Biologische Hochschulschriften (Goethe-Universität)
Refine
Year of publication
Document Type
- Doctoral Thesis (774)
- Article (12)
- Part of Periodical (2)
- Bachelor Thesis (1)
- diplomthesis (1)
Has Fulltext
- yes (790)
Is part of the Bibliography
- no (790)
Keywords
- Gentherapie (7)
- NMR-Spektroskopie (6)
- gene therapy (6)
- Elektrophysiologie (5)
- Molekularbiologie (5)
- RNA (5)
- Schmerz (5)
- Apoptosis (4)
- Arzneimitteldesign (4)
- Carotinoide (4)
Institute
- Biowissenschaften (506)
- Biochemie und Chemie (168)
- Biochemie, Chemie und Pharmazie (48)
- Pharmazie (32)
- Institut für Ökologie, Evolution und Diversität (19)
- Georg-Speyer-Haus (6)
- Medizin (5)
- Geowissenschaften (4)
- Biodiversität und Klima Forschungszentrum (BiK-F) (3)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
This work characterizes the post-PKS modifications of AQ-256. Additionally, the second part describes the establishment of an AQ production platform for electrolyte generation that can be utilized in redox-flow-batteries. Lastly, a silent BGC that encodes the genes for terpenoid biosynthesis was described and characterized with regards to product formation and putative ecological function.
Using walls to navigate the room: egocentric representations of borders for spatial navigation
(2021)
Spatial navigation forms one of the core components of an animal’s behavioural repertoire. Good navigational skills boost survival by allowing one to avoid predators, to search successfully for food in an unpredictable world, and to be able to find a mating partner. As a consequence, the brain has dedicated many of its resources to the processing of spatial information. Decades of seminal work has revealed how the brain is able to form detailed representations of one’s current position, and use an internal cognitive map of the environment to traverse the local space. However, what is much less understood is how neural computations of position depend on distance information of salient external locations such as landmarks, and how these distal places are encoded in the brain.
The work in this thesis explores the role of one brain region in particular, the retrosplenial cortex (RSC), as a key area to implement distance computations in relation to distal landmarks. Previous research has shown that damage to the RSC results in losses of spatial memory and navigation ability, but its exact role in spatial cognition remains unclear. Initial electrophysiological recordings of single cells in the RSC during free exploration behaviour of the animal resulted in the discovery of a new population of neurons that robustly encode distance information towards nearby walls throughout the environment. Activity of these border cells was characterized by high firing rates near all boundaries of the arena that were available to the animal, and sensory manipulation experiments revealed that this activity persisted in the absence of direct visual or somatosensory detection of the wall.
It quickly became apparent that border cell activity was not only modulated by the distance to walls, but was contingent on the direction the animal was facing relative to the boundary. Approximately 40% of neurons displayed significant selectivity to the direction of walls, mostly in the hemifield contra-lateral to the recorded hemisphere, such that a neuron in left RSC is active whenever a wall occupies proximal space on the right side of the animal. Using a cue-rotation paradigm, experiments initially showed that this egocentric direction information was invariant to the physical rotation of the arena. Yet this rotation elicited a corresponding shift in the preferred direction of local head-direction cells, as well as a rotation in the firing fields of spatially-tuned cells in RSC. As a consequence, position and direction encoding in RSC must be bound together, rotating in unison during the environmental manipulations, as information about allocentric boundary locations is integrated with head-direction signals to form egocentric border representations.
It is known that the RSC forms many anatomical connections with other parts of the brain that encode spatial information, like the hippocampus and para-hippocampal areas. The next step was to establish the circuit mechanisms in place for RSC neurons to generate their activity in respect to the distance and direction of walls. A series of inactivation experiments revealed how RSC activity is inter-dependent with one of its communication partners, the medial entorhinal cortex (MEC). Together they form a wider functional network that encodes precise spatial information of borders, with information flowing from the MEC to RSC but not vice versa. While the conjunction between distance and heading direction relative to the outer walls was the main driver of neural activity in RSC, border cells displayed further behavioural correlates related to movement trajectories. Spiking activity in either hemisphere tended to precede turning behaviour on a short time-scale in a way that border cells in the right RSC anticipated right-way turns ~300 ms into the future.
The interpretation of these results is that the RSC’s primary role in spatial cognition is not necessarily on the early sensory processing stage as suggested by previous studies. Instead, it is involved in computations related to the generation of motion plans, using spatial information that is processed in other brain areas to plan and execute future actions. One potential function of the RSC’s role in this process could be to act correctly in relation to the nearby perimeter, such that border cells in one hemisphere are involved in the encoding of walls in the contralateral hemifield, after which the animal makes an ipsilateral turn to avoid collision. Together this supports the idea that the MEC→RSC pathway links the encoding of space and position in the hippocampal system with the brain’s motor action systems, allowing animals to use walls as prominent landmarks to navigate the room.
The main aim of this thesis work was to elucidate the catalytic mechanism of several enzyme complexes on the basis of their three-dimensional structure. All investigated enzyme complexes occur in the anaerobic energy metabolism and have an essential function by the challenging degradation of aromatic compounds and the flavin-based electron bifurcation (FBEB)/confurcation, an energy-coupling mechanism. More specifically, I studied the phthaloyl-CoA decarboxylase of Thauera chlorobenzoica (Pcd) involved in phthalate ester decomposition, the FBEB protein complexes lactate dehydrogenase/electron-transfer flavoprotein (Ldh/EtfAB) of Acetobacterium woodii, the heterodisulfide-related subunit HdrA of the sulfur- oxidizing bacteria Hyphomicrobium denitrificans (sHdrA). In addition, I contributed to the structure determination of the caffeyl-CoA reductase- EtfAB complex of A. woodii and the naphthoyl-CoA reductase of the sulfate-respiring enrichment culture N47 (mentioned in the Appendix E and F).
This cumulative thesis discusses the development of optimized force field parameters for Magnesium and resulting improved simulations of Magnesium-RNA interactions, including the in silico exploration of binding sites. This thesis is based on four publications as well as unpublished data. A fifth publication that was written during the time of the Ph.D. is discussed in the Appendix. This publication analyzes monovalent ion-specific effects at mica surfaces.
Nucleic acids in general and RNA in particular are fundamental to life itself. Especially in the folding and function of RNA, metal cations are crucial to screen the negatively charged nucleic acid backbones to allow for complex functional structures. They stabilize the tertiary structure of RNA and even drive its folding. Furthermore, similarly to proteins, RNAs can catalyze multiple reactions, rather than consisting of the 20 amino acids of a protein, RNA constitues of only four different building blocks. Metal cations play an important role here as additional cofactors. One essential ion is Magnesium (Mg2+), commonly referred to as the most important cofactor for nucleic acids. Mg2+ carries two positive charges. Its comparably small size and high charge result in a high charge density that has strong polarizing effects on its surroundings. Furthermore, Mg2+ forms a sharply defined first hydration shell with an integer number of coordinating water molecules. As a result, an exclusion zone exists around the ion within which no water molecules are observed. Moreover, Mg2+ displays a high solvation free energy and a low exchange rate of waters from its first hydration shell. Finally, it contains a strong preference towards oxygens . Together, this makes Mg2+ a particularly well suited interaction partner for the charged non-bridging phosphate oxygens on nucleic acid backbones and explains its crucial biological role.
The immense number of physiological and technological functions and applications indicates the significant scientific attention Mg2+ received. In experimental studies, however, severe difficulties arise for multiple reasons: Mg2+ is spectroscopically silent and cannot be detected directly by resonance techniques like NMR or EPR. Indirect observation is possible, either by detecting changes in the overall RNA structure with and without bound Mg2+, or by replacing the Mg2+ ion with another spectroscopically visible ion. In the latter, however, it cannot be guaranteed that the altered ion does not also alter the interaction site or even the whole structure [29–33]. Another detection method is X-ray crystallography, but here challenges arise from Mg2+ being almost indistinguish- able from other ions as well as from water if not for very high resolutions and precise stereochemical considerations.
Alternatively, molecular dynamics (MD) simulations can be performed, with the power of adding atomistic insight to the interplay of metal cations and nucleic acids [35–38]. MD simulations, however, are only as accurate as their underlying interaction models and the development of accurate models for the description of Mg2+ faces challenges especially in describing three properties:
(i) Polarizability. Commonly used simple models like the 12-6 type Lennard-Jones model typically fail to reproduce simultaneously thermodynamic and structural properties of a single ion in water. Alternative strategies include the use of a 12-6-4 type Lennard-Jones potential as proposed by Li and Merz, where the additional r−4 term explicitly accounts for polarization effects. The resulting Lennard-Jones potential is thereby more attractive and more long-ranged than for typical models of the 12-6 type.
(ii) Kinetics. Most Mg2+ models either fully ignore considerations about the timescales on which water exchanges from the first hydration shell of the ion or use inappropriate methodology to calculate the underlying kinetics. A realistic characterization of the involved timescales is imperative to be able to describe a seemingly simple process like the transition from inner-to-outer sphere binding and vice versa. This transition governs most biochemical reactions involving Mg2+ and therefore subsequent processes can only by as fast as the transition itself. However, already the previous step – the exchange of a water from the first hydration shell of the ion – is described my current Mg2+ models up to four orders of magnitude too slowly, which makes the observation of such events on the timescale of a typical simulation difficult or even impossible. Alln ́er et al. [48] as well as Lemkul and MacKerell explicitly considered the exchange rate into their parameter optimization procedure. To compute the rate, both studies applied Transition State Theory along a single reaction coordinate – the distance towards one of the exchanging waters. However, it could be shown that the water exchange from the first hydration shell requires at least the consideration of both exchanging water molecules in order to be able to realistically record the underlying rate using Transition State Theory. Furthermore, the model of Alln ́er et al. significantly underestimates the free energy of solvation of the ion.
(iii) Interactions between Mg2+ and nucleic acids. Typically, ionic force field parame- terization concentrates on the optimization of solution properties. The trans- ferability of these solution optimized parameters towards interactions with biomolecules, however, often fails.
This work addresses the investigation of the biosynthesis mechanisms of type II polyketide synthase (PKS) and fatty acid synthase (FAS) derived specialized metabolites (SMs) from Photorhabdus laumondii.
The elucidation of the biosynthetic pathway of the bacterial 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) was one of the major topics of this thesis. IPS exhibits several bioactive characteristics as it inhibits the phenoloxidase of insects, acts antibacterial, but also influences the soluble epoxide hydrolase which is involved in inflammatory reactions. It was recently approved as a treatment against psoriasis by the FDA and is the first Photorhabdus derived drug.
The stilbene generation in Photorhabdus requires the formation of the two acyl-carrier-protein (ACP) bound 5-phenyl-2,4-pentadienoyl- and isovaleryl-β-ketoacyl-moieties. The ketosynthase (KS)/cyclase StlD catalyzes a ring formation via a Michael-addition between the two intermediates which is then further processed by an aromatase. The formation of 5-phenyl-2,4-pentadienoyl-ACP was shown via in vitro assays with purified proteins by proving the influence of the KS FabH, ketoreductase FabG and dehydratase FabA or FabZ of the fatty acid metabolism. While E. coli was able to complement most of these enzymes in attempts to produce IPS in the heterologous host, the Photorhabdus derived FabH was not replaceable despite 73 % sequence identity with the E. coli based isoenzyme, acting as a gatekeeper enzyme for cinnamic acid (CA) moieties. Furthermore, the ability to incorporate meta-substituted halogenated CA-derivatives was shown in order to produce 3-chloro- and 3-bromo-IPS. While studying the stilbene biosynthesis, the ability of Photorhabdus and Xenorhabdus to produce hydrazines was also discovered.
The second investigated biosynthesis was the formation of benzylideneacetone (BZA). BZA is produced by Photorhabdus and Xenorhabdus strains acting as a suppressor for the immune cascade of insects and has also antibiotic activities towards Gram-negative bacteria. Due to its structural similarity towards CA and the intermediates during the stilbene formation, a shared mechanism for Photorhabdus and Xenorhabdus budapestensis was proposed due to their ability to produce CA. The production of BZA was also dependent on the stilbene related CoA-ligase, the ACP and FabH. It was verified in vitro and in vivo in E. coli yielding a 150-fold increase of the BZA production compared to the Photorhabdus and Xenorhabdus wildtype (WT) strains.
The second part of this work deals with the optimization of P. laumondii strains regarding the production titers of IPS. Therefore, several deletions of other SM related genes as well as promoter exchanges in front of stilbene related genes were carried out. These approaches were combined with the upregulation of the phenylalanine by heterologous plasmid expression, since it is the precursor of CA. Another approach applied in parallel was the optimization of the cultivation conditions with different media and supplementation with XAD-resins. It was proved that media rich on fatty acids or peptides led to higher optical densities of the cultures and thus to higher titers of stilbenes. Since IPS is inhibiting the phenoloxidase, an enzyme important for the insect immunity, it was hypothesized that cultivation in media containing insects might enhance the output of this SM. Starting from 23 mg/l of IPS in the P. laumondii WT strain, it was possible to increase the production levels to more than 860 mg/l by utilizing the mentioned approaches.
The last topic of this thesis focuses on the production of epoxidated IPS (EPS) and its derivatives. Under laboratory conditions, only a low titer of EPS was observed for the wildtype strain. However, the optimized IPS strains and IPS-production conditions could also be applied for EPS which led to higher productions and also to the detection of many new derivatives. Most of the EPS derivatives were amino acid or peptide derived acting as nucleophiles to open the epoxide ring and yielding β-amino-alcohols. However, purification and chemical synthesis attempts to obtain EPS failed due to its poor stability. Epoxides were utilized in in vitro assays with amino acids, peptides and proteins to get insights whether epoxidations might act as posttranslational modification in Photorhabdus. The reactions were performed with styrene oxide and stilbene oxide replacing EPS based on their structural similarity. The modifications were executed successfully although proteomics approaches with in vivo data are required to confirm these findings. During the purification attempts of EPS, further derivatives were detected. The structures of dimerized stilbenes, a cis-isomer of IPS and another derivative that might incorporate an amino-group in the resveratrol ring were proposed on the basis of the HPLC-MS data.
In Vorarbeiten wurde gezeigt, dass der Kaliumkanal Slack an der Verarbeitung neuropathischer Schmerzen funktionell beteiligt ist und dass das klassische Neuroleptikum Loxapin Slack-abhängig neuropathisches Schmerzverhalten im Mausmodell lindert (Lu et al. 2015).
Ausgehend von Loxapin als Leitstruktur wurden in der vorliegenden Arbeit im FluxOR™ Kaliumkanal-Assay an Slack-transfizierten HEK-Zellen insgesamt 68 neue Loxapin-Derivate gescreent. Hierbei wurden 23 Substanzen mit Slack-aktivierenden Eigenschaften identifiziert, von denen VHP93, VH408 und VH425 weiter in vivo untersucht wurden. Dabei zeigten Mäuse nach systemischer Gabe von VHP93 ein reduziertes Verhalten in einem Modell für neuropathische Schmerzen. Dem gegenüber wurde durch VH408 das Verhalten im neuropathischen Schmerzmodell nicht beeinflusst.
Des Weiteren konnte in dieser Arbeit gezeigt werden, dass durch eine Slack-Aktivierung nicht nur neuropathisches Schmerzverhalten gehemmt wird, sondern auch die Kratzreaktionen im Chloroquin-Modell des Histamin-unabhängigen Juckreizes reduziert werden können.
Neben Slack wurde in dieser Arbeit auch die Gewebsexpression und funktionelle Bedeutung des eng mit Slack verwandten Kaliumkanals Slick charakterisiert. Expressionsanalysen ergaben, dass Slick überwiegend in dünn myelinisierten A-delta-Fasern und inhibitorischen Interneuronen im Dorsalhorn des Rückenmarks lokalisiert ist. Tierexperimentelle Untersuchungen zeigten, dass Slick-Knockout-Mäuse ein erhöhtes Schmerzverhalten nach thermischer Stimulation aufwiesen. Außerdem wurde bei Slick-Knockout-Mäusen in der späten Phase des Capsaicin- und Formalin-Tests ein signifikant erhöhtes Leckverhalten verzeichnet. Die Ergebnisse dieser Arbeit liefern somit Hinweise auf eine funktionelle Beteiligung von Slick bei der Detektion von Hitzeschmerzen und bei der TRPV1- und TRPA1-vermittelten Schmerzantwort. Zusammengefasst zeigen diese Daten, dass Slick vorrangig an der Verarbeitung thermischer und chemischer Noxen beteiligt ist und dabei eine antinozizeptive Funktion ausübt.
Lysosomes are major degradative organelles that contain enzymes capable of breaking down proteins, nucleic acids, carbohydrates, and lipids. In the last decade, new discoveries have traced also important roles for lysosomes as signalling hubs, affecting metabolism, autophagy and pathogenic infections. Therefore, maintenance of a healthy lysosome population is of utmost importance to the cell to respond to both stress conditions and also homeostatic signalling. For example, for minor perturbations to the lysosomal membrane, the cell activates repair processes which seal membrane nicks. For more extensive damage, autophagy is activated to remove damaged organelles from the cell. on the other hand, during pathogen invasion host cells have also evolved mechanisms to hijack the endolysosomal pathway to facilitate their own growth and replication in host cells.
The first part of the thesis work focuses on a lysosomal regeneration program which is activated under conditions where the entire lysosomal pool of the cell is damaged. Upon extensive membrane damage induced by the lysosomotropic drug LLOMe, the cell activates a regeneration pathway which helps in the formation of new functional lysosomes by recycling damaged membranes. I have identified the molecules important for this novel pathway of lysosomal regeneration and showed how the protein TBC1D15 orchestrates this process to regenerate functional organelles from completely damaged membrane masses in the first 2 hours following lysosomal membrane damage. This process resembles the process of auto- lysosomal reformation (ALR)- involving the formation of lysosomal tubules which are extended along microtubules and cleaved in a dynamin2 dependent manner to form proto-lysosomes which develop into fully functional mature lysosomes. These lysosomal tubules are closely associated with ATG8 positive autophagosomal membranes and require ATG8 proteins to bind to the lysophagy receptor LIMP2 on damaged membranes. This process is physiologically important under conditions of crystal nephropathy where calcium oxalate crystals induce damage to lysosomal membranes in nephrons in kidney disease.
The second part of the thesis shows how the endolysosomal system of the cell is hijacked by the bacteriaLegionella pneumophila. During Legionella infection the formation of conventional ATG8 positive autophagosomes are blocked due to the protease activity of the bacterial effector protein RavZ which cleaves lipidated ATG8 proteins from autophagosomal membranes. The SidE effectors of Legionella modify STX17 and SNAP29 by the process of non-canonical ubiquitination called phosphoribose-linked serine ubiquitination (PR-Ub). These proteins are essential for the formation of the autophagosomal SNARE complex which is used for fusion of the autophagosome with the lysosome. Upon Legionella infection, PR-UB of STX17 aids in formation of autophagosome-like replication vacuoles. ThesevacuolesdonotfusewiththelysosomebecauseSNAP29isalsoPR-Ubmodified. PR-UbofSTX17 and SNAP29 sterically blocks the formation of the autophagosomal-SNARE complex thereby preventing fusion of the autophagosome with the lysosome. As a result, Legionella can replicate in autophagosome- like vacuoles which do not undergo lysosomal degradation. In absence of PR-Ub modified STX17, bacterial replication is compromised when measured by bacterial replication assays in lung epithelial (A549) cells.
Taken together, this thesis highlights two important aspects of the autophagy-lysosomal system- how it responds to extensive membrane damage and its importance in Legionella pneumophila infection. Extensive damage to lysosomal membranes triggers a rapid regeneration process to partially restore lysosomal function before the effects of TFEB dependent lysosomal biogenesis becomes apparent. On the other hand, Legionella pneumophila infection segregates the lysosomes from the rest of the endo-lysosomal system by blocking autophagosome-lysosome fusion. Though lysosomes remain active, they are incapable of degrading pathogens since pathogen containing vacuoles do not fuse with the lysosome.
This thesis comprises the usage of two commonly known hinge-binding moieties in drug discovery. First, the quinazoline scaffold of gefitinib (5) was utilized in a macrocyclization strategy to introduce selectivity. In general, the quinazoline hinge-binding moiety is a commonly used scaffold which can be found in 14% of approved kinase inhibitors. The most familiar applications are EGFR inhibitors such as gefitinib (5), erlotinib (6), afatinib, or dacomitinib for the treatment of NSCLC. But other kinases like CDK2, CDK4, or p38 are reported targets as well.
The N-phenylquinazolin-4-amine moiety of gefitinib (5) was conserved however, the residues at the aromatic ring in the linker were modified, the residue targeting the solvent-exposed region was varied, and the linker at the C6 position of the quinazoline was adjusted to enable the macrocyclization. An overview of the structural modifications is shown in Figure 35A.
Kinome-wide screening of gefitinib (5) revealed several off-targets besides EGFR (Figure 35B), making it an excellent starting point for a macrocyclization strategy. Introducing a linker to the N phenylquinazoline-4-amine scaffold and retaining the residues on the aromatic ring as well as the methoxy group targeting the solvent-exposed region improved the selectivity profile and the efficacy towards EGFR WT and its mutants. Truncation of the linker moiety led to the mutant selective macrocycle 26f with an excellent kinome-wide selectivity profile (Figure 35B). An inhibitor that is effective on EGFR mutations while ineffective on the EGFR WT could represent an enhancement of patient treatment, as it potentially causes less side effects. Further studies could determine the effect of the most promising macrocycles in lung cancer cell lines. Additionally, the pharmacokinetic properties could be optimized, e.g. by introducing solubilizing groups, targeting the solvent-exposed region.
The second scaffold comprises the 3-aminopyrazole-based hinge-binding moiety. It is a privileged scaffold in medicinal chemistry for the development of kinase inhibitors. Previous publications report the anti-proliferative and anti-cancer potential of pyrazole-based molecules. They play a crucial role in the treatment of various diseases and cancer types like inflammation disorders, lymphoma, or breast cancer. This scaffold can be found e.g. in the aurora kinase inhibitor tozasertib or in the promiscuous kinase inhibitor 23, published by Statsuk et. al. Rescreening compound 23 in a comprehensive kinase panel against 468 human protein kinases confirmed the unselective behavior with a selectivity score of S35 = 0.56 (Figure 36B), making it a great starting point for further optimizations. The N-(1H-pyrazol-3-yl)pyrimidin-4-amine scaffold was conserved however, the residues targeting the solvent-exposed region were varied and different linkers were attached.
The introduction of different residues at the pyrazole dramatically influenced the selectivity profile of the desired kinases. Ester moieties caused to a favorable combination of selectivity and potency towards the kinase of interest CDK16. The removal of additional residues at the pyrimidine, targeting the solvent-exposed region, increased the efficiency towards CDK16. Further optimization led to the highly potent and selective CDK16 inhibitor 98d (IC50 = 33 nM). NanoBRETTM screening against the complete CDK family revealed a preferred inhibition of the PCTAIRE and PFTAIRE subfamily with cellular IC50 values of 20 nM – 120 nM and 50 nM – 180 nM, respectively. A FUCCI cell cycle assay and viability assessment of 98d confirmed previously published results, reporting a G2/M cell cycle arrest followed by apoptosis and accumulation of p27 through knockout of CDK16 in SCC cells. Consequently, further studies could evaluate the anti-tumor activity of 98d in SCC and NSCLC or elucidate the effect of 98d in AMPK-related macroautophagy. 98d represents a novel tool compound to investigate the understudied kinases of the PCTAIRE family and enable to enlighten the biological role of those kinases.
Macrocyclization of the N-(1H-pyrazol-3-yl)pyrimidin-4-amine core resulted in the selective BMPR2 inhibitor 110a. It showed a good binding affinity towards BMPR2 with a KD value of 205 nM as well as a good potency with an IC50 value of 506 nM. A comprehensive selectivity screen against 468 kinases revealed an excellent selectivity profile with S35 = 0.01. As no BMPR2 inhibitors have been published so far, 110a represents a novel compound that may provide further insights into the canonical BMP pathway, noncanonical signaling, or its impact on BMPR2-associated diseases like PAH.
The introduction of additional residues targeting the solvent-exposed region shifted the selectivity towards the MST kinases. The exchange from the pyrimidine to a quinazoline moiety resulted in the highly potent and selective macrocyclic MST3 inhibitor 113c. NanoBRETTM measurements demonstrated the preferred inhibition of MST3 with IC50 values of 210 nM and 30 nM for intact and lysed cells, respectively. A weaker activity could be seen for MST4 with 1.8 µM and 510 nM, while MST1 and MST2 were not affected. To date, no selective MST3 inhibitors have been published, making 113c a valuable tool compound for further functional studies. As MST3 is influencing the cell cycle progression, 113c could be tested in a further cell cycle assay to elucidate the inhibitory effect of 113c on MST3 and consequently on the cell cycle. Furthermore, the anti-tumor activity of 113c in breast cancer could be determined, as Madsen et. al. reported a high MST3 and MST4 activity triggered by FAM40B mutations.
Heart development is a dynamic process modulated by various extracellular and intracellular cues. Cardiac progenitors in vertebrates such as the zebrafish, migrate over to the midline after differentiation from the epiblast (Bakkers, 2011; Rosenthal & Harvey, 2010; Stainier et al., 1996; Trinh & Stainier, 2004). These progenitors form a cardiac disc at the midline which elongates into the linear heart tube. The differentiation and migration of cardiac precursors is modulated by signaling interactions between cardiac precursor cells and their extracellular environment known as the Extracellular Matrix (ECM). Studies have shown that Cell-ECM interactions play a crucial role in sculpting the heart during early morphogenic events (Davis CL, 1924; Männer & Yelbuz, 2019; Rosenthal & Harvey, 2010). One key factor to these processes is the presence of a specialized ECM known as the Basement Membrane (BM). Extracellular basement membrane proteins such as Fibronectin have been shown to modulate these very early migration processes of the cardiomyocyte progenitors (Trinh & Stainier, 2004). As the heart develops further, the linear heart tube is composed of myocardial cells with an inner endothelial cell lining separated by a layer of thick jelly like substance called the cardiac jelly (Barry A, 1948; Davis CL, 1924; Little et al., 1989). The cardiac jelly also called the cardiac basement membrane, has been shown to regulate distinct developmental events during cardiogenesis. This early CJ contains components of the basal lamina such as laminins, fibronectin, hyaluronan as well as non-fibrillar collagens such as Collagen IV (Little et al., 1989). In this study, I aimed to identify ECM molecules of the Basement Membrane in the heart and identify their role in the modulation of cardiac development and regeneration using the zebrafish as my model organism.
I identified genes belonging to the Zebrafish Matrisome expressed during cardiac developmental and regeneration and performed CRISPR/Cas9 sgRNA mediated mutagenesis. I also developed overexpression tools for these genes.
Agrinp168 mutants exhibited no obvious gross morphology defects during cardiac development and were adult viable. Adult mutants exhibited reduced cardiomyocyte proliferation, but no significant difference in cardiomyocyte dedifferentiation post cardiac cryoinjury.
Decorin overexpression through mRNA injections led to increased myocardial wall thickness and DN dcn overexpression through mRNA injections led to loss of cardiac looping during early development.
Mutants for Small Leucine Rich Proteoglycan (SLRP) prelp generated using CRISPR/Cas9 mutagenesis exhibited cardiovascular defects. Close observation of prelp mutant hearts revealed a reduced heart rate and impaired fractional shortening of the ventricle. prelp mutants exhibited an enlarged atrium at 48 hpf and 72 hpf as well as a reduced ventricle size at 72 hpf. Chamber size in the mutant hearts were enlarged irrespective of contractility of the heart. Mutants showed an increased number of Atrial cardiomyocytes, but no change in cell size. On the molecular level, extracellular Laminin localization was disrupted in prelp mutants along with an increase in thickness and volume of the cardiac HA in the CJ suggesting a potential compensatory role, or retention of immaturity of the cardiac jelly in the prelp mutants. Transcriptomics analysis on the prelp mutant hearts revealed downregulation of ECM organization and ECM-Receptor interaction processes in the mutants. Gene Ontology analysis on prelp mutants hearts transcriptome revealed increased MAPK signaling. Interestingly, genes related to degradation of cardiac HA and maturation of cardiac jelly were downregulated, and genes related to epithelial identity of cardiomyocytes were upregulated. Analysis of the mutant hearts at single cell resolution revealed increased number of mutants exhibiting rounded up cardiomyocytes and loss of apical Podocalyxin. Truncated forms of prelp were generated to identify domain specific roles for Prelp, and reintroduction of N-terminal truncated Prelp into the mutants rescued the basal lamina localization and cardiac jelly volume phenotypes. Myocardium specific re-establishment of prelp expression revealed a marked rescue of the mutant cardiovascular phenotype suggesting that tissue specific expression of prelp is not required so long as Prelp is secreted into the CJ. With these data, I’ve elucidated the role of ECM SLRPs in modulation of cardiac chamber morphogenesis process and regeneration of the heart.
Electrospinning is a versatile and promising drug delivery technology for the development of tailor-made drug delivery systems for various clinical applications. By applying high voltages to drug-loaded polymer solutions, solid polymeric nanofibers can be generated, which encapsulate active pharmaceutical ingredients (APIs) into their polymer matrix. During the electrospinning process, the fibers are deposited on a collector and form a nonwoven network of drug-loaded polymer fibers. These fibers are spatially distributed in aligned or random orientation, providing the opportunity to design highly tunable structural and mechanical properties, which can be adapted to the biological requirements of the intended application site. The mechanically flexible fiber networks can therapeutically be administered to a multitude of pharmaceutical application sites. Their highly porous fiber structure exhibits a large surface-to-volume ratio, which is ideal for controlled drug release kinetics from the polymer matrix upon contact with biological fluids, such as tear fluid, saliva, mucus, wound exudate or gastro-intestinal fluid. For application at the target site, fiber mats are cut into patches. As the patch size determines the quantity of applied API, the electrospinning process must ensure homogeneous distribution of the API throughout the entire fiber mat area.
In this thesis, electrospinning was established as a formulation technology for the rational fabrication of tailor-made multifunctional drug carrier systems for local and site-specific drug delivery to the epithelial interfaces skin, oral mucosa as well as cornea. For adequate characterization and analysis of the drug delivery systems, a broad panel of robust and predictive analytical tools, based of novel investigation techniques for physicochemical characterization of electrospun fibers, was developed.
The initial part of the thesis thematically focuses on the development of predictive analytical techniques, to determine fiber morphology and physicochemical properties, as well as fiber composition and drug release. By designing two model formulations with contrasting properties, and subsequent analysis and characterization with a set of newly developed techniques and state-of-the-art methods, a comprehensive toolset has been made available and evaluated, aiming at advancing and standardizing respective techniques in the scientific field of electrospun drug delivery systems.
Starting with the initiation of the electrospinning formulation process, which often relies on empirical data rather than analytical methods to predict successful processability, analysis of rheological properties of electrospinning solutions was used to rationally detect the minimum polymer concentration required for electrospinning.
For analysis of fiber morphology, scanning electron microscopy is a common technique. However, little attention is given to underlying readout parameters. By analyzing the fiber orientation and diameter of the respective fibers, predictive results regarding mechanical properties could be obtained, which were subsequently confirmed by measuring elongation force with tensile testing. Confocal Raman microscopy, a label-free method for chemically- selective imaging of the fiber samples, was introduced as a complementary visualization technique, enabling the detection of fiber composition and drug distribution.
A novel technique for investigation of water contact angles on the fiber surface of highly hydrophilic polymers was introduced, which provides predictive data regarding interaction with body fluids and the resulting drug release kinetics. Subsequent release testing in a newly developed setup for analyzing drug release from electrospun fibers in low-volume body compartments, confirmed the anticipated drug release kinetics from measurement of the surface hydrophilicity.
By combining complementary analytical methods, including spectral composition analysis, morphology visualization, characterization of physico-chemical properties and drug release kinetics, as well as the application of multivariate data analysis, a robust and predictive toolset has been established, which can support comparability of future electrospinning studies and the translation from the lab bench into clinics.
Based on the analytical toolset, the main part of the thesis focuses on the development and preparation of electrospun platform drug delivery systems for application on epithelial barriers. Electrospun fiber mats are thin, flat, and mechanically flexible, which allows close adherence to epithelial surfaces and reduction of diffusion paths, which enables efficient drug delivery to the skin, oral mucosa, as well as the cornea.
Electrospun fibers bear a high potential for application as wound dressings, while simultaneously controlling the local delivery of APIs to the wound area. Their close resemblance to the extracellular matrix of human skin provides a suitable microenvironment for cellular proliferation and migration for wound closure. In this work, insulin, a fragile proteohormone with growth factor characteristics, was successfully encapsulated into the core of coaxially electrospun fibers, thus maintaining bioactivity throughout and after the electrospinning process. The shell has been designed from biocompatible polymers, which, upon contact with aqueous wound exudate, partially dissolve and form pores through which bioactive insulin is released in a controlled manner. The shell layer provides a hydrophilic surface for interaction with body fluids and skin cells, and possesses substantial mechanical strength, flexibility, and high tensile elongation required for application on wounds. The biocompatibility of the wound dressing was investigated by interaction with primary human dermal fibroblasts and keratinocytes, which displayed healthy cell morphologies without indicating any elevated levels of cytotoxicity markers.
To investigate the effect of insulin on cell migration, in vitro scratch assays on human skin cells were performed. Increased cellular migration speed and wound closure could be observed, indicating improved wound healing. Bio relevance of in vitro wound healing potential results was advanced by development of 3D ex vivo human epidermal skin wound models from reduction surgery donor material. These complex wound models were treated with electrospun insulin fibers and analyzed by proteome analysis to reveal significant increases in wound healing-associated signaling pathways, which could be attributed to a material-driven remarkably positive impact on wound healing of the electrospun fibers...