Biodiversität und Klima Forschungszentrum (BiK-F)
Refine
Year of publication
Document Type
- Article (271)
- Preprint (8)
- Part of Periodical (4)
- Book (3)
- Contribution to a Periodical (3)
- Doctoral Thesis (3)
- Conference Proceeding (1)
- Review (1)
Language
- English (280)
- German (11)
- Multiple languages (3)
Has Fulltext
- yes (294)
Is part of the Bibliography
- no (294)
Keywords
- climate change (9)
- Invasive species (7)
- Phylogeny (6)
- Biodiversity (5)
- Biogeography (5)
- phylogeny (5)
- taxonomy (5)
- Climate change (4)
- Ecological modelling (4)
- West Africa (4)
Institute
- Biodiversität und Klima Forschungszentrum (BiK-F) (294)
- Senckenbergische Naturforschende Gesellschaft (189)
- Institut für Ökologie, Evolution und Diversität (130)
- Biowissenschaften (113)
- Geowissenschaften (45)
- Medizin (13)
- Geographie (12)
- Institut für sozial-ökologische Forschung (ISOE) (7)
- Präsidium (5)
- LOEWE-Schwerpunkt für Integrative Pilzforschung (4)
Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium-sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence-absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.
It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
This study was performed to identify Peronosclerospora species found in Indonesia based on sequence analysis of the cox2 gene. In addition, sequence data in total, 26 isolates of Peronosclerospora were investigated in this study. They were obtained from 7 provinces in Indonesia, namely Lampung, Jawa Timur, Jawa Barat, Sumatera Utara, Jawa Tengah, Yogyakarta, and Sulawesi Selatan. Sequence analysis of cox2 and phylogenetic inference were performed on all the 26 isolates. A set of primers developed in this study, PCOX2F and PCOX2R, was used for PCR amplification. Phylogenetic analyses showed that all the Indonesian isolates were divided into two groups. Group I contained 13 isolates; 9 isolates obtained from Lampung, 3 isolates from Sumatera Utara, and 1 isolate from Jawa Barat. Group II consisted of 13 isolates; 7 isolates from Jawa Timur, 2 isolates from Jawa Tengah, 1 isolate from Yogyakarta, and 3 isolates from Sulawesi Selatan. All the members of group I clustered with the ex-type sequence of P. australiensis. Meanwhile, all members of Group II formed the sister clade of isolates obtained from Timor-Leste and may represent P. maydis.
Kálmán Vánky (15th of June 1930–18th of October 2021) was arguably the most prolific researcher of smut fungi so far. He published more than 1000 taxonomic novelties, and crowned his outstanding oeuvre with the most comprehensive monograph of the smut fungi (Smut Fungi of the World) written to date.
The Miocene is a key time in the evolution of African mammals and their ecosystems witnessing the origin of the African apes and the isolation of eastern coastal forests through an expanding biogeographic arid corridor. Until recently, however, Miocene sites from the southeastern regions of the continent were unknown. Here we report discovery of the first Miocene fossil teeth from the shoulders of the Urema Rift in Gorongosa National Park, Mozambique, at the southern East African Rift System. We provide the first 1) radiometric age determinations of the fossiliferous Mazamba Formation, 2) reconstructions of past vegetation in the region based on pedogenic carbonates and fossil wood, and 3) description of fossil teeth from the southern rift. Gorongosa is unique in the East African Rift System in combining marine invertebrates, marine vertebrates, terrestrial mammals, and fossil woods in coastal paleoenvironments. The Gorongosa fossil sites offer the first evidence of persistent woodlands and forests on the coastal margins of southeastern Africa during the Miocene, and an exceptional assemblage of fossil vertebrates including new species. Further work will allow the testing of hypotheses positing the formation of a northeast-southwest arid corridor isolating species on the eastern coastal forests from those elsewhere in Africa.
Brief The Miocene is a key time in the evolution of African mammals and their ecosystems encompassing hominine origins and the establishment of an arid corridor that isolated eastern Africa’s coastal forests. Until now, however, Miocene sites from southeastern Africa have been unknown. We report the discovery of the first Miocene fossil sites from Gorongosa National Park, Mozambique, and show that these sites formed in coastal settings. We provide radiometric ages for the fossiliferous sediments, reconstructions of past vegetation based on stable isotopes and fossil wood, and a description of the first fossil teeth from the region. Gorongosa is the only paleontological site in the East African Rift that combines fossil woods, marine invertebrates, marine vertebrates, and terrestrial mammals. Gorongosa offers the first evidence of persistent woodlands and forests on the coastal margins of southeastern Africa during the Miocene.
The Miocene was a key time in the evolution of African ecosystems witnessing the origin of the African apes and the isolation of eastern coastal forests through an expanding arid corridor. Until recently, however, Miocene sites from the southeastern regions of the continent were unknown. Here, we report the first Miocene fossil teeth from the shoulders of the Urema Rift in Gorongosa National Park, Mozambique. We provide the first 1) radiometric ages of the Mazamba Formation, 2) reconstructions of paleovegetation in the region based on pedogenic carbonates and fossil wood, and 3) descriptions of fossil teeth. Gorongosa is unique in the East African Rift in combining marine invertebrates, marine vertebrates, reptiles, terrestrial mammals, and fossil woods in coastal paleoenvironments. The Gorongosa fossil sites offer the first evidence of woodlands and forests on the coastal margins of southeastern Africa during the Miocene, and an exceptional assemblage of fossils including new species.
The recent advances in molecular methods and data processing have facilitated research on anisakid nematodes. While most research efforts were made regarding the genus Anisakis, since this genus is held responsible for the majority of reported clinical signs, there is still a demand for data on the genus Pseudoterranova. Several case studies of severe invasive anisakidosis affecting various organs caused by species of the P. decipiens complex have been described. To better understand the way these parasites might infest their fish host, we examined whether parasite location within the fish host affects gene expression. A de novo assembly of the transcriptome of Pseudoterranova bulbosa, isolated from North Atlantic cod, was analysed for patterns of differential gene expression between samples taken from liver and viscera. We additionally searched for homologs to known nematode allergens, to give a first estimate of the potential allergenicity of P. bulbosa. There was a subtle difference in the gene expression of samples taken from liver and viscera. Seventy genes were differentially expressed, 32 genes were upregulated in parasites isolated from liver and 38 genes were upregulated in parasites from viscera. Homologs of five nematode allergens were identified among the genes expressed by P. bulbosa. Our transcriptome of P. bulbosa will be a valuable resource for further meta-analyses and resequencing projects.
he most basic behavioural states of animals can be described as active or passive. While high-resolution observations of activity patterns can provide insights into the ecology of animal species, few methods are able to measure the activity of individuals of small taxa in their natural environment. We present a novel approach in which a combination of automatic radiotracking and machine learning is used to distinguish between active and passive behaviour in small vertebrates fitted with lightweight transmitters (<0.4 g).
We used a dataset containing >3 million signals from very-high-frequency (VHF) telemetry from two forest-dwelling bat species (Myotis bechsteinii [n = 52] and Nyctalus leisleri [n = 20]) to train and test a random forest model in assigning either active or passive behaviour to VHF-tagged individuals. The generalisability of the model was demonstrated by recording and classifying the behaviour of tagged birds and by simulating the effect of different activity levels with the help of humans carrying transmitters. The model successfully classified the activity states of bats as well as those of birds and humans, although the latter were not included in model training (F1 0.96–0.98).
We provide an ecological case-study demonstrating the potential of this automated monitoring tool. We used the trained models to compare differences in the daily activity patterns of two bat species. The analysis showed a pronounced bimodal activity distribution of N. leisleri over the course of the night while the night-time activity of M. bechsteinii was relatively constant. These results show that subtle differences in the timing of species' activity can be distinguished using our method.
Our approach can classify VHF-signal patterns into fundamental behavioural states with high precision and is applicable to different terrestrial and flying vertebrates. To encourage the broader use of our radiotracking method, we provide the trained random forest models together with an R package that includes all necessary data processing functionalities. In combination with state-of-the-art open-source automated radiotracking, this toolset can be used by the scientific community to investigate the activity patterns of small vertebrates with high temporal resolution, even in dense vegetation.