MPI für Biophysik
Refine
Year of publication
Document Type
- Article (145)
- Preprint (29)
- Doctoral Thesis (5)
- Bachelor Thesis (1)
- Part of a Book (1)
- Conference Proceeding (1)
- Review (1)
Has Fulltext
- yes (183)
Is part of the Bibliography
- no (183)
Keywords
- Research article (8)
- Cryoelectron microscopy (7)
- X-ray crystallography (5)
- Biophysics and structural biology (4)
- Membrane Proteins (4)
- mitochondria (4)
- Archaea (3)
- Bacterial structural biology (3)
- Biochemistry (3)
- Bioenergetics (3)
Institute
- MPI für Biophysik (183)
- Physik (73)
- Biochemie und Chemie (52)
- Biowissenschaften (25)
- Biochemie, Chemie und Pharmazie (16)
- Medizin (16)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (14)
- Exzellenzcluster Makromolekulare Komplexe (5)
- MPI für Hirnforschung (5)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
Transport proteins exhibiting broad substrate specificities are major determinants for the phenomenon of multidrug resistance. The Escherichia coli multidrug transporter EmrE, a 4-transmembrane, helical 12-kDa membrane protein, forms a functional dimer to transport a diverse array of aromatic, positively charged substrates in a proton/drug antiport fashion. Here, we report (13)C chemical shifts of the essential residue Glu(14) within the binding pocket. To ensure a native environment, EmrE was reconstituted into E. coli lipids. Experiments were carried out using one- and two-dimensional double quantum filtered (13)C solid state NMR. For an unambiguous assignment of Glu(14), an E25A mutation was introduced to create a single glutamate mutant. Glu(14) was (13)C-labeled using cell-free expression. Purity, labeling, homogeneity, and functionality were probed by mass spectrometry, NMR spectroscopy, freeze fracture electron microscopy, and transport assays. For Glu(14), two distinct sets of chemical shifts were observed that indicates structural asymmetry in the binding pocket of homodimeric EmrE. Upon addition of ethidium bromide, chemical shift changes and altered line shapes were observed, demonstrating substrate coordination by both Glu(14) in the dimer.
Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy
(2016)
The Na(+)-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K(+) during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K(+) binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.
Bifurcated electron flow to high potential "Rieske" iron-sulfur cluster and low potential heme b(L) is crucial for respiratory energy conservation by the cytochrome bc(1) complex. The chemistry of ubiquinol oxidation has to ensure the thermodynamically unfavorable electron transfer to heme b(L). To resolve a central controversy about the number of ubiquinol molecules involved in this reaction, we used high resolution magic-angle-spinning nuclear magnetic resonance experiments to show that two out of three n-decyl-ubiquinones bind at the ubiquinol oxidation center of the complex. This substantiates a proposed mechanism in which a charge transfer between a ubiquinol/ubiquinone pair explains the bifurcation of electron flow.
The natural cytotoxicity receptors, comprised of three type I membrane proteins NKp30, NKp44, and NKp46, are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. Among these, NKp30 is a major receptor targeting virus-infected cells, malignantly transformed cells, and immature dendritic cells. To date, only few cellular ligands of NKp30 have been discovered, and the molecular details of ligand recognition by NKp30 are poorly understood. Within the current study, we found that the ectodomain of NKp30 forms functional homo-oligomers that mediate high affinity binding to its corresponding cellular ligand B7-H6. Notably, this homo-oligomerization is strongly promoted by the stalk domain of NKp30. Based on these data, we suggest that homo-oligomerization of NKp30 in the plasma membrane of NK cells, which might be favored by IL-2-dependent up-regulation of NKp30 expression, provides a way to improve recognition and lysis of target cells by NK cells.
Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of L-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of L-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 μm at pH 5.9 and is highly selective; no evidence was found for the binding of L-arginine, L-ornithine, L-2,4-diaminobutyric acid, and L-alanine. D-lysine is bound 45 times more weakly than its L-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010-1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for L-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed.
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.
The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na(+) as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na(+) transport. This is the first proof of Na(+) transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na(+) in the bioenergetics of archaea.
Lipid acquisition and transport are fundamental processes in all organisms, but many of the key players remain unidentified. In this study, we investigate the lipid-cycling mechanism of the minimal model organism Mycoplasma pneumoniae. We show that the essential protein P116 can extract lipids from the environment but also self- sufficiently deposit them into both eukaryotic cell membranes and liposomes. Our structures and molecular dynamics simulation reveal the mechanism by which the N- terminal region of P116, which resembles an SMP domain, perturbs the membrane, while a hydrophobic pocket exploits the chemical gradient to collect the lipids. Filling of P116 with cargo leads to a conformational change that modulates membrane affinity without consumption of ATP. We show that the Mycoplasmas have one integrated lipid acquisition and delivery machinery that shortcuts the complex multi-protein pathways used by higher developed organisms.
In integrative structural biology/hybrid modeling approaches, we integrate structural models of macromolecules and experimental data to obtain faithful representations of the structures underlying the data. For example, in ensemble refinement by reweighting we first generate structural ensembles of flexible and dynamic biological macromolecules in molecular simulations. In a subsequent reweighting step, we refine the statistical weights of the structures to strike a balance between the information provided by simulations and by experimental data. For the "Bayesian inference of ensembles" approach (BioEn), we present two complementary methods to solve the underlying challenging high-dimensional optimization problem. We systematically investigate reliability, accuracy, and efficiency of these methods and integrate molecular dynamics simulations of the disordered peptide Ala-5 and NMR J-couplings. We provide an open-source library free of charge at https://github.com/bio-phys/BioEn.
In integrative structural biology/hybrid modeling approaches, we integrate structural models of macromolecules and experimental data to obtain faithful representations of the structures underlying the data. For example, in ensemble refinement by reweighting we first generate structural ensembles of flexible and dynamic biological macromolecules in molecular simulations. In a subsequent reweighting step, we refine the statistical weights of the structures to strike a balance between the information provided by simulations and by experimental data. For the "Bayesian inference of ensembles" approach (BioEn), we present two complementary methods to solve the underlying challenging high-dimensional optimization problem. We systematically investigate reliability, accuracy, and efficiency of these methods and integrate molecular dynamics simulations of the disordered peptide Ala-5 and NMR J-couplings. We provide an open-source library free of charge at https://github.com/bio-phys/BioEn.