Refine
Year of publication
Document Type
- Doctoral Thesis (25)
- Bachelor Thesis (1)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- FT-IR-Spektroskopie (3)
- FT-IR-Spectroscopy (2)
- H/D Austausch (2)
- Porin (2)
- ATR-Perfusionszelle (1)
- ATR-Spektroskopie (1)
- ATR-Technik (1)
- ATR-perfusion cell (1)
- ATR-spectroscopy (1)
- BetP (1)
Institute
- Physik (22)
- Biochemie und Chemie (1)
- Biowissenschaften (1)
- Extern (1)
- MPI für Biophysik (1)
- Medizin (1)
In this study, the structural and functional properties of the Na+/Betaine symporter BetP were investigated upon K+-induced activation. BetP regulates transport activity dependent on the amount of associated anionic lipids and the cytoplasmic K+-concentration. For this purpose, FTIR spectroscopy was implemented as a non-perturbing biophysical method which shed light on how the membrane lipids contribute to the molecular mechanisms of activation and regulatory response of BetP.
The dependence of the Escherichia coli Na+H+ antiporter A (EcNhaA) pH sensor mutant E241C on H+ and Na+ concentrations was tested using a solid supported membrane (SSM) based electrophysiological approach. Proteoliposome preparations with right side out (RSO) oriented carriers were used to investigate the passive downhill uptake mode (physiologically the reverse transport mode) at zero membrane potential. Na+ concentration gradients established with a rapid solution exchange acted as the driving force. When a Na+ concentration gradient was established at symmetrical pH, the transport activity of the E241C EcNhaA variant was similar to that of the wildtype EcNhaA, with no shift of the bell-shaped pH dependence, an increase of the KmNa at acidic pH and a decrease of the KmNa at alkaline pH, supporting the model of a competitive binding of Na+ and H+ to a common binding site.
In dieser Arbeit wurden zwei Systeme der biologischen Energiewandlung mit verschiedenen spektroskopischen Methoden untersucht und es wurden neue Erkenntnisse über die Funktion und Aktivierung der Proteine Proteorhodopsin und RuBisCO gewonnen. Zusätzlich konnte eine neue methodische Herangehensweise zur Untersuchung von Carboxylierungsreaktionen etabliert werden. Dieser Ansatz bietet in Zukunft breite Anwendungsmöglichkeiten zur Studie dieser biologisch so bedeutenden Reaktionsklasse. Mit Hilfe der Infrarotspektroskopie und vor allem durch den Einsatz von Tieftemperaturmessungen konnte der bisher kontrovers diskutierte Photozyklus von Proteorhodopsin (PR) eingehend charakterisiert werden. Jenseits des gut verstandenen aktiven Transports bei pH 9,0 wurde vor allem der pH 5,1 Photozyklus untersucht. Erstmals konnte auch in Infrarotspektren das M-Intermediat bei pH 5,1 nachgewiesen werden. Dieses Intermediat ist von entscheidender Bedeutung für den aktiven Transport über die Zellmembran und seine Existenz wurde bisher vielfach angezweifelt. Zudem konnte Glu-108 als ein möglicher Protonenakzeptor des Photozyklus bei pH 5,1 identifiziert werden. Durch einen pH-Indikator ließ sich der Nachweis erbringen, dass auch im sauren pH-Bereich Protonen freigesetzt werden. Damit steht fest, dass ein aktiver Protonentransport bei pH 5,1 möglich ist. Zusammen mit Informationen zu protonierbaren Aminosäureseitenketten (vornehmlich Asp und Glu) lässt sich zudem mit Einschränkungen die These unterstützen, dass PR ober- und unterhalb des pKa-Werts von Asp-97 in verschiedene Richtungen Protonen pumpt. Damit ergibt sich ein differenziertes Bild für den pH-abhängigen Photozyklus von PR mit drei pH-Bereichen (pH 9,0, 8,5 bis 5,5 und 5,1) in denen PR unterschiedliche Protonentransportwege zeigt. Als weiteres biologischen System wurde RuBisCO genauer untersucht. Im Fokus der Arbeit war dabei die Aktivierung durch die Bildung eines Lysin-Carbamats im aktiven Zentrum. Obwohl RuBisCO das am häufigsten vorkommende Enzym unseres Planeten ist, in der Kohlenstofffixierung eine bedeutende Rolle spielt und obwohl mehrere Dutzend Kristallstrukturen existieren, gibt es noch immer genügend offene Fragen zur Aktivierung. Mit Hilfe eines Käfig-CO2 konnte die Carbamatbildung im Enzym direkt verfolgt und der Einfluss von Magnesiumionen auf die Aktivierung beobachtet werden. Damit ließ sich ganz klar ausschließen, dass Magnesium bereits für die Carbamatbildung erforderlich ist. Die Koordination von Mg2+ ist erst für die Endiol-Bildung im weiteren Reaktionszyklus essentiell. Zusätzlich wurde gezeigt, dass Azid eine Inhibierung des Enzyms durch die Konkurrenz mit CO2 um die Bindungsstelle auslöst, allerdings verdrängt CO2 das Azidion im Laufe der Zeit. Mit den Ergebnissen für RuBisCO konnte klar gezeigt werden, dass die Kombination aus Käfig-CO2 und Rapid-Scan IR-Spektroskopie ein völlig neues Feld für die Untersuchung von Carboxylierungsreaktionen eröffnet. Gerade die offenen Fragen zu Biotin bindenden Carboxylasen bieten ein breites Anwendungsgebiet für diese Methodik.
This study addresses the structure-function relationships of three essential membrane proteins: Porin from Paracoccus denitrificans, Porin OmpG from Eschericia coli and BetP from Corynobacterium glutamicum using Fourier transform infrared (FT-IR) spectroscopy and Attenuated Total Reflection (ATR) techniques. The structure of porin from P. denitrificans is known for more than a decade; however, the mechanism for loss of functionality together with the monomerization was not clear. In this study we have addressed the role of lipids for the functionality of porin using FT-IR. OmpF porin was found to interact with the lipid molecules via the aromatic girdles surrounding the protein for functionality. In this study, molecular bonds and groups of the lipids were established as reporter groups probing at different depths of the bilayer in order to understand the interaction partner of the aromatic girdles of porins. Monomerization of the trimeric assembly of OmpF porin reconstituted in lipids is induced by increasing the temperature. Porin (OmpF) was found to be extremely stable: The secondary structure of the protein was unaltered up to the temperature-induced main transition, around 80-90 °C, above which it is denatured. However, the interaction of the aromatic girdle with the lipid molecules exhibited distinct changes at much lower temperature values (40 - 50°) where, according to the previous functional studies, monomerization and the loss of function occurs. The results are compared with OmpG porin from E.coli, for which the functional unit is a monomer. The aromatic girdle-lipid interaction was monitored by the tyrosine aromatic ring C=C vibrational mode, a universal marker for the protein stability and interaction. We have also found that the aromatic girdles of porins are interacting with the interfacial region of the lipid bilayer instead of lipid headgroups. Lipid-protein interaction was found to be not only essential for the structural stability, but also for the functionality of OmpF porin. We have also studied the structural properties of OmpG from E.coli. The structure of OmpG at two pH values has been resolved using X-ray crystallography and the channel has been proposed to attain different states at different pH values as closed (pH < 5.5) and open (pH >7.5). This study, using IR spectroscopy, revealed that the pH-induced opening and closing of the channel is reflected by the frequency shifts of the ? sheet structure. OmpG has more rigid ? barrel properties upon opening of the channel. IR spectral analysis revealed multiple ? sheet signals with different hydrogen bond strengths. This enabled us to monitor the formation of hydrogen bridges between the extracellular loops upon opening of the channel. The conclusion that OmpG porin having two states at different pH values was also confirmed by the three mutants where the role of the histidine pair (H231 & H261) and loop 6 has been addressed. Temperature-profiling of the wild type (WT) protein and the mutants did not show pH dependent structural stability differences in detergent solution. However, the WT protein was found to be more stable in the open form in 2D crystals than the closed form. Reconstitution into lipids has increased the transition temperature value by ~20 °C in the closed state and ~25 °C in the open state. Therefore we conclude that the open and closed state of OmpG has structural stability differences that are only revealed in the lipid environment. A comparison of the transition temperature values of OmpG WT and the mutants suggested that the hydrogen bond network among S218-H231-H261-D267, together with the formation of 12 residue-long ?-sheet contributes to the structural stability of the open channel. In the process of closing and opening of the channel, the globular structure of the protein remains mainly unchanged, while there are changes in the side chain moieties. In addition to the role of the histidine pair and the loop L6, in situ opening/closing experiments showed that the negatively charged amino acids, i.e. Asp and Glu, and Arg residues also play an active role; possibly by interacting with each other inside the pore lumen. Therefore it could be concluded that the closure of the channel at acidic pH values is not only via closing the channel entrance by loop 6, but also via changing the electric potential inside the lumen due to the different states of charged amino acids in order to effectively block the gateway. BetP from C.glutamicum attains an active and inactive state in order to adjust its glycine betaine uptake rate to the osmotic conditions that the cell encounters. The structure of BetP is not yet available. The WT protein exhibited structural differences in the presence of excess K+, which is one of the activation conditions. In 2D crystals, increasing the ionic strength to 700 mM K+ was shown to induce changes in the ?-helical moiety with contributions from the ester groups and one Tyr residue using ATR-FTIR. An increase in ionic strength to 220 mM K+ was found to be the threshold value of potassium concentration ([K+]) where the protein exhibits structural alterations in detergent solution. The determined [K+] values are in good agreement with the previous functional studies. However, there are differences in the activation profile of BetP in 2D crystals and in detergent solution, which points out that the lipids are involved in the conformational transition from the inactive to the active state and their absence can lead to different structural properties. BetP WT was found to have ~65% alpha-helix, ~25% random coil and ~10% turn structure in detergent solution. In the presence of excess K+, the WT protein is found to adapt more unordered structure. Secondary structure analysis of the mutants revealed that both the N- and C-terminus are in ?-helical conformation. Reconstitution of WT protein in 2D crystals increased the main transition (denaturation) temperature value from ~62 °C to ~85 °C, a clear indication that the protein is more stable in lipid environment. Temperature-profiling of the two forms of the WT protein revealed that the structural breakdown is preceeded by monomerization of the trimeric assembly. Comparing the two forms of the WT protein and the mutant BetA, we conclude that the oligomeric status is stabilized via the interactions among hydrophilic regions involving the N terminus. H/D exchange and activation with excess K+ in D2O-buffer revealed that activation of the protein involves the interaction of Arg and Asp/Glu residues in the cytoplasmic region of the protein. BetP WT and the two mutants tested, i.e. BetA and BetP?C45, showed differences in protein packing upon activation. The WT protein and BetP?C45 mutant also show changes in the hydrogen bonding properties of turns. Since BetA does not show such a property in activation, we conclude that the N-terminus interacts with the loops in the inactive state via the interaction of charged amino acids for the WT protein and that this interaction is altered during the activation. It could be argued that the protein packing is affected via the changes in turns upon activation. We also have found experimental evidence that one Tyr residue has different orientations in the active and inactive state of BetP. Based on the previous functional studies, it could be one of the five Tyr residues in the cytoplasmic region of the protein (in loop 3, 6, 7 or C-terminus). The mutant BetP?C45, on the other hand, showed fewer differences between the active and inactive state conditions and based on the H/D exchange rates, the mutant shows the properties of an active WT protein, proving that the C-terminal truncation impairs the conformational transition between the active and inactive states.
Struktur, Funktion und Dynamik von Na(+)-, H(+)-Antiportern : eine infrarotspektroskopische Studie
(2008)
Die Funktion von Membranproteinen ist von entscheidender Bedeutung für eine Vielzahl zellulärer Prozesse. Um diese verstehen zu können, ist das Verständnis der Beziehungen zwischen der Struktur, der Dynamik und der Wechselwirkung mit der Umgebung der Membranproteine notwendig. Spektroskopische Methoden, wie beispielsweise FTIR- und CD-Spektroskopie sind in der Lage, diese Informationen zu geben. In der vorliegenden Dissertation haben sie bedeutende Beiträge zum Verständnis der durch die Aktivierung induzierten Konformationsänderungen der Na+/H+ Antiporter geleistet. Die hohe Empfindlichkeit einer selbstkonstruierten FTIR-ATR-Perfusionszelle ermöglichte es, über eine Proteinprobe verschiedene Wirkstoffmoleküle perfundieren zu lassen und die dadurch verursachten strukturellen Änderungen spektroskopisch zu charakterisieren. Die Konformationsänderungen, die den Aktivierungsprozess begleiten, wurden bei zwei verschiedenen Na+/H+ Antiportern, NhaA und MjNhaP1, untersucht. Sie werden bei unterschiedlichen pH-Bereichen aktiviert bzw. deaktiviert. Der Na+/H+ Antiporter NhaA aus E. coli hat seine maximale Transportaktivität bei pH 8,5 und ist bei pH < 6,5 vollständig inaktiv. Trotz bekannter 3D-Struktur dieses Proteins für die inaktive Konformation bei pH 4 bleiben die Konformationsänderungen, die mit der Aktivierung des Proteins einhergehen, immer noch ungeklärt. Die Analyse der FTIR- und CD-Spektren von NhaA ergab in beiden Zuständen Anteile an beta-Faltblatt, an Schleifen und ungeordneten Strukturen, wobei die alpha-helikale Struktur dominiert. Die FTIR Spektren des inaktiven und aktiven Zustands zeigen zwei Komponenten, die auf die Präsenz zweier alpha-Helices mit unterschiedlichen Eigenschaften abhängig vom Aktivitätszustand hindeuteten. Die temperaturinduzierten strukturellen Änderungen und die Reorganisation des Proteins während des Entfaltungsprozesses bestätigten, dass die Aktivierung des Proteins eine Änderung in den Eigenschaften der alpha-Helices zur Folge hat. Aktivierung führt zu einer thermischen Destabilisierung dieser Struktur. Auch für die beta-Faltblattstruktur, welche den Hauptkontakt zwischen den Monomeren bildet, wurde ein unterschiedliches thermisches Verhalten zwischen dem inaktiven und aktiven Zustand beobachtet. Daraus konnte gefolgert werden, dass Aktivität nur dann möglich ist, wenn NhaA als Dimer vorliegt. Die Ergebnisse des (1)H/(2)H Austauschs zeigen, dass die Lösungsmittelzugänglichkeit des Proteins sich mit der Aktivierung ändert. Die Aktivierung des Proteins induziert eine offene, für die Lösung zugänglichere Konformation, in welcher die Aminosäureseitenketten in der hydrophilen Region des Proteins schneller Wasserstoff durch Deuterium austauschen, und in welcher zusätzliche Aminosäureseitenketten, die sich im inaktiven Zustand in der hydrophoben Region des Proteins befinden, mit der Aktivierung der Lösung exponiert werden. Die Aufnahme reaktionsinduzierter Differenzspektren ergab eindeutige spektroskopische Signaturen für die Zustände „inaktiv“ und „aktiv“. Die Differenzspektren der pH-Titration zeigten, dass der pH-Wert einen dramatischen Effekt sowohl auf die Sekundärstruktur als auch auf den Protonierungszustand der Aminosäureseitenketten hat. Die pH- und Na+-induzierte Aktivierung des Proteins führt zur Umwandlung der transmembranen alpha-helikalen Struktur bezüglich Länge, Ordnungsgrad und/oder Anordnung und zur einer Protonierungsänderung der Aminosäureseitenketten von Glutaminsäure oder Asparaginsäure. Die pD induzierten Sekundärstrukturänderungen lieferten zusätzlich Informationen über die Umgebungsänderung der Aminosäureseitenkette des Tyrosins mit der Aktivierung. Der Vergleich der durch die Bindung des Natriums und des Inhibitors induzierten Differenzspektren zeigte, dass die Bindungsstellen des Natriums und des Inhibitors unterschiedlich sind. Die FTIR- und CD-Ergebnisse für den Na+/H+ Antiporter MjNhaP1 aus M. jannaschii, der im Gegensatz zu NhaA bei pH 6 aktiv und bei pH Werten > 8 inaktiv ist, zeigten, dass ähnlich wie NhaA das Protein im aktiven Zustand bei pH 6 hauptsächlich aus alpha-Helices aufgebaut ist. Es bestand die Möglichkeit, zwei verschiedene Probenpräparationen (Protein in Detergenz bzw. in 2D-Kristallen) zu untersuchen und miteinander zu vergleichen. Die Erhöhung des pH-Werts bei der in Detergenz solubilisierten Probe führte zu einer Abnahme der alpha-helikalen und einer Zunahme der ungeordneten Strukturen. Das äußerte sich auch in den Untersuchungen zur thermischen Stabilität und im (1)H/(2)H Austauschexperiment. Die thermische Stabilität der alpha-Helices nahm mit der Inaktivierung dramatisch ab. Diese Ergebnisse zeigten auch, dass bei der Aktivierung von MjNhaP1 die beta-Faltblattstruktur nicht involviert ist, aber diese von fundamentaler Bedeutung für die Gesamtstabilität des Proteins und wahrscheinlich für den Hauptkontakt zwischen den Monomeren verantwortlich ist. Im Gegensatz zu NhaA ist die Monomer Monomer Wechselwirkung nicht für die Aktivität von MjNhaP1 notwendig. Aufgrund des höheren Anteils von ungeordneter Struktur im inaktiven Zustand der in Detergenz solubilisierten Probe beobachtet man in diesem Zustand einen höheren (1)H/(2)H Austausch. Der Vergleich mit den Ergebnissen des (1)H/(2)H Austausches von 2D-Kristallen ermöglichte die Lokalisation der ungeordneten Struktur an der Außenseite des Proteinmoleküls im inaktiven Zustand. Die pH-induzierten Differenzspektren zeigten, dass die Aktivierung zu einer Helikalisierung des Proteins und einer Protonierungsänderung der Aminosäureseitenketten von Asparaginsäure und/oder Glutaminsäure unabhängig von der Probenpräparation führt. Der Vergleich von NhaA und MjNhaP1 zeigt, dass die Aktivierung in beiden Fällen mit einer Konformationsänderung und Änderung der Protonierung oder der Umgebung von einer oder mehreren Seitenketten von Asparaginsäure oder Glutaminsäure verbunden ist. Dabei sind die Strukturänderungen der beiden Proteine während der Aktivierung ähnlich, bei Inaktivierung jedoch deutlich unterscheidbar. Die pH-induzierten Strukturänderungen wurden bei NhaA und MjNhaP1 durch die Mutanten G338S und R347A, die keine pH-Abhängigkeit der Aktivität zeigen, bestätigt.
Diese Arbeit beschreibt wie mit physikalischen Methoden die Glukosekonzentration gemessen werden kann. Die Infrarot-Spektroskopie bietet eine Möglichkeit da die Energie der meisten Molekülschwingungen Photonenenergien im infraroten Spektralbereich entspricht. Hier zeigen Glukosemoleküle charakteristische Absorptionsspektren, die mit spektroskopischen Methoden gemessen werden. Um nicht invasiv zu messen, wurde eine photoakustische Messmethode gewählt. Die Grundidee ist, dass die durch Licht angeregten Moleküle ihre Anregungsenergie teilweise in Form von Wärme abgeben. Da die anregende Strahlung intensitätsmoduliert ist, wird auch die Wärmeentwicklung periodisch verlaufen wodurch periodische Volumenänderungen hervorgerufen werden, die eine Druckwelle erzeugen, die sich durch empfindliche Mikrofone oder Schallwandler erfassen lässt. So kann im MIR auf Grund der hohen Spezifizität, der Glukosegehalt mit sehr hoher Genauigkeit bestimmt werden. Die Wellenlänge der Glukoseabsorptionsbanden im MIR Bereich sind im Wesentlichen gekoppelte C=O Streck- und O–H Biegeschwingungen. Im MIR-Bereich zeigen Spektren zwischen 8,3µm bis 11,1µm fünf glukoserelevanten Banden. Der photoakustische Effekt wird durch die Rosencwaig-Gersho Theorie beschrieben. Die Absorption des Lichtes in der Probe bewirkt eine Temperaturerhöhung, die als Wärme an Umgebung abgegeben wird. Da das eingestrahlte Licht gepulst ist, wird auch die Wärme periodisch abgegeben. Durch die Absorption eines Laserpulses in der Haut entsteht ein Temperaturgradient, die abhängig vom Absorptionskoeffizienten und der Glukosekonzentration ist. Der führt zu einer Diffusion von Wärme im Absorptionsvolumen. Die Hautoberfläche und damit eine dünne Luftschicht über der Hautoberfläche werden durch die Diffusionswärme periodisch mit der Modulationsfrequenz der Laser aufgeheizt, was als Druckschwankungen in Messkammer mit Mikrofon detektiert wird. Im Mitteinfrarot geben Quantenkaskadenlaser die beste Lichtquelle, wegen ihre gute Strahlqualität und hohe optische Leistung. Die verwendete photoakustische(PA) Resonanzzelle ist nach dem Prinzip des Helmholtz-Resonators konzipiert. Der Vorteil des Verstärkungsverhaltens einer resonanten PA-Zelle kann unter Umständen durch Verwendung Volumenreduzierten und mit empfindlichen Mikrofonen ausgestatteten nicht-resonanten PA-Zelle erreicht werde. Zum Erfassung der PA Signale wird eine Kombination aus einen Analog-Digital Wandlerkarte verwendet, die eine gemeinsame Zeitbasis mit der synchronen Lasersteuerung und der Datenerfassung liefert und phasenechte Fourieranalyse der photoakustischen Signale ermöglicht. Es wurde ein Modellsystem entwickelt um photoakustischen Glukosemessungen in vitro zu testen. Dieses „Phantommodell“ besteht aus einer dünnen Polymermembran befestigt in eine Gefäß von nur paar ml Volumen die mit verschiedenen Glukosekonzentrationen gefüllt wurde. Die modulierte Laserstrahlung passiert die Messzelle und dringt durch die Folie in die wässerige Glukoselösung ein. Das Folienmaterial und Dicke wurde so gewählt, dass keineAbsorption im verwendeten MIR-Bereich entsteht. Als Lösung für die jeweiligen Glukosekonzentrationen wurde ein Wasser-Albumin Gemisch verwendet mit einen 10%igen Albuminanteil, die verwendet wurde, um den Proteingehalt der Haut zu imitieren und zu zeigen, dass Eiweiß keinen Störeinfluss im Glukosefingerprintbereich hat. Messungen wurden bei steigenden und fallenden Glukosekonzentration durchgeführt damit gezeigt könnte, dass das Messsignal in der PA- Zelle nicht von der Lufterwärmung in der Zelle stammt, sondern vom PA-Signale der Glukose. Die Glukoseschwankungen in der extrazellulären Flüssigkeit der Epidermis spiegeln die Glukoseschwankungen im Blut gut wider, bei einer Messung am Arm entsteht eine Verzögerung von paar Minuten. Im Daumenballenbereich findet aufgrund der guten Durchblutung ein schneller Austausch der Glukosekonzentration der von uns gemessenen interstitiellen Flüssigkeit mit der Blutzuckerkonzentration statt. Deshalb wurden die in-vivo Messungen am Daumenballen durchgeführt. Das Stratum spinosum ist für uns von Bedeutung, da dies das interstitielle Wasser enthält, in dem der Glukosegehalt mit dem Glukosegehalt im Blut gut übereinstimmt. Die photoakustische Messmethode wird nicht-invasiv durchgeführt. Probanden wird Zucker verabreichet und danach in Abständen von 5 Minuten der Blutzucker konventionell bestimmt und gleichzeitig mittels der photoakustischen Messung am Daumenballen durchgeführt. Mit diesen Daten kann die Korrelation zwischen beiden Methoden bestimmt werden. In vielen in vivo Messreihen zeigen sich bereits in direkter Korrelation zu invasiv genommenen Blutzuckerwerten Korrelationskoeffizienten bis zu R=0,8 und eine damit deutliche Evidenz für einen glukoserelevanten Effekt. Trotz der versprechenden Ergebnisse wird deutlich, dass weitere Entwicklungen notwendig sind, damit das System zu einer direkten Konkurrenz zu der vorhandenen invasiven Meßsystemen werden kann.
Im ersten Teil dieser Arbeit sind Protein-Protein Docking-Studien dokumentiert. Bis heute konnten die meisten Protein-Komplex-Strukturen nicht experimentell aufgeklärt werden, so auch die beiden oben genannten Elektrontransfer-Komplexe. Nach einem erfolgreichen Test wurden verschiedene Cytochrom c Oxidase:Cytochrom c Paare mit der gleichen Methode gedockt: COX aus Paracoccus denitrificans mit Pferdeherz Cytochrom c und COX mit dem löslichen Fragment des membrangebundenen Cytochrom C552 (beide aus P. denitrificans). Im zweiten Teil dieser Arbeit wurde die diffusive Annäherung des Cytochrom c an die Cytochrom c Qxidase mit der Brownschen Dynamik Methode simuliert. Die Diffusionsbewegung eines Brownschen Teilchens in wässriger Lösung wird durch die Langevin-Gleichung bestimmt. Der auf dieser Gleichung fußende Ermak-McCammon-Algorithmus ist Grundlage der Simulationsmethode. Die so ermittelten Raten für COX und Pferdeherz, sowie für COX und Cytochrom C552, wurden dann mit experimentell gewonnenen Raten verglichen. Da die Elektrostatik für den Annäherungsprozeß dieser Proteine eine so gewichtige Rolle spielt, wirken sich Mutationen, die mit einer Ladungsänderung einhergehen, merklich aus. Dies ist vor allem dann der Fall, wenn sich die Mutation in der Nähe der Bindungsstelle befindet. Aus dem gleichen Grund ist die Assoziationsrate auch stark von der Ionenstärke der umgebenden Lösung abhängig. Steigt die Ionenkonzentration wird die elektrostatische Komplementarität der Bindingsstellen der beiden Makromoleküle stärker abgeschirmt, und die Rate sinkt. Diese beiden relativen Trends konnten durch die Simulationen gut reproduziert und bestätigt werden. Allerdings liegen die absoluten Resultate merklich über den experimentell gemessenen Raten. Es ist sehr gut möglich, daß post-diffusive Effekte, die nicht in einer Brownschen Dynamik Simulation von starren Körpern berücksichtigt werden können, die Raten erniedrigen. Um den Einfluß der Membranumgebung auf die Wechselwirkung des Elektrontransportsystems zu untersuchen. wurde eine DPPC Doppelschicht um die Oxidase modelliert und energieminimiert. Mit Poisson-Boltzmann Rechnungen wurde das elektrostatische Potential dieses Nanosystems untersucht und mit dem der einzelnen Oxidase verglichen. Durch einen modifizierten Set-up konnten dann auch für dieses Membransystem Brownsche Dynamik Simulationen durchgeführt werden. Der Vergleich mit den vorhergehenden Simulationen ohne Membran erbrachte bemerkenswerte Ergebnisse. Während die Assoziationsraten für Pferdeherz Cytochrom c durch den Membraneinfluß erniedrigt wurden, stiegen sie im Fall des physiologischen Transferpartners c552. Pferdeherz Cytochrom c weist eine positive Nettoladung und einen ausgeprägten bipolaren Charakter auf. Eine große Zahl positiv geladener Seitenketten befindet sich auf der gleichen Hemisphäre wie die Bindungsstelle. Obwohl die DPPC Lipidmoleküle neutral sind, zeigten die Elektrostatikrechnungen, daß die Membranoberfläche abstoßend auf positive Ladungen wirkt. Da sich nun die Bindungsstelle der Oxidase für Cytochrom c nur etwa 10 Å oberhalb der Membran befindet, verringert sich die Wahrscheinlichkeit der Assoziation.
Ziel der vorliegenden Arbeit war die Untersuchung der elektrochemischen und spektroskopischen Eigenschaften der bc1-Komplexe aus dem Bodenbakterium Paracoccus denitrificans und der Hefe Saccharomyces cerevisiae im sichtbaren und infraroten Spektralbereich. Das redoxaktive Protein ist Bestandteil der Atmungskette und trägt entscheidend zum Aufbau eines Protonengradienten bei, der zur Bildung des universellen Energieträgers ATP genutzt wird. Der bakterielle P. denitrificans-Komplex besteht aus den drei katalytischen Untereinheiten Cytochrom b, Cytochrom c1 und Rieske-Protein. Der mitochondriale Hefe-bc1-Komplex besitzt neben diesen drei noch acht weitere Untereinheiten, die anscheinend für die Stabilität des Enzyms bedeutsam sind. Um Konformationsänderungen des Proteins infolge von Elektronen- und daran gekoppelten Protonentransferreaktionen zu dokumentieren, wurde der Komplex elektrochemisch in definierte Redoxzustände versetzt. Aus den in diesen Zuständen aufgenommenen Absorptionsspektren berechnen sich Differenzspektren, deren Banden auf die Redoxreaktion zurückzuführende Veränderungen im Protein widerspiegeln. Durch Vergleiche mit Modellspektren isolierter Proteinbestandteile, Spektren ähnlicher Proteine und Informationen aus Kristallstrukturen konnten Beiträge der verschiedenen Kofaktoren, des Proteinrückgrates und einzelner Aminosäuren zu diesen Banden zugeordnet werden. Die elektrochemisch induzierten FTIR-Differenzspektren des P. denitrificans-bc1-Komplexes zeigten vor allem Beiträge der im Komplex gebundenen Chinone, die durch den Vergleich mit Differenzspektren isolierter Chinone identifiziert werden konnten. Ein wichtiges Ergebnis war die Abschätzung der Chinonkonzentration im Protein anhand einer charakteristische Bande bei 1262 cm-1 resultierend aus Schwingungen der Chinon-Methoxygruppen. Das Ergebnis von durchschnittlich 3 Molekülen Chinon pro Protein-Monomer unterstützt das zur Zeit für die Qo-Bindestelle diskutierte double-occupancy-Modell. Interessanterweise konnte die Protonierung einer Glu/Asp-Aminosäureseitenkette in Abhängigkeit vom Chinongehalt beobachtet und daraus abgeleitet Signale eines an der Qo-Bindestelle gebundenen Chinons differenziert werden. Die Beiträge der Cytochrom b und c-Untereinheiten relativ zum Gesamtspektrum des P. denitrificans-bc1-Komplexes wurden mittels Differenzspektren der einzelnen Kofaktoren unterschieden. Anhand ihrer Mittelpunktpotentiale, die zuvor durch Potentialtitrationen im sichtbaren Spektralbereich bestimmt wurden (Häm bL: Em7=-292 mV vs. Ag/AgCl, Häm bH: -144 mV, Häm c1: 89 mV), konnten die Differenzsignale des jeweiligen Kofaktors und seiner durch die Redoxreaktion beeinflußten Umgebung durch Wahl geeigneter Potentialschritte separiert werden. Die Zuordnungen der Signale des Cytochrom c1 und des Rieske-Proteins, die spektroskopisch nicht getrennt werden können, wurden durch Messungen an wasserlöslichen Fragmenten dieser Untereinheiten abgesichert. In allen Spektren konnten typische Beiträge des Proteingrundgerüstes, Schwingungen der Häme und ihrer Substituenten sowie einzelner Aminosäuren vorläufig zugeordnet werden. Die Bindung von Inhibitoren führte zu deutlichen Veränderungen im FTIR-Differenzspektrum. Der Qi-Inhibitor Antimycin A zeigt eigene Differenzsignale im Bereich oberhalb 1734 cm-1, an denen die Bindung des Inhibitors im Protein nachvollzogen werden konnte. Sie führte zur Abnahme der Signalintensität einer Bande, die die Beeinflussung eines protonierten Hämpropionates oder Arginin-bzw. Asparaginseitenketten vermuten lassen. Die Bindung des Qo-Inhibitors Stigmatellin, der selbst redoxaktiv ist, äußerte sich in Veränderungen im Amid I-Bereich des Differenzspektrums. Die Deprotonierung einer Glu/Asp-Seitenkette infolge der Stigmatellinbindung wurde diskutiert. Die FTIR-Differenzspektren des S. cervisiae-bc1-Komplexes gleichen denen des bakteriellen Komplexes in Bezug auf die Bandenpositionen weitestgehend. Die Signalintensitäten sowie die Größenverhältnisse der Banden zueinander unterscheiden sich jedoch. Dies wird durch den geringeren Chinongehalt des Hefeproteins nach der Präparation bedingt. Der Einfluß fünf verschiedener Inhibitoren der Qi- und Qo-Bindestelle auf die Differenzspektren wurde untersucht. Dabei standen von zwei Substanzen isotopenmarkierte Varianten zur Verfügung, die tieferen Einblick in die genaue Wechselwirkung bei der Inhibitorbindung bringen sollte. Die Bindung der Inhibitoren führte zu Veränderungen in den Spektren. Sie wurden vor dem Hintergrund der Kristallstruktur betrachtet, die aufgrund ihrer Auflösung keine exakten Aussagen über den Protonierungszustand einzelner Proteinbestandteile liefern kann. Der Schwerpunkt der Studien lag auf den Vergleich der Qo- Inhibitoren Stigmatellin und HHDBT. Die Bindung von Stigmatellin führte wie im P. denitrificans-Komplex zur Deprotonierung einer Glu/Asp-Seitenkette. Die Inhibierung mit HHDBT resultierte in der Protonierung vermutlich der gleichen Glu/Asp-Seitenkette. Die Auswirkungen des unterschiedlichen Protonierungszustandes der Aminosäure in Anwesenheit dieser beiden Inhibitoren wurde im Kontext eines vermuteten Chinoloxidations-Mechanismus beleuchtet.