Biodiversität und Klima Forschungszentrum (BiK-F)
Refine
Year of publication
Document Type
- Article (275)
- Preprint (8)
- Part of Periodical (4)
- Book (3)
- Contribution to a Periodical (3)
- Doctoral Thesis (3)
- Conference Proceeding (1)
- Review (1)
Language
- English (284)
- German (11)
- Multiple languages (3)
Has Fulltext
- yes (298)
Is part of the Bibliography
- no (298)
Keywords
- climate change (9)
- Invasive species (7)
- Phylogeny (6)
- Biodiversity (5)
- Biogeography (5)
- phylogeny (5)
- taxonomy (5)
- Climate change (4)
- Ecological modelling (4)
- West Africa (4)
Institute
- Biodiversität und Klima Forschungszentrum (BiK-F) (298)
- Senckenbergische Naturforschende Gesellschaft (189)
- Institut für Ökologie, Evolution und Diversität (130)
- Biowissenschaften (113)
- Geowissenschaften (46)
- Medizin (13)
- Geographie (11)
- Geowissenschaften / Geographie (7)
- Institut für sozial-ökologische Forschung (ISOE) (7)
- Präsidium (5)
Characterizing fluid circulation in orogens is key to understanding orogenic processes because fluid–rock interaction modifies the physical properties of rocks, hence their response to deformation and, for example, their suitability for radioactive waste storage. Fluid circulation can be dated by applying geochronological methods to fluid-precipitated minerals. Fluid sources and associated pathways can be traced using isotope data measured in the same or in other cogenetic minerals. We applied this concept to the Aar Massif (central Swiss Alps), which was part of the former European passive continental margin that was deformed and exhumed during the (Cenozoic) Alpine orogeny. Newly collected epidote from veins and from one cleft at several localities in meta-granitoids in the Aar Massif yielded U–Pb ages ranging from 27.7 ± 3.4 to 12.4 ± 1.9 Ma, which complement previously published geochronological data revealing Permian (278 ± 29, 251 ± 50, and 275 ± 18 Ma) and Miocene (19.2 ± 4.3 and 16.9 ± 3.7 Ma) epidote veins. We used Pb–Sr–O–H isotope geochemistry of epidote to evaluate fluid sources and pathways during Permian rifting and the Miocene compressional phases of Alpine orogeny. Strontium isotope data of Permian epidote are consistent with previous work suggesting meteoric water infiltration along syn-rift faults and through syn-rift sediments. A more-complex structural framework existed in the Miocene, when a sedimentary lid covered the Aar Massif. Strontium, O, and H isotope data of Miocene epidote-forming fluids indicate (1) meteoric water, mixing with (2) fluids derived from sedimentary units being compacted during orogenesis and/or (3) metamorphic water. All three fluid endmembers may have been circulating and mixing in the Aar Massif during Miocene deformation. Strontium isotope data further indicate that Miocene fluids contributed to imprinting a highly radiogenic Sr isotope composition onto Alpine shear zones or that the fluids inherited a highly radiogenic Sr isotope component by dissolving the Rb-rich, high 87Sr / 86Sr biotite therein. Both possibilities can coexist, and they imply that external fluids could modify the chemical composition of the post-Variscan granitoids hosting the studied epidote veins by fluid–rock interaction processes during deformation. Lead, Sr, and H isotopic differences among Miocene samples further suggest complexity of large-scale fluid circulation. Our work supports the fact that the reconstruction of multifaceted and multi-stage fluid circulation in highly deformed rocks benefits from extracting geochronological and isotope data from the same mineral.
Erosion is a complex geomorphological process controlled by climate, soil and vegetation characteristics in addition to land-use. However, the interplay of these drivers is not fully understood. Here we present a 11.8 ka multi-proxy record of geochemical, mineral magnetic and grain size analyses from Lake Stiucii, in the Transylvania lowlands (CE Europe) documenting past erosional activity and the drivers of landscape change. We identify three major phases in the site’s development. The first, a lacustrine phase (11.8–10.9 cal ka BP), is characterised by open water conditions with significant river inflow and depicts a period of greater erosion under a less developed catchment vegetation cover. Between 10.9 and 4.6 cal ka BP, the lake became a wetland characterised by shallow water with a reduced drainage network under warmer climate and/or reduced rainfall. From 4.6 cal ka BP, a second lacustrine phase developed driven by enhanced stream flow and sediment input subsequently accelerated by land use change.
On a millennial scale, the two significant changes in the lake-catchment system and erosion regime at 10.9 and 4.6 cal ka BP may reflect a response to fluctuations in large-scale atmospheric circulation patterns. The eight short-term erosional events identified at 10.6, 7.8 cal ka BP, between 4.4–4.1, 3.5, 3.0–2.5, 1.9, 1.5, 1.1–0.8 cal ka BP, overlap well-known climate events. However, from 4.6 cal ka BP the climate-landscape relationship is amplified by rising anthropogenic impacts. Our data provide critical information on the paleoenvironmental evolution of CE Europe’s lowlands and facilitate discussion of the effects of millennial and centennial climatic shifts as expressed in the local environment.
Streamflow drought hazard indicators (SDHIs) are mostly lacking in large-scale drought early warning systems (DEWSs). This paper presents a new systematic approach for selecting and computing SDHIs for monitoring drought for human water supply from surface water and for river ecosystems. We recommend considering the habituation of the system at risk (e.g., a drinking water supplier or small-scale farmers in a specific region) to the streamflow regime when selecting indicators; i.e., users of the DEWSs should determine which type of deviation from normal (e.g., a certain interannual variability or a certain relative reduction of streamflow) the risk system of interest has become used to and adapted to. Distinguishing four indicator types, we classify indicators of drought magnitude (water anomaly during a predefined period) and severity (cumulated magnitude since the onset of the drought event) and specify the many relevant decisions that need to be made when computing SDHIs. Using the global hydrological model WaterGAP 2.2d, we quantify eight existing and three new SDHIs globally. For large-scale DEWSs based on the output of hydrological models, we recommend specific SDHIs that are suitable for assessing the drought hazard for (1) river ecosystems, (2) water users without access to large reservoirs, and (3) water users with access to large reservoirs, as well as being suitable for informing reservoir managers. These SDHIs include both drought magnitude and severity indicators that differ by the temporal averaging period and the habituation of the risk system to reduced water availability. Depending on the habituation of the risk system, drought magnitude is best quantified either by the relative deviation from the mean or by the return period of the streamflow value that is based on the frequency of non-exceedance. To compute the return period, we favor empirical percentiles over the standardized streamflow indicator as the former do not entail uncertainties due to the fitting of a probability distribution and can be computed for all streamflow time series. Drought severity should be assessed with indicators that imply habituation to a certain degree of interannual variability, to a certain reduction from mean streamflow, and to the ability to fulfill human water demand and environmental flows. Reservoir managers are best informed by the SDHIs of the grid cell that represents inflow into the reservoir. The DEWSs must provide comprehensive and clear explanations about the suitability of the provided indicators for specific risk systems.
Streamflow drought hazard indicators (SDHIs) are mostly lacking in large-scale drought early warning systems (DEWSs). This paper presents a new systematic approach for selecting and computing SDHIs for monitoring drought for human water supply from surface water and for river ecosystems. We recommend considering the habituation of the system at risk (e.g., a drinking water supplier or small-scale farmers in a specific region) to the streamflow regime when selecting indicators; i.e., users of the DEWSs should determine which type of deviation from normal (e.g., a certain interannual variability or a certain relative reduction of streamflow) the risk system of interest has become used to and adapted to. Distinguishing four indicator types, we classify indicators of drought magnitude (water anomaly during a predefined period) and severity (cumulated magnitude since the onset of the drought event) and specify the many relevant decisions that need to be made when computing SDHIs. Using the global hydrological model WaterGAP 2.2d, we quantify eight existing and three new SDHIs globally. For large-scale DEWSs based on the output of hydrological models, we recommend specific SDHIs that are suitable for assessing the drought hazard for (1) river ecosystems, (2) water users without access to large reservoirs, and (3) water users with access to large reservoirs, as well as being suitable for informing reservoir managers. These SDHIs include both drought magnitude and severity indicators that differ by the temporal averaging period and the habituation of the risk system to reduced water availability. Depending on the habituation of the risk system, drought magnitude is best quantified either by the relative deviation from the mean or by the return period of the streamflow value that is based on the frequency of non-exceedance. To compute the return period, we favor empirical percentiles over the standardized streamflow indicator as the former do not entail uncertainties due to the fitting of a probability distribution and can be computed for all streamflow time series. Drought severity should be assessed with indicators that imply habituation to a certain degree of interannual variability, to a certain reduction from mean streamflow, and to the ability to fulfill human water demand and environmental flows. Reservoir managers are best informed by the SDHIs of the grid cell that represents inflow into the reservoir. The DEWSs must provide comprehensive and clear explanations about the suitability of the provided indicators for specific risk systems.
Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium-sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence-absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.
It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
This study was performed to identify Peronosclerospora species found in Indonesia based on sequence analysis of the cox2 gene. In addition, sequence data in total, 26 isolates of Peronosclerospora were investigated in this study. They were obtained from 7 provinces in Indonesia, namely Lampung, Jawa Timur, Jawa Barat, Sumatera Utara, Jawa Tengah, Yogyakarta, and Sulawesi Selatan. Sequence analysis of cox2 and phylogenetic inference were performed on all the 26 isolates. A set of primers developed in this study, PCOX2F and PCOX2R, was used for PCR amplification. Phylogenetic analyses showed that all the Indonesian isolates were divided into two groups. Group I contained 13 isolates; 9 isolates obtained from Lampung, 3 isolates from Sumatera Utara, and 1 isolate from Jawa Barat. Group II consisted of 13 isolates; 7 isolates from Jawa Timur, 2 isolates from Jawa Tengah, 1 isolate from Yogyakarta, and 3 isolates from Sulawesi Selatan. All the members of group I clustered with the ex-type sequence of P. australiensis. Meanwhile, all members of Group II formed the sister clade of isolates obtained from Timor-Leste and may represent P. maydis.
Kálmán Vánky (15th of June 1930–18th of October 2021) was arguably the most prolific researcher of smut fungi so far. He published more than 1000 taxonomic novelties, and crowned his outstanding oeuvre with the most comprehensive monograph of the smut fungi (Smut Fungi of the World) written to date.