Senckenbergische Naturforschende Gesellschaft
Refine
Year of publication
Document Type
- Article (372)
- Preprint (39)
- Book (4)
- Conference Proceeding (4)
- Contribution to a Periodical (2)
- Part of Periodical (2)
- Doctoral Thesis (1)
- Review (1)
Has Fulltext
- yes (425)
Is part of the Bibliography
- no (425)
Keywords
- Biodiversity (11)
- Invasive species (11)
- taxonomy (9)
- Biogeography (7)
- biodiversity (7)
- climate change (7)
- Ecology (6)
- phylogeny (6)
- Benthos (5)
- Crustacea (5)
Institute
- Senckenbergische Naturforschende Gesellschaft (425)
- Institut für Ökologie, Evolution und Diversität (214)
- Biodiversität und Klima Forschungszentrum (BiK-F) (189)
- Biowissenschaften (154)
- Geowissenschaften (59)
- Medizin (18)
- Zentrum für Interdisziplinäre Afrikaforschung (ZIAF) (7)
- LOEWE-Schwerpunkt für Integrative Pilzforschung (6)
- Präsidium (6)
- Informatik (5)
We can see an increasing consumption of meat together with the corresponding behavioral adaptations in early hominins, such as Homo erectus. This new development was driven by one or more behavioral adaptations, such as a shift to a higher-quality diet, increased social interactions and/or changes in the life history strategies. The methods by which these hominins obtained meat—through scavenging the carcasses of large herbivores or hunting themselves—remain a topic of debate. They seem to have thrived in expanding grasslands, which offered few resources except for herds of large, gregarious mammals. In our study, we developed an agent-based model that simulates the behavior of a group of hunter-gatherers foraging in a reconstructed tropical grassland environment. The environmental parameters, including plant availability and prey population densities, are derived from the Serengeti National Park. In this model, agents gather or hunt various species either alone or as a group, using strategies early hominins may already have access to. The basic behavior and the implemented hunting strategies are based on data from recent hunter-gatherer societies living in tropical grasslands. Our model demonstrates how foragers may have thrived in tropical grasslands by either adopting fast hunting strategies, which often require access to sophisticated hunting tools, or by cooperating extensively, which would rely on an enhanced social structure to promote cooperative behavior. Our model can be used to study other scenarios by offering the option to change the environmental conditions and aspects of the agent behavior.
Highlights
• Northern and eastern grassland-savanna boundary defined by minimum temperature.
• Dynamics of fire, frost and growing season temperatures combine to produce this limit.
• Western limit is related to moisture availability.
• Modern, high-resolution climate data enables refinement of bioclimatic limits.
• Reparameterisation improves global model performance at regional scale.
Abstract
Understanding the controls of biome distributions is crucial for assessing terrestrial ecosystem functioning and its response to climate change. We analysed to what extent differences in climate factors (minimum temperatures, water availability, and growing season temperatures (degree days above 5 °C (GDD5)) might explain the poorly understood borders between grasslands, savannas and shrublands in eastern South Africa. The results were used to improve bioclimatic limits in the dynamic global vegetation model (DGVM) LPJ-GUESS. The vegetation model was also used to explore the role of fire in the biome borders. Results show no clear differences between the adjacent biomes in water availability. Treeless grasslands primarily occur in areas with minimum temperatures and GDD5 values below that of savannas. The standard fire module in LPJ-GUESS is not able to reproduce observed burned area patterns in the study region, but simulations with prescribed fire return intervals show that a combination of low temperatures and fire can explain the treeless state of the grassland biome. These results confirm earlier hypotheses that a combination of low winter temperatures, causing frost damage to trees, and low growing season temperatures that impede tree sapling growth and recruitment, particularly under re-occurring fires, drive the grassland-savanna border. With these insights implemented, the LPJ-GUESS simulation results substantially improved grass distribution in the grassland biome, but challenges remain concerning the grassland-shrubland boundary, tree-grass competition and prognostic fire modelling.
Protection against pathogens is a major function of the gut microbiota. Although bacterial natural products have emerged as crucial components of host-microbiota interactions, their exact role in microbiota-mediated protection is largely unexplored. We addressed this knowledge gap with the nematode Caenorhabditis elegans and its microbiota isolate Pseudomonas fluorescens MYb115 that is known to protect against Bacillus thuringiensis (Bt) infection. We find that MYb115-mediated protection depends on sphingolipids that are derived from an iterative type I polyketide synthase (PKS), thereby describing a noncanonical pathway of bacterial sphingolipid production. We provide evidence that MYb115-derived sphingolipids affect C. elegans tolerance to Bt infection by altering host sphingolipid metabolism. This work establishes sphingolipids as structural outputs of bacterial PKS and highlights the role of microbiota-derived sphingolipids in host protection against pathogens.
Samples of Crustacea and Annelida (Polychaeta, Sipuncula, and Hirudinea) were collected in the Bering Sea and the northwestern Pacific Ocean during scientific cruise SO-249 BERING in 2016. Biological samples were collected from 32 locations by the team on-board RV Sonne using a chain bag dredge at depths ranging between 330–5,070 m, and preserved in 96% ethanol. Specimens were morphologically identified to the lowest taxonomic level possible using a Leica M60 stereomicroscope. The generated data here comprise taxonomic information as well as annotated bathymetric and biogeographic information from a total of 78 samples (26 Crustacea, 47 Polychaeta, 4 Sipuncula, and 1 Hirudinea). The dataset was prepared following Darwin Core Biodiversity standards for FAIR data sharing based on Ocean Biodiversity Information System (OBIS) and Global Biodiversity Facility (GBIF) guidelines. The standardised digitised data were then mobilised to both OBIS and GBIF under CC BY 4.0 licence to publicly share and adopt the data. As records of these important marine taxa from bathyal and abyssal depths are sparse, especially from the deep Bering Sea, the herein generated and digitised data aid in filling existing knowledge gaps on their diversity and distribution in that region. As part of the “Biogeography of the NW Pacific deep-sea fauna and their possible future invasions into the Arctic Ocean” (BENEFICIAL) project, this dataset thus not only increases our knowledge in re-assessing and uncovering the deep-sea diversity of these taxa, but also serves policy and management sectors by providing first-hand data for global report assessments.
Discoveries of new species often depend on one or a few specimens, leading to delays as researchers wait for additional context, sometimes for decades. There is currently little professional incentive for a single expert to publish a stand-alone species description. Additionally, while many journals accept taxonomic descriptions, even specialist journals expect insights beyond the descriptive work itself. The combination of these factors exacerbates the issue that only a small fraction of marine species are known and new discoveries are described at a slow pace, while they face increasing threats from accelerating global change. To tackle this challenge, this first compilation of Ocean Species Discoveries (OSD) presents a new collaborative framework to accelerate the description and naming of marine invertebrate taxa that can be extended across all phyla. Through a mode of publication that can be speedy, taxonomy-focused and generate higher citation rates, OSD aims to create an attractive home for single species descriptions. This Senckenberg Ocean Species Alliance (SOSA) approach emphasises thorough, but compact species descriptions and diagnoses, with supporting illustrations and with molecular data when available. Even basic species descriptions carry key data for distributions and ecological interactions (e.g., host-parasite relationships) besides universally valid species names; these are essential for downstream uses, such as conservation assessments and communicating biodiversity to the broader public.This paper presents thirteen marine invertebrate taxa, comprising one new genus, eleven new species and one re-description and reinstatement, covering wide taxonomic, geographic, bathymetric and ecological ranges. The taxa addressed herein span three phyla (Mollusca, Arthropoda, Echinodermata), five classes, eight orders and twelve families. Apart from the new genus, an updated generic diagnosis is provided for four other genera. The newly-described species of the phylum Mollusca are Placiphorella methanophila Vončina, sp. nov. (Polyplacophora, Mopaliidae), Lepetodrilus marianae Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Lepetodrilidae), Shinkailepas gigas Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Phenacolepadidae) and Lyonsiella illaesa Machado & Sigwart, sp. nov. (Bivalvia, Lyonsiellidae). The new taxa of the phylum Arthropoda are all members of the subphylum Crustacea: Lepechinella naces Lörz & Engel, sp. nov. (Amphipoda, Lepechinellidae), Cuniculomaera grata Tandberg & Jażdżewska, gen. et sp. nov. (Amphipoda, Maeridae), Pseudionella pumulaensis Williams & Landschoff, sp. nov. (Isopoda, Bopyridae), Mastigoniscus minimus Wenz, Knauber & Riehl, sp. nov. (Isopoda, Haploniscidae), Macrostylis papandreas Jonannsen, Riehl & Brandt, sp. nov. (Isopoda, Macrostylidae), Austroniscus indobathyasellus Kaiser, Kniesz & Kihara, sp. nov. (Isopoda, Nannoniscidae) and Apseudopsis daria Esquete & Tato, sp. nov. (Tanaidacea, Apseudidae). In the phylum Echinodermata, the reinstated species is Psychropotes buglossa E. Perrier, 1886 (Holothuroidea, Psychropotidae).The study areas span the North and Central Atlantic Ocean, the Indian Ocean and the North, East and West Pacific Ocean and depths from 5.2 m to 7081 m. Specimens of eleven free-living and one parasite species were collected from habitats ranging from an estuary to deep-sea trenches. The species were illustrated with photographs, line drawings, micro-computed tomography, confocal laser scanning microscopy and scanning electron microscopy images. Molecular data are included for nine species and four species include a molecular diagnosis in addition to their morphological diagnosis.The five new geographic and bathymetric distribution records comprise Lepechinella naces Lörz & Engel, sp. nov., Cuniculomaera grata Tandberg & Jażdżewska, sp. nov., Pseudionella pumulaensis Williams & Landschoff, sp. nov., Austroniscus indobathyasellus Kaiser, Kniesz & Kihara, sp. nov. and Psychropotes buglossa E. Perrier, 1886, with the novelty spanning from the species to the family level. The new parasite record is Pseudionella pumulaensis Williams & Landschoff, sp. nov., found in association with the hermit crab Pagurus fraserorum Landschoff & Komai, 2018.
In the deep-sea, the interaction between benthic fauna and substrate mainly occurs through bioturbational processes which can be preserved as traces (i.e., lebensspuren). Lebensspuren are common features of deep seafloor landscapes and usually more abundant than the organism that produce them (i.e., tracemakers), rendering them promising proxies to infer biodiversity. The density and diversity relationships between lebensspuren and benthic fauna are to the present day unclear and contradicting hypotheses have been proposed suggesting negative, positive, or even null correlations. To test these hypotheses, in this study lebensspuren, tracemakers (specific epibenthic fauna that produce these traces), degrading fauna (benthic fauna that can erase lebensspuren), and fauna in general were characterized taxonomically at eight deep-sea stations in the Kuril Kamchatka Trench area. No general correlation (over-all study area) could be observed between diversities of lebensspuren, tracemakers, degrading fauna and fauna. However, a diversity correlation was observed between specific stations, showing both negative and positive correlations depending on: 1) the number of unknown tracemakers (especially significant for dwelling lebensspuren); and 2) the lebensspuren with multiple origins; and 3) tracemakers that can produce different lebensspuren. Lebensspuren and faunal density were not correlated. However, lebensspuren density was either positively or negatively correlated with tracemaker densities, depending on the lebensspuren morphotypes. A positive correlation was observed for resting lebensspuren (e.g., ophiuroid impressions, Actinaria circular impressions), while negative correlations were observed for locomotion-feeding lebensspuren (e.g., echinoid trails). In conclusion, lebensspuren diversity may be a good proxy for tracemaker biodiversity when the lebensspuren-tracemaker tandem can be reliable characterized; and lebensspuren-density correlations vary depending the specific lebensspuren residence time, tracemaker density and associated behaviour (rate of movement), but on a global scale abiotic and other biotic 42 factors may also play an important role.
In the deep sea, interactions between benthic fauna and seafloor sediment primarily occur through bioturbation that can be preserved as traces (i.e. lebensspuren). Lebensspuren are common features of deep-sea landscapes and are more abundant than the organisms that produce them (i.e. tracemakers), rendering lebensspuren promising proxies for inferring biodiversity. The density and diversity relationships between lebensspuren and benthic fauna remain unclear, and contradicting correlations have been proposed (i.e. negative, positive, or even null correlations). To approach these variable correlations, lebensspuren and benthic fauna were characterized taxonomically at eight deep-sea stations in the Kuril-Kamchatka Trench area, together with two novel categories: tracemakers (specific epibenthic fauna that produce these traces) and degrading fauna (benthic fauna that can erase lebensspuren). No general correlation (overall study area) was observed between diversities of lebensspuren, tracemakers, degrading fauna, and fauna. However, a diversity correlation was observed at specific stations, showing both negative and positive correlations depending on: (1) the number of unknown tracemakers (especially significant for dwelling lebensspuren); (2) the lebensspuren with multiple origins; and (3) tracemakers that can produce different lebensspuren. Lebensspuren and faunal density were not correlated. However, lebensspuren density was either positively or negatively correlated with tracemaker densities, depending on the lebensspuren morphotypes. A positive correlation was observed for resting lebensspuren (e.g. ophiuroid impressions, Actiniaria circular impressions), while negative correlations were observed for locomotion-feeding lebensspuren (e.g. echinoid trails). In conclusion, lebensspuren diversity may be a good proxy for tracemaker biodiversity when the lebensspuren–tracemaker relationship can be reliable characterized. Lebensspuren–density correlations vary depending on the specific lebensspuren residence time, tracemaker density, and associated behaviour (rate of movement). Overall, we suggest that lebensspuren density and diversity correlations should be studied with tracemakers rather than with general benthic fauna. On a global scale, abiotic (e.g. hydrodynamics, substrate consistency) and other biotic factors (e.g. microbial degradation) may also play an important role.
Highlights
• Linking ecological and ecotoxicological data from 30 river sites.
• Bioassays indicate complex mixture of chemicals with different modes of action.
• Macroinvertebrate community deteriorates along a toxicity gradient.
• Macroinvertebrate response has low potential for toxicity-specific bioindicators.
• Effect-based methods could isolate toxicity effects from multiple stressors.
Abstract
Chemical pollution is one of the most important threats to freshwater ecosystems. The plethora of potentially occurring chemicals and their effects in complex mixtures challenge standard monitoring methods. Effect-based methods (EBMs) are proposed as complementary tools for the assessment of chemical pollution and toxic effects. To investigate the effects of chemical pollution, the ecological relevance of EBMs and the potential of macroinvertebrates as toxicity-specific bioindicators, ecological and ecotoxicological data were linked. Baseline toxicity, mutagenicity, dioxin-like and estrogenic activity of water and sediment samples from 30 river sites in central Germany were quantified with four in vitro bioassays. The responses of macroinvertebrate communities at these sites were assessed by calculating 16 taxonomic and functional metrics and by investigating changes in the taxonomic and trait composition. Principal component analysis revealed an increase in toxicity along a joint gradient of chemicals with different modes of action. This toxicity gradient was associated with a decrease in biodiversity and ecological quality, as well as significant changes in taxonomic and functional composition. The strength of the effects suggested a strong impact of chemical pollution and underlined the suitability of EBMs in detecting ecological relevant effects. However, the metrics, taxa, and traits associated with vulnerability or tolerance to toxicity were found to also respond to other stressors in previous studies and thus may have only a low potential as toxicity-specific bioindicators. Because macroinvertebrates respond integratively to all present stressors, linking both ecological and environmental monitoring is necessary to investigate the overall effects but also isolate individual stressors. EBMs have a high potential to separate the toxicity of chemical mixtures from other stressors in a multiple stressor scenario, as well as identifying the presence of chemical groups with specific modes of action.
Highlights
• We propose a framework to address landscape effects on ecosystem services.
• We expect ecosystem service flows to be modulated by the amount and configuration of supply and demand areas.
• We stress the role of neutral areas in facilitating or hindering ecosystem service flows.
• Supply/demand ratios, spatial overlap, and ES characteristics need to be accounted for when assessing flows.
• We propose a research agenda with challenges to couple the effects of landscape configuration on ES flow.
Abstract
Despite advances in understanding the effects of landscape structure on ecosystem services (ES), many challenges related to these complex spatial interactions remain. In particular, the integration of landscape effects on different components of the service provision chain (supply, demand, and flow) remains poorly understood and conceptualized. Here we propose a theoretical framework to further explore how the spatial flow of ES can vary according to landscape structure (i.e. composition and configuration) emphasizing the role played by the configuration of supply, demand, and neutral areas, as well as individual characteristics of ES (e.g., service rivalry). For this, we expand the discussion on how landscape changes can affect ES flows and propose a theoretical representation of ES flows variation led by different supply-demand ratios. Additionally, we expand this discussion by integrating the potential effects of neutral areas in the landscape as well as of supply/demand spatial overlap. This novel approach links the spatial arrangement (e.g. fragmentation, network complexity, matrix resistance) usually captured by landscape metrics, and ratios of ES supply and demand areas to potential effects on spatial flows of ES. We discuss the application of this model using widely studied ES, such as pollination, pest control by natural enemies, and microclimate regulation. Finally, we propose a research agenda to connect the presented ideas with other prominent research topics that must be further developed to support landscape management targeting ES provision. The prominence of ES science calls for contributions such as this to give the scientific community the opportunity to reflect on the underlying mechanisms of ES and avoid oversimplified spatial assessments.