MPI für Biophysik
Refine
Year of publication
Document Type
- Article (137)
- Preprint (24)
- Doctoral Thesis (5)
- Bachelor Thesis (1)
- Part of a Book (1)
- Conference Proceeding (1)
- Review (1)
Has Fulltext
- yes (170)
Is part of the Bibliography
- no (170)
Keywords
- Research article (8)
- Cryoelectron microscopy (7)
- X-ray crystallography (5)
- Biophysics and structural biology (4)
- mitochondria (4)
- Bacterial structural biology (3)
- Biochemistry (3)
- Bioenergetics (3)
- Cellular microbiology (3)
- Enzyme mechanisms (3)
Institute
- MPI für Biophysik (170)
- Physik (66)
- Biochemie und Chemie (50)
- Biowissenschaften (23)
- Biochemie, Chemie und Pharmazie (15)
- Medizin (15)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (13)
- MPI für Hirnforschung (5)
- Exzellenzcluster Makromolekulare Komplexe (4)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
During the co-translational assembly of protein complexes, a fully synthesized subunit engages with the nascent chain of a newly synthesized interaction partner. Such events are thought to contribute to productive assembly, but their exact physiological relevance remains underexplored. Here, we examine structural motifs contained in nucleoporins for their potential to facilitate co-translational assembly. We experimentally test candidate structural motifs and identify several previously unknown co-translational interactions. We demonstrate by selective ribosome profiling that domain invasion motifs of beta-propellers, coiled-coils, and short linear motifs may act as co-translational assembly domains. Such motifs are often contained in proteins that are members of multiple complexes (moonlighters) and engage with closely related paralogs. Surprisingly, moonlighters and paralogs assemble co-translationally in only some but not all of the relevant biogenesis pathways. Our results highlight the regulatory complexity of assembly pathways.
Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.
Stimulated emission depletion (STED) microscopy is a super-resolution technique that surpasses the diffraction limit and has contributed to the study of dynamic processes in living cells. However, high laser intensities induce fluorophore photobleaching and sample phototoxicity, limiting the number of fluorescence images obtainable from a living cell. Here, we address these challenges by using ultra-low irradiation intensities and a neural network for image restoration, enabling extensive imaging of single living cells. The endoplasmic reticulum (ER) was chosen as the target structure due to its dynamic nature over short and long timescales. The reduced irradiation intensity combined with denoising permitted continuous ER dynamics observation in living cells for up to 7 hours with a temporal resolution of seconds. This allowed for quantitative analysis of ER structural features over short (seconds) and long (hours) timescales within the same cell, and enabled fast 3D live-cell STED microscopy. Overall, the combination of ultra-low irradiation with image restoration enables comprehensive analysis of organelle dynamics over extended periods in living cells.
In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1–3. Studies of human and mouse GSDM pores reveal the functions and architectures of 24–33 protomers assemblies4–9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing >50 protomers. We determine a 3.3 Å cryo-EM structure of a Vitiosangium bGSDM in an active slinky-like oligomeric conformation and analyze bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, we define a stepwise model of GSDM pore assembly and demonstrate that pore formation is driven by local unfolding of membrane-spanning β-strand regions and pre-insertion of a covalently bound palmitoyl into the target membrane. These results yield insights into the diversity of GSDM pores found in nature and the function of an ancient post-translational modification in enabling a programmed host cell death process.
In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1–3. Studies of human and mouse GSDM pores reveal the functions and architectures of 24–33 protomers assemblies4–9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing >50 protomers. We determine a 3.3 Å cryo-EM structure of a Vitiosangium bGSDM in an active slinky-like oligomeric conformation and analyze bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning β-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2,3,4,5,6,7. Earlier studies concluded that FLVCR1 may function as a haem exporter8,9,10,11,12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14,15,16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Human feline leukemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN, and Fowler syndrome2–7. Earlier studies concluded that FLVCR1 may function as a putative heme exporter8–12, while FLVCR2 was suggested to act as a heme importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14–17. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across human plasma membranes, utilizing a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unraveled the coordination chemistry underlying their substrate interactions. Within the binding pocket of both transporters, we identify fully conserved tryptophan and tyrosine residues holding a central role in the formation of cation-π interactions, essential for choline and ethanolamine selectivity. Our findings not only clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhancing our comprehension of disease-associated mutations that interfere with these vital processes, but also shed light on the conformational dynamics of these MFS-type proteins during the transport cycle.
Biological membranes serve as physical barriers in cells and organelles, enabling the maintenance of chemical or ionic gradients that are essential for triggering various integral, peripheral, or lipid-anchored membrane proteins, necessary for their life-essential functions. The study of membrane proteins has unique challenges due to their hydrophobic nature, limited expression levels, and inherent flexibility. Single-particle analysis (SPA) enables the determination of high-resolution three-dimensional structures using minimal amounts of specimen without the need for crystallization. Additionally, cryogenic electron tomography (cryo-ET) and subtomogram averaging (StA) offer the ability to study membrane protein complexes, cellular architecture, and molecular interactions while preserving close-to-life conditions. With ongoing improvements in cryo-EM technologies, obtaining high-resolution structures of membrane proteins in vitro can allow people to understand their mechanisms and functions, and to facilitate the design and optimization of new therapeutic agents. Furthermore, there has been significant growth in the structural characterization of membrane proteins in situ, as studying biomolecules within their physiological context is an ultimate goal in structural biology for a comprehensive understanding of molecular networks in cells.
Due to the amphipathic nature of membrane proteins, their production, purification, and isolation pose significant challenges compared to soluble proteins. To maintain the membrane protein fold in an aqueous buffer after disrupting lipid membranes, the use of detergents, amphipols, lipid nanodiscs, saposin-lipoprotein (salipro), styrene-maleic acid co-polymer lipid particles (SMALPS) is common and often essential. A limitation of the membrane-mimetic systems is the absence of an actual lipid bilayer environment. To address this issue, membrane proteins can be reconstituted into liposomes, and this closed membrane environment closely mimics the physiological conditions of the proteins. The use of liposomes for structure determination is expected to significantly expand in the in vitro study of membrane proteins and membrane-associated proteins, particularly for capturing transient complexes in specific functional states.
Resolving the structures of membrane proteins in their native cellular context is considered the ideal approach for understanding their functions and associated molecular networks. While single-particle cryo-EM can achieve higher resolution than subtomogram averaging, it often requires at least partial purification of the target molecules from their native environment inside cells and tissues. By combining averaging tools on subvolumes obtained through cryo-ET, structures can currently be determined at resolutions of 10-30 Å. With ongoing advancements and refinements in cryo-ET methodologies, routine high-resolution structure determination in situ is poised to become a valuable tool for both structural and cell biologists in the long run, and the field holds great promise for further expanding our understanding of cellular structures and processes at the molecular level.
The main aim of this thesis is to further our knowledge of the structure and function of a small prokaryotic voltage-gated sodium ion channel, NaChBac in liposomes, and a large knob complex found on the surface of Plasmodium falciparum-infected human erythrocyte by cryo-ET and StA.
Chapter 2 presents the first StA map of the 120-kDa NaChBac embedded in liposomes under a resting membrane potential at a modest resolution of 16 Å. The approach presented in this study, which can be widely applied to cryo-EM analysis of membrane proteins, with a specific focus on membrane proteins with small soluble domains, lays the foundation for cryo-ET and StA of integral or peripheral membrane proteins whose functions are affected by transmembrane electrochemical gradients and/or membrane curvatures. Chapter 3 shows the first cryo-EM structure of the supramolecular knob complex in P. falciparum-infected human erythrocyte. While a previous study provided an overall architectural view of knobs using negative stain tomography, the in situ structure bridges this gap, guiding future investigations into the molecular composition and the role of these native knobs in Plasmodium infection and immunity.
This thesis opens up several promising lines for future studies of membrane proteins in vitro and in situ, where other membrane proteins can be studied in physiologically relevant environments. Already with the present generation of cryo-EM hardware and software, this thesis represents pioneering research in the field of membrane protein structural biology.
We examined the feedback between the major protein degradation pathway, the ubiquitin-proteasome system (UPS), and protein synthesis in rat and mouse neurons. When protein degradation was inhibited, we observed a coordinate dramatic reduction in nascent protein synthesis in neuronal cell bodies and dendrites. The mechanism for translation inhibition involved the phosphorylation of eIF2α, surprisingly mediated by eIF2α kinase 1, or heme-regulated kinase inhibitor (HRI). Under basal conditions, neuronal expression of HRI is barely detectable. Following proteasome inhibition, HRI protein levels increase owing to stabilization of HRI and enhanced translation, likely via the increased availability of tRNAs for its rare codons. Once expressed, HRI is constitutively active in neurons because endogenous heme levels are so low; HRI activity results in eIF2α phosphorylation and the resulting inhibition of translation. These data demonstrate a novel role for neuronal HRI that senses and responds to compromised function of the proteasome to restore proteostasis.
In recent decades, mass spectrometry has moved more than ever before into the front line of protein-centered research. After being established at the qualitative level, the more challenging question of quantification of proteins and peptides using mass spectrometry has become a focus for further development. In this chapter, we discuss and review actual strategies and problems of the methods for the quantitative analysis of peptides, proteins, and finally proteomes by mass spectrometry. The common themes, the differences, and the potential pitfalls of the main approaches are presented in order to provide a survey of the emerging field of quantitative, mass spectrometry-based proteomics.