004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Article (228)
- Doctoral Thesis (138)
- Working Paper (122)
- Conference Proceeding (52)
- Bachelor Thesis (48)
- diplomthesis (44)
- Part of a Book (42)
- Preprint (39)
- Contribution to a Periodical (37)
- Diploma Thesis (34)
Is part of the Bibliography
- no (849)
Keywords
- Lambda-Kalkül (21)
- Inklusion (13)
- Formale Semantik (11)
- Barrierefreiheit (10)
- Digitalisierung (10)
- Operationale Semantik (9)
- data science (9)
- lambda calculus (9)
- Computerlinguistik (8)
- Textanalyse ; Linguistische Datenverarbeitung; Computerlinguistik (8)
Institute
- Informatik (460)
- Informatik und Mathematik (92)
- Präsidium (72)
- Medizin (47)
- Frankfurt Institute for Advanced Studies (FIAS) (43)
- Wirtschaftswissenschaften (43)
- Physik (28)
- Hochschulrechenzentrum (24)
- studiumdigitale (24)
- Extern (12)
Background: Persistent pain in breast cancer survivors is common. Psychological and sleep-related factors modulate perception, interpretation and coping with pain and may contribute to the clinical phenotype. The present analysis pursued the hypothesis that breast cancer survivors form subgroups, based on psychological and sleep-related parameters that are relevant to the impact of pain on the patients’ life.
Methods: We analysed 337 women treated for breast cancer, in whom psychological and sleep-related parameters as well as parameters related to pain intensity and interference had been acquired. Data were analysed by using supervised and unsupervised machine-learning techniques (i) to detect patient subgroups based on the pattern of psychological or sleep-related parameters, (ii) to interpret the detected cluster structure and (iii) to relate this data structure to pain interference and impact on life.
Results: Artificial intelligence-based detection of data structure, implemented as self-organizing neuronal maps, identified two different clusters of patients. A smaller cluster (11.5% of the patients) had comparatively lower resilience, more depressive symptoms and lower extraversion than the other patients. In these patients, life-satisfaction, mood, and life in general were comparatively more impeded by persistent pain.
Conclusions: The results support the initial hypothesis that psychological and sleep-related parameter patterns are meaningful for subgrouping patients with respect to how persistent pain after breast cancer treatments interferes with their life. This indicates that management of pain should address more complex features than just pain intensity. Artificial intelligence is a useful tool in the identification of subgroups of patients based on psychological factors.
We present a hierarchy of polynomial time lattice basis reduction algorithms that stretch from Lenstra, Lenstra, Lovász reduction to Korkine–Zolotareff reduction. Let λ(L) be the length of a shortest nonzero element of a lattice L. We present an algorithm which for k∈N finds a nonzero lattice vector b so that |b|2⩽(6k2)nkλ(L)2. This algorithm uses O(n2(kk+o(k))+n2)log B) arithmetic operations on O(n log B)-bit integers. This holds provided that the given basis vectors b1,…,bn∈Zn are integral and have the length bound B. This algorithm successively applies Korkine–Zolotareff reduction to blocks of length k of the lattice basis. We also improve Kannan's algorithm for Korkine-Zolotareff reduction.
Gene therapy (GT) is becoming a realistic treatment option for patients with haemophilia. Outside clinical trials, the complexity and potential complications of GT will pose unprecedented challenges to haemophilia care centres.AIM: To explore the potential use of electronic tools to improve the delivery of GT under real-world conditions.METHODS: Considering the hub-and-spoke model, the GTH working group on GT considered the entire patient pathway and reached consensus on requirements for an integrative software tool to secure documenting and sharing information between treaters, pharmacies and patients.RESULTS: Six steps of the gene therapy process were identified, each requiring completion of the previous step as a prerequisite for entry. The responsibilities of GT dosing and follow-up treatment centres, read/write access rules, and the minimum data set were outlined. Data contributed by patients through mobile devices was also considered.CONCLUSION: Important information needs to be shared between patients and treatment centres in a real-world GT hub-and-spoke model. Collecting and sharing this information in well-organised electronic applications will not only improve patient care but also enable national and international data collection in clinical registries...
Internalin B–mediated activation of the membrane-bound receptor tyrosine kinase MET is accompanied by a change in receptor mobility. Conversely, it should be possible to infer from receptor mobility whether a cell has been treated with internalin B. Here, we propose a method based on hidden Markov modeling and explainable artificial intelligence that machine-learns the key differences in MET mobility between internalin B–treated and –untreated cells from single-particle tracking data. Our method assigns receptor mobility to three diffusion modes (immobile, slow, and fast). It discriminates between internalin B–treated and –untreated cells with a balanced accuracy of >99% and identifies three parameters that are most affected by internalin B treatment: a decrease in the mobility of slow molecules (1) and a depopulation of the fast mode (2) caused by an increased transition of fast molecules to the slow mode (3). Our approach is based entirely on free software and is readily applicable to the analysis of other membrane receptors.
Recent scientific evidence suggests that chronic pain phenotypes are reflected in metabolomic changes. However, problems associated with chronic pain, such as sleep disorders or obesity, may complicate the metabolome pattern. Such a complex phenotype was investigated to identify common metabolomics markers at the interface of persistent pain, sleep, and obesity in 71 men and 122 women undergoing tertiary pain care. They were examined for patterns in d = 97 metabolomic markers that segregated patients with a relatively benign pain phenotype (low and little bothersome pain) from those with more severe clinical symptoms (high pain intensity, more bothersome pain, and co-occurring problems such as sleep disturbance). Two independent lines of data analysis were pursued. First, a data-driven supervised machine learning-based approach was used to identify the most informative metabolic markers for complex phenotype assignment. This pointed primarily at adenosine monophosphate (AMP), asparagine, deoxycytidine, glucuronic acid, and propionylcarnitine, and secondarily at cysteine and nicotinamide adenine dinucleotide (NAD) as informative for assigning patients to clinical pain phenotypes. After this, a hypothesis-driven analysis of metabolic pathways was performed, including sleep and obesity. In both the first and second line of analysis, three metabolic markers (NAD, AMP, and cysteine) were found to be relevant, including metabolic pathway analysis in obesity, associated with changes in amino acid metabolism, and sleep problems, associated with downregulated methionine metabolism. Taken together, present findings provide evidence that metabolomic changes associated with co-occurring problems may play a role in the development of severe pain. Co-occurring problems may influence each other at the metabolomic level. Because the methionine and glutathione metabolic pathways are physiologically linked, sleep problems appear to be associated with the first metabolic pathway, whereas obesity may be associated with the second.
Background: Persistent postsurgical neuropathic pain (PPSNP) can occur after intraoperative damage to somatosensory nerves, with a prevalence of 29–57% in breast cancer surgery. Proteomics is an active research field in neuropathic pain and the first results support its utility for establishing diagnoses or finding therapy strategies. Methods: 57 women (30 non-PPSNP/27 PPSNP) who had experienced a surgeon-verified intercostobrachial nerve injury during breast cancer surgery, were examined for patterns in 74 serum proteomic markers that allowed discrimination between subgroups with or without PPSNP. Serum samples were obtained both before and after surgery. Results: Unsupervised data analyses, including principal component analysis and self-organizing maps of artificial neurons, revealed patterns that supported a data structure consistent with pain-related subgroup (non-PPSPN vs. PPSNP) separation. Subsequent supervised machine learning-based analyses revealed 19 proteins (CD244, SIRT2, CCL28, CXCL9, CCL20, CCL3, IL.10RA, MCP.1, TRAIL, CCL25, IL10, uPA, CCL4, DNER, STAMPB, CCL23, CST5, CCL11, FGF.23) that were informative for subgroup separation. In cross-validated training and testing of six different machine-learned algorithms, subgroup assignment was significantly better than chance, whereas this was not possible when training the algorithms with randomly permuted data or with the protein markers not selected. In particular, sirtuin 2 emerged as a key protein, presenting both before and after breast cancer treatments in the PPSNP compared with the non-PPSNP subgroup. Conclusions: The identified proteins play important roles in immune processes such as cell migration, chemotaxis, and cytokine-signaling. They also have considerable overlap with currently known targets of approved or investigational drugs. Taken together, several lines of unsupervised and supervised analyses pointed to structures in serum proteomics data, obtained before and after breast cancer surgery, that relate to neuroinflammatory processes associated with the development of neuropathic pain after an intraoperative nerve lesion.
Motivation: Gaussian mixture models (GMMs) are probabilistic models commonly used in biomedical research to detect subgroup structures in data sets with one-dimensional information. Reliable model parameterization requires that the number of modes, i.e., states of the generating process, is known. However, this is rarely the case for empirically measured biomedical data. Several implementations are available that estimate GMM parameters differently. This work aims to provide a comparative evaluation of automated GMM fitting methods.
Results and conclusions: The performance of commonly used algorithms for automatic parameterization and mode number determination was compared with respect to reproducing the ground truth of generated data derived from multiple normal distributions. Four main variants of Gaussian mode number detection algorithms and five variants of GMM parameter estimation methods were tested in a combinatory scenario. The combination of best performing mode number determination algorithms and GMM parameter estimation methods was then tested on artificial and real-live data sets known to display a GMM structure. None of the tested methods correctly determined the underlying data structure consistently. The likelihood ratio test had the best performance in identifying the mode number associated with the best GMM fit of the data distribution while the Markov chain Monte Carlo (MCMC) algorithm was best for GMM parameter estimation while. The combination of the two methods of number determination algorithms and GMM parameter estimation was consistently among the best and overall outperformed the available implementations.
Implementation: An automated tool for the detection of GMM based structures in (biomedical) datasets was created based on the present results and made freely available in the R library “opGMMassessment” at https://cran.r-project.org/package=opGMMassessment.
Because it is associated with central nervous changes, and olfactory dysfunction has been reported with increased prevalence among persons with diabetes, this study addressed the question of whether the risk of developing diabetes in the next 10 years is reflected in olfactory symptoms. In a cross-sectional study, in 164 individuals seeking medical consulting for possible diabetes, olfactory function was evaluated using a standardized clinical test assessing olfactory threshold, odor discrimination, and odor identification. Metabolomics parameters were assessed via blood concentrations. The individual diabetes risk was quantified according to the validated German version of the “FINDRISK” diabetes risk score. Machine learning algorithms trained with metabolomics patterns predicted low or high diabetes risk with a balanced accuracy of 63–75%. Similarly, olfactory subtest results predicted the olfactory dysfunction category with a balanced accuracy of 85–94%, occasionally reaching 100%. However, olfactory subtest results failed to improve the prediction of diabetes risk based on metabolomics data, and metabolomics data did not improve the prediction of the olfactory dysfunction category based on olfactory subtest results. Results of the present study suggest that olfactory function is not a useful predictor of diabetes.
Background: The categorization of individuals as normosmic, hyposmic, or anosmic from test results of odor threshold, discrimination, and identification may provide a limited view of the sense of smell. The purpose of this study was to expand the clinical diagnostic repertoire by including additional tests. Methods: A random cohort of n = 135 individuals (83 women and 52 men, aged 21 to 94 years) was tested for odor threshold, discrimination, and identification, plus a distance test, in which the odor of peanut butter is perceived, a sorting task of odor dilutions for phenylethyl alcohol and eugenol, a discrimination test for odorant enantiomers, a lateralization test with eucalyptol, a threshold assessment after 10 min of exposure to phenylethyl alcohol, and a questionnaire on the importance of olfaction. Unsupervised methods were used to detect structure in the olfaction-related data, followed by supervised feature selection methods from statistics and machine learning to identify relevant variables. Results: The structure in the olfaction-related data divided the cohort into two distinct clusters with n = 80 and 55 subjects. Odor threshold, discrimination, and identification did not play a relevant role for cluster assignment, which, on the other hand, depended on performance in the two odor dilution sorting tasks, from which cluster assignment was possible with a median 100-fold cross-validated balanced accuracy of 77–88%. Conclusions: The addition of an odor sorting task with the two proposed odor dilutions to the odor test battery expands the phenotype of olfaction and fits seamlessly into the sensory focus of standard test batteries.
Recent advances in mathematical modelling and artificial intelligence have challenged the use of traditional regression analysis in biomedical research. This study examined artificial and cancer research data using binomial and multinomial logistic regression and compared its performance with other machine learning models such as random forests, support vector machines, Bayesian classifiers, k-nearest neighbours and repeated incremental clipping (RIPPER). The alternative models often outperformed regression in accurately classifying new cases. Logistic regression had a structural problem similar to early single-layer neural networks, which limited its ability to identify variables with high statistical significance for reliable class assignment. Therefore, regression is not always the best model for class prediction in biomedical datasets. The study emphasises the importance of validating selected models and suggests that a mixture of experts approach may be a more advanced and effective strategy for analysing biomedical datasets.