92D25 Population dynamics (general)
Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- alpha-stable branching (1)
- branching processes (1)
- coalescent (1)
- genealogy (1)
- heavy tails (1)
- large deviations (1)
- lookdown construction (1)
- random environment (1)
- random walks (1)
Institute
- Mathematik (2)
We determine that the continuous-state branching processes for which the genealogy, suitably time-changed, can be described by an autonomous Markov process are precisely those arising from $\alpha$-stable branching mechanisms. The random ancestral partition is then a time-changed $\Lambda$-coalescent, where $\Lambda$ is the Beta-distribution with parameters $2-\alpha$ and $\alpha$, and the time change is given by $Z^{1-\alpha}$, where $Z$ is the total population size. For $\alpha = 2$ (Feller's branching diffusion) and $\Lambda = \delta_0$ (Kingman's coalescent), this is in the spirit of (a non-spatial version of) Perkins' Disintegration Theorem. For $\alpha =1$ and $\Lambda$ the uniform distribution on $[0,1]$, this is the duality discovered by Bertoin & Le Gall (2000) between the norming of Neveu's continuous state branching process and the Bolthausen-Sznitman coalescent.
We present two approaches: one, exploiting the `modified lookdown construction', draws heavily on Donnelly & Kurtz (1999); the other is based on direct calculations with generators.
ranching Processes in Random Environment (BPREs) $(Z_n:n\geq0)$ are the generalization of Galton-Watson processes where \lq in each generation' the reproduction law is picked randomly in an i.i.d. manner. The associated random walk of the environment has increments distributed like the logarithmic mean of the offspring distributions. This random walk plays a key role in the asymptotic behavior. In this paper, we study the upper large deviations of the BPRE $Z$ when the reproduction law may have heavy tails. More precisely, we obtain an expression for the limit of $-\log \mathbb{P}(Z_n\geq \exp(\theta n))/n$ when $n\rightarrow \infty$. It depends on the rate function of the associated random walk of the environment, the logarithmic cost of survival $\gamma:=-\lim_{n\rightarrow\infty} \log \mathbb{P}(Z_n>0)/n$ and the polynomial rate of decay $\beta$ of the tail distribution of $Z_1$. This rate function can be interpreted as the optimal way to reach a given "large" value. We then compute the rate function when the reproduction law does not have heavy tails. Our results generalize the results of B\"oinghoff $\&$ Kersting (2009) and Bansaye $\&$ Berestycki (2008) for upper large deviations. Finally, we derive the upper large deviations for the Galton-Watson processes with heavy tails.