004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Article (207)
- Doctoral Thesis (134)
- Working Paper (122)
- diplomthesis (78)
- Conference Proceeding (52)
- Bachelor Thesis (48)
- Contribution to a Periodical (34)
- Preprint (25)
- Report (19)
- Part of a Book (18)
Is part of the Bibliography
- no (783)
Keywords
Institute
- Informatik (446)
- Informatik und Mathematik (89)
- Präsidium (68)
- Wirtschaftswissenschaften (43)
- Frankfurt Institute for Advanced Studies (FIAS) (35)
- Medizin (26)
- Physik (26)
- Hochschulrechenzentrum (24)
- Extern (12)
- Rechtswissenschaft (11)
Es geht um Werbung, Betrug oder die Optimierung von Geschäftsmodellen: Verbraucherdaten sind ein kostbares Gut, das Kreditgeber und Versicherer genauso interessiert wie Händler und Kriminelle. Kai Rannenberg, Professor für Mobile Business & Multilateral Security an der Goethe-Universität, forscht zur Cybersicherheit. Dirk Frank hat mit dem Wirtschaftsinformatiker über Datenschutz, Hackerangriffe und das Auto als »Handy auf Rädern« gesprochen.
Das Gebiet der synthetischen Netzwerke boomt. Mithilfe solcher im Computer simulierten Netze werden heute so unterschiedliche Dinge wie die Verknüpfung der Neuronen im Gehirn, der Datenverkehr im Internet oder Stromnetze untersucht. Ein Forscherteam um Ulrich Meyer vom Institut für Informatik der Goethe-Universität hat nun Standardverfahren zur Erstellung solcher Netze einen wichtigen Schritt vorangebracht.
Antimicrobial resistant infections arise as a consequential response to evolutionary mechanisms within microbes which cause them to be protected from the effects of antimicrobials. The frequent occurrence of resistant infections poses a global public health threat as their control has become challenging despite many efforts. The dynamics of such infections are driven by processes at multiple levels. For a long time, mathematical models have proved valuable for unravelling complex mechanisms in the dynamics of infections. In this thesis, we focus on mathematical approaches to modelling the development and spread of resistant infections at between-host (population-wide) and within-host (individual) levels.
Within an individual host, switching between treatments has been identified as one of the methods that can be employed for the gradual eradication of resistant strains on the long term. With this as motivation, we study the problem using dynamical systems and notions from control theory. We present a model based on deterministic logistic differential equations which capture the general dynamics of microbial resistance inside an individual host. Fundamentally, this model describes the spread of resistant infections whilst accounting for evolutionary mutations observed in resistant pathogens and capturing them in mutation matrices. We extend this model to explore the implications of therapy switching from a control theoretic perspective by using switched systems and developing control strategies with the goal of reducing the appearance of drug resistant pathogens within the host.
At the between-host level, we use compartmental models to describe the transmission of infection between multiple individuals in a population. In particular, we make a case study of the evolution and spread of the novel coronavirus (SARS-CoV-2) pandemic. So far, vaccination remains a critical component in the eventual solution to this public health crisis. However, as with many other pathogens, vaccine resistant variants of the virus have been a major concern in control efforts by governments and all stakeholders. Using network theory, we investigate the spread and transmission of the disease on social networks by compartmentalising and studying the progression of the disease in each compartment, considering both the original virus strain and one of its highly transmissible vaccine-resistant mutant strains. We investigate these dynamics in the presence of vaccinations and other interventions. Although vaccinations are of absolute importance during viral outbreaks, resistant variants coupled with population hesitancy towards vaccination can lead to further spread of the virus.
Understanding the role of short-interfering RNA (siRNA) in diverse biological processes is of current interest and often approached through small RNA sequencing. However, analysis of these datasets is difficult due to the complexity of biological RNA processing pathways, which differ between species. Several properties like strand specificity, length distribution, and distribution of soft-clipped bases are few parameters known to guide researchers in understanding the role of siRNAs. We present RAPID, a generic eukaryotic siRNA analysis pipeline, which captures information inherent in the datasets and automatically produces numerous visualizations as user-friendly HTML reports, covering multiple categories required for siRNA analysis. RAPID also facilitates an automated comparison of multiple datasets, with one of the normalization techniques dedicated for siRNA knockdown analysis, and integrates differential expression analysis using DESeq2.
Summary: Understanding the role of short-interfering RNA (siRNA) in diverse biological processes is of current interest and often approached through small RNA sequencing. However, analysis of these datasets is difficult due to the complexity of biological RNA processing pathways, which differ between species. Several properties like strand specificity, length distribution, and distribution of soft-clipped bases are few parameters known to guide researchers in understanding the role of siRNAs. We present RAPID, a generic eukaryotic siRNA analysis pipeline, which captures information inherent in the datasets and automatically produces numerous visualizations as user-friendly HTML reports, covering multiple categories required for siRNA analysis. RAPID also facilitates an automated comparison of multiple datasets, with one of the normalization techniques dedicated for siRNA knockdown analysis, and integrates differential expression analysis using DESeq2. RAPID is available under MIT license at https://github.com/SchulzLab/RAPID. We recommend using it as a conda environment available from https://anaconda.org/bioconda/rapid.
Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans)
(2022)
Background: Data transformations are commonly used in bioinformatics data processing in the context of data projection and clustering. The most used Euclidean metric is not scale invariant and therefore occasionally inappropriate for complex, e.g., multimodal distributed variables and may negatively affect the results of cluster analysis. Specifically, the squaring function in the definition of the Euclidean distance as the square root of the sum of squared differences between data points has the consequence that the value 1 implicitly defines a limit for distances within clusters versus distances between (inter-) clusters.
Methods: The Euclidean distances within a standard normal distribution (N(0,1)) follow a N(0,2–√) distribution. The EDO-transformation of a variable X is proposed as EDO=X/(2–√⋅s) following modeling of the standard deviation s by a mixture of Gaussians and selecting the dominant modes via item categorization. The method was compared in artificial and biomedical datasets with clustering of untransformed data, z-transformed data, and the recently proposed pooled variable scaling.
Results: A simulation study and applications to known real data examples showed that the proposed EDO scaling method is generally useful. The clustering results in terms of cluster accuracy, adjusted Rand index and Dunn’s index outperformed the classical alternatives. Finally, the EDO transformation was applied to cluster a high-dimensional genomic dataset consisting of gene expression data for multiple samples of breast cancer tissues, and the proposed approach gave better results than classical methods and was compared with pooled variable scaling.
Conclusions: For multivariate procedures of data analysis, it is proposed to use the EDO transformation as a better alternative to the established z-standardization, especially for nontrivially distributed data. The “EDOtrans” R package is available at https://cran.r-project.org/package=EDOtrans.
Human lymph nodes play a central part of immune defense against infection agents and tumor cells. Lymphoid follicles are compartments of the lymph node which are spherical, mainly filled with B cells. B cells are cellular components of the adaptive immune systems. In the course of a specific immune response, lymphoid follicles pass different morphological differentiation stages. The morphology and the spatial distribution of lymphoid follicles can be sometimes associated to a particular causative agent and development stage of a disease. We report our new approach for the automatic detection of follicular regions in histological whole slide images of tissue sections immuno-stained with actin. The method is divided in two phases: (1) shock filter-based detection of transition points and (2) segmentation of follicular regions. Follicular regions in 10 whole slide images were manually annotated by visual inspection, and sample surveys were conducted by an expert pathologist. The results of our method were validated by comparing with the manual annotation. On average, we could achieve a Zijbendos similarity index of 0.71, with a standard deviation of 0.07.
Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.