Monomer-Grenze aufgezeigt. Diesen Charakteristika kommt wahrscheinlich eine tragende Rolle in der Dimerisierung von NhaA zu, was durch weitere Untersuchungen im Rahmen einer Mutagenesestudie unter Einbeziehung der periplasmatischen β-Haarnadelstrukturen überprüft werden sollte.
Glutamat ist der häufigste Neurotransmitter im menschlichen Hirn. Die Konzentration des Glutamats in der extrazellulären Flüssigkeit wird durch Glutamat-Transporter (Sekundärtransporter) kontrolliert. Liegt es in zu hoher Konzentration im synaptischen Spalt vor, kommt es zur Schädigung von Nervenzellen, ein Prozess, der als Exzitotoxizität bezeichnet wird. Eine Fehlfunktion oder fehlerhafte Produktion der Glutamat-Transporter im zentralen Nervensystem wird bei verschiedenen Krankheiten, wie der amyotrophen Lateralsklerose, der Ischämie, der Epilepsie, der Schizophrenie und der Alzheimer-Krankheit vermutet. Ziel dieser Arbeit war die Funktions- und Strukturanalyse der Glutamat-Transporter GLT-1 aus Rattus norvegicus und GltP aus E. coli, um die Familie der Glutamat-Transporter und die Entstehung der mit diesen Transportern in Verbindung gebrachten Krankheiten besser zu verstehen. Um die für diese Analysen gebrauchten Mengen an Protein herzustellen, mussten die Proteine heterolog produziert werden, da sie in natürlichen Geweben nicht in ausreichender Menge vorkommen. In dieser Arbeit wurde Glutamat-Transporter GLT-1 aus Rattus norvegicus funktional mit dem Semliki Forest Virus Expressionssystem überproduziert. Dazu wurden verschiedene Vektorkonstrukte hergestellt. Die routinemäßige Überproduktion des Transporters wurde im 8 l - Maßstab durchgeführt. In Zellen, die für die Produktion von GLT-1 mit rekombinanten, aktiven SF-Viren infiziert wurden, konnte eine sehr hohe Aktivität des Glutamat-Transporters nachgewiesen werden. Die Menge des hergestellten GLT-1 wurde in Bindungsexperimenten mit (2S,4R)-4-Methylglutamat quantifiziert: jede Zelle enthielt 3,5 x 106 Transporter: 61,04 pmol GLT-1/mg Gesamtprotein. Das entspricht einer Ausbeute von etwa 2-3 mg/8 l Zellkultur. Die hier durchgeführte Überproduktion des GLT-1-Glutamat-Transporters ist die erste Überproduktion eines eukaryotischen Sekundärtransporters mit dem Semliki Forest Virus Expressionssystem, bei dem große Mengen an aktivem Protein hergestellt werden konnten. Zudem ist die Ausbeute an funktionalem GLT-1 mit 61 pmol/mg Gesamtprotein verglichen mit den in der Literatur vorliegenden Daten zur Überproduktion eukaryotischer sekundärer Transporter mit anderen Expressionssystemen die höchste, die bis dato erreicht werden konnte. Der größte Anteil des heterolog produzierten GLT-1 war glykosyliert. Die gelelektrophoretische Analyse des aufgereinigten Transporters ergab zwei Banden, die ein apparentes Molekulargewicht von etwa 70-75 kDa und etwa 53-58 kDa hatten. In einer Western-Blot-Analyse konnten beide Banden des GLT-1-Transporters mit einem anti-His-Antikörper und einem anti-GLT-1-Antikörper nachgewiesen werden. Durch Deglykosylierung mit PNGase F und einer Trennung beider Banden durch Lektin-Affinitätschromatographie konnte gezeigt werden, dass es sich bei der 70-75 kDa-Bande um die glykosylierte Form und bei der 53-58 kDa-Bande um die nicht glykosylierte Form des Glutamat-Transporters handelte. Es wurde gezeigt, dass zwischen der Aktivität des GLT-1 und dessen Glykosylierung kein Zusammenhang besteht. Denn beide Formen lagen als vollständige, funktionale Transporter vor und transportierten nach Rekonstitution in Liposomen Glutamat. Der prokaryotische Glutamat-Transporter GltP aus E. coli wurde in dem E. coli-Stamm C43 (DE3) überproduziert. Die Ausbeute war etwa 2 mg pro Liter Kultur. Die Funktionalität des Transporters nach Rekonstitution in Lipidvesikel wurde durch spezifische Aufnahme von Glutamat gezeigt. Für die Solubilisierung beider Transporter aus den Zellmembranen wurden verschiedene Detergentien getestet. GltP ließ sich am besten mit DM oder DDM aus der Membran extrahieren, für die Solubilisierung des GLT-1 wurde mit großer Effizienz DDM oder CYMAL-7 eingesetzt. GltP und GLT-1 wurden mit einer Ni2+-NTA-Affinitätschromatographie in großer Menge und hoher Reinheit angereichert werden. Die Aufreinigungsprozedur beeinträchtigte nicht die Funktionalität des prokaryotischen GltP. Bei dem eukaryotischen Transporter GLT-1 war nach der Ni2+-NTA-Säule keine Transportaktivität mehr messbar. Durch Zusatz von Asolectin in den Wasch- und Elutionspuffern während der Aufreinigung konnte die Funktionalität des Transporters jedoch erhalten werden. Aufreinigungen mit anderen Lipiden unter anderem in Kombination mit Cholesterin lieferten einen Glutamat-Transporter, der in seiner Konformation stabilisiert, jedoch nach Rekonstitution nicht aktiv war. Eine weitere Steigerung der Ausbeute an aktivem GLT-1 konnte durch den Einsatz von Reduktionsmitteln, wie DTT oder b-Mercaptoethanol, die die Aggregation des Transporters verhinderten, erreicht werden. GltP katalysiert den elektrogenen Transport von Glutamat bzw. Aspartat unter Symport von mindestens zwei Protonen. GLT-1 transportiert ein Molekül Glutamat zusammen mit drei Na+-Ionen und einem Proton im Austausch gegen ein K+-Ion. Durch Transportmessungen konnte der hochspezifische Glutamat-Transport der aufgereinigten Transporter belegt werden. Der Glutamat-Transport des in Liposomen rekonstituierten GltP zeigte eine klare Abhängigkeit von einem anliegenden Protonengradienten. Aufgereinigtes und rekonstituiertes GLT-1 transportierte nur Aspartat bzw. Glutamat, wenn ein Na+ und ein K+-Gradient vorhanden waren. Die Aspartat- bzw. Glutamat-Aufnahme konnte bei beiden Transportern durch den kompetitiven nichttransportablen Inhibitor (2S,4R)-4-Methylglutamat blockiert werden. Der Assoziationsgrad der Glutamat-Transporter GltP und GLT-1 und das Gleichwicht zwischen den verschiedenen oligomeren Zuständen wurde in dieser Arbeit eingehend mit biochemischen Methoden untersucht: 1. „Cross-linking“-Studien, 2. Blaue Nativgelelektrophorese, 3. Analytische Ultrazentrifugation, 4. Laserlichtstreuung, 5. Gelfiltrationschromatographie. Die dabei erhaltenen Ergebnisse bewiesen eine tetramere Assoziierung beider Proteine. Die Gelfiltrationsexperimente zeigten, dass die Transporter in Detergenzlösung in unterschiedlichen Assoziationsgraden vorliegen. Das Gleichgewicht zwischen den oligomeren Formen war reversibel und abhängig von der Art und Konzentration des Detergenz, der Proteinkonzentration und der Temperatur. Zur Untersuchung der Struktur der Glutamat-Transporter wurden vor allem mit GltP zahlreiche 2D-Kristallisationsexperimente durchgeführt. Trotz Variation aller denkbar möglichen Parameter konnten keine Kristalle erhalten werden. Das beste Ergebnis war ein guter Einbau des Proteins in Lipidvesikel (etwa 80%). Da keine Kristalle erhalten wurden, wurde für beide Proteine eine Einzelpartikelanalyse durchgeführt. Dabei wurde nach zweidimensionaler Alignierung und Klassifizierung die „random conical tilt“-Methode angewendet. Die daraus resultierenden dreidimensionalen Dichtekarten des GltP und GLT-1 waren sehr ähnlich und wiesen vier nicht exakt symmetrische Massen in annähernd quadratischer Anordnung auf. Die Auflösung war 26 Å bzw. 36 Å. Die Größe der Einzelpartikel (für GltP: Höhe 37 Å, Breite 75 Å bzw. 86 Å, Länge 100 Å). ihre annähernd quadratische Anordnung und ihre Symmetrie lassen vermuten, dass es sich dabei um Tetramere der Glutamat-Transporter handelt, die aus zwei nicht symmetrischen Dimeren zusammengesetzt sind. Die hier präsentierten Daten sind die ersten zur dreidimensionalen Struktur von Glutamat-Transportern. Schließlich wurde nachgewiesen, dass der in BHK-Zellen heterolog exprimierte Glutamat-Transporter GLT-1 vorwiegend in „lipid rafts“ lokalisiert ist. Die Größe der „rafts“, die anhand der Größe der „Proteininseln“ in Gefrierbrüchen bestimmt wurde, war etwa 200 nm im Durchmesser. Die „GLT-1-Inseln“ bzw. „lipid rafts“ konnten durch das teilweise Entfernen von Cholesterin aus der Membran zerstört werden. Damit ging eine Reduktion der Glutamat-Transporter-Aktivität von etwa 20% einher. Es ist das erste Mal, dass „lipid rafts“ durch die natürliche Assemblierung von Proteinen mit Hilfe von Gefrierbruchanalysen und Elektronenmikroskopie beobachtet wurden.
TeaABC from the halophilic bacterium Halomonas elongata belongs to the family of tripartite ATP-independent periplasmic (TRAP) transporters. It facilitates the uptake of the compatible solutes ectoine and hydroxyectoine which protect the cell from dehydration by accumulating in the cytoplasm during hyperosmotic stress. It is the only known TRAP transporter activated by osmotic stress. Ectoine and hydroxyectoine accumulation in H. elongata is regulated by the cytoplasmic universal stress protein TeaD. The gene encoding TeaD is located in the same operon as the TeaABC gene. TeaD regulates the cellular homeostasis of ectoine possibly by interacting directly or indirectly with TeaABC. All subunits of TeaABC and TeaD were expressed in E. coli and purified. With TeaD and the solute binding protein (SBP) TeaA high levels of expression suitable for crystallization could be obtained and their 3D structures solved. The small transmembrane protein TeaB and the transporter TeaC showed only moderate and low levels of expression respectively. Functional analysis on TeaA was performed using Isothermal Titration Calorimetry. The measurements demonstrate that TeaA is a high affinity ectoine-binding protein (Kd = 0.19 _M) that also has a significant affinity for hydroxyectoine (Kd = 3.8 _M). The structure of TeaA was solved using ab initio phase determination by MAD (multiple anomalous dispersion). TeaA structures were determined in three conformations: TeaA alone, TeaA in complex with ectoine and TeaA in complex with hydroxyectoine. The resolutions of the structures were 2.2, 1.55 and 1.80 Å, respectively. These represent the first structures of an osmolyte SBP associated to a TRAP transporter. The structures reveal similar ligand binding compared to osmolyte SBPs of ABC transporter pointing to coevolution of the ligand binding modes. Moreover, unique features such as the solvent-mediated specific binding of the ligands ectoine and hydroxyectoine could be observed for TeaA. The structure of TeaD in complex with its cofactor ATP was solved by molecular replacement at a resolution of 1.9 Å. Comparison with other structures of universal stress proteins shows striking oligomerization and ATP binding in TeaD. In conclusion, this work presents the first detailed analysis of the molecular mechanisms underlying ligand recognition of an osmoregulated transporter from the TRAP-transporter family.
Life-threatening fungal infections are becoming increasingly common for immunocompromised patients such as those with AIDS, or those undergoing organ transplantation or chemotheraphy, as well as for other health-vulnerable patients. Excellent targets for antifungal drugs are chitin synthases, which are essential for survival of the fungus and lacking in humans. To design new antifungal drugs, knowledge of the three-dimensional structure and mechanism of action of chitin synthases are crucial. Chitin synthases are members of an important family of enzymes that synthesize structural polysaccharides, such as cellulose, β(1,3)-glucan, β(1,4)-mannan and hyaluronan. Therefore, chitin synthases could be used as a model system to understand these more complex enzymes, which are also of major medical and commercial importance. Chitin synthase 2 from Saccharomyces cerevisiae (ScChS2), the protein under study, is an integral membrane protein that synthesizes the primary septum between mother and daughter cells in budding yeast. It is essential for proper cell separation and expected to be highly regulated. An important aspect is that ScChS2 shows 55% sequence identity and is functionally analogous to chitin synthase 1 from the human opportunistic pathogen Candida albicans, this enzyme is also essential for cell survival (Munro, Winter et al. 2001). ...