60J05 Discrete-time Markov processes on general state spaces
Refine
Document Type
- Article (1)
- diplomthesis (1)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Diskreter Markov-Prozess (1)
- Kontaktprozess (1)
- Small Worlds (1)
- Stochastischer Prozess (1)
- Verzweigungsprozess (1)
- Yule process (1)
- Yule-Prozess (1)
- Zufallsgraph (1)
- branching processes (1)
- contact process (1)
Institute
- Mathematik (2)
ranching Processes in Random Environment (BPREs) $(Z_n:n\geq0)$ are the generalization of Galton-Watson processes where \lq in each generation' the reproduction law is picked randomly in an i.i.d. manner. The associated random walk of the environment has increments distributed like the logarithmic mean of the offspring distributions. This random walk plays a key role in the asymptotic behavior. In this paper, we study the upper large deviations of the BPRE $Z$ when the reproduction law may have heavy tails. More precisely, we obtain an expression for the limit of $-\log \mathbb{P}(Z_n\geq \exp(\theta n))/n$ when $n\rightarrow \infty$. It depends on the rate function of the associated random walk of the environment, the logarithmic cost of survival $\gamma:=-\lim_{n\rightarrow\infty} \log \mathbb{P}(Z_n>0)/n$ and the polynomial rate of decay $\beta$ of the tail distribution of $Z_1$. This rate function can be interpreted as the optimal way to reach a given "large" value. We then compute the rate function when the reproduction law does not have heavy tails. Our results generalize the results of B\"oinghoff $\&$ Kersting (2009) and Bansaye $\&$ Berestycki (2008) for upper large deviations. Finally, we derive the upper large deviations for the Galton-Watson processes with heavy tails.
Mit den Small World Graphen stehen seit Ende der Neunzigerjahre Modelle für soziale und ähnliche Netzwerke, die im Vergleich zu Erdös-Rényi-Graphen stärker Cluster ausbilden, zur Verfügung. Wir betrachten die Konstruktion dieser Graphen und untersuchen zwei der Modelle genauer im Zusammenhang mit stochastischen Prozessen. Das stetige Modell betrachten wir hinsichtlich dem Abstand zweier Knoten. Der interessanteste Aspekt hierbei ist, dass man bei der Konstruktion des Graphen die entfernten Nachbarn mithilfe der Poissonverteilung wählt und in der Folge einen Yule-Prozess auf dem Graphen erhält. Auf der Bollobás-Chung Small World lassen wir den Kontaktprozess ablaufen und untersuchen diesen bezüglich seiner Überlebenswahrscheinlichkeit. Wir sehen, dass er auf diesem Graphen zwei Phasenübergänge aufweist. Oberhalb des ersten überlebt er für immer mit positiver Wahrscheinlichkeit, oberhalb des zweiten ist zudem der Knoten, auf dem der Kontaktprozess gestartet ist, stets mit positiver Wahrscheinlichkeit infiziert. Schließlich betrachten wir die Zeitdauer, die ein leicht modifizierter, superkritischer Kontaktprozess auf der Small World unter bestimmten Voraussetzungen überlebt. Die wesentliche Dynamik, die wir hierbei ausmachen können, ist, dass auf ein Absinken der Infektionen mit hoher Wahrscheinlichkeit wieder eine Verdopplung der Infektionen folgt.