MPI für Hirnforschung
Refine
Year of publication
Language
- English (97)
Has Fulltext
- yes (97)
Is part of the Bibliography
- no (97)
Keywords
- EEG (3)
- Neuroscience (3)
- human (3)
- neuroscience (3)
- schizophrenia (3)
- Axons (2)
- Cell biology (2)
- Cryoelectron microscopy (2)
- Drosophila melanogaster (2)
- MEG (2)
Institute
Neural computations emerge from recurrent neural circuits that comprise hundreds to a few thousand neurons. Continuous progress in connectomics, electrophysiology, and calcium imaging require tractable spiking network models that can consistently incorporate new information about the network structure and reproduce the recorded neural activity features. However, it is challenging to predict which spiking network connectivity configurations and neural properties can generate fundamental operational states and specific experimentally reported nonlinear cortical computations. Theoretical descriptions for the computational state of cortical spiking circuits are diverse, including the balanced state where excitatory and inhibitory inputs balance almost perfectly or the inhibition stabilized state (ISN) where the excitatory part of the circuit is unstable. It remains an open question whether these states can co-exist with experimentally reported nonlinear computations and whether they can be recovered in biologically realistic implementations of spiking networks. Here, we show how to identify spiking network connectivity patterns underlying diverse nonlinear computations such as XOR, bistability, inhibitory stabilization, supersaturation, and persistent activity. We established a mapping between the stabilized supralinear network (SSN) and spiking activity which allowed us to pinpoint the location in parameter space where these activity regimes occur. Notably, we found that biologically-sized spiking networks can have irregular asynchronous activity that does not require strong excitation-inhibition balance or large feedforward input and we showed that the dynamic firing rate trajectories in spiking networks can be precisely targeted without error-driven training algorithms.
The firing pattern of ventral midbrain dopamine neurons is controlled by afferent and intrinsic activity to generate prediction error signals that are essential for reward-based learning. Given the absence of intracellular in vivo recordings in the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. By establishing stable in vivo whole-cell recordings of >100 spontaneously active midbrain dopamine neurons in anaesthetized mice, we identified the repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. We demonstrate that dopamine neuron in vivo activity deviates from a single spike pacemaker pattern by eliciting transient increases in firing rate generated by at least two diametrically opposing biophysical mechanisms: a transient depolarization resulting in high frequency plateau bursts associated with a reactive, depolarizing shift in action potential threshold; and a prolonged hyperpolarization preceding slower rebound bursts characterized by a predictive, hyperpolarizing shift in action potential threshold. Our findings therefore illustrate a framework for the biophysical implementation of prediction error and sensory cue coding in dopamine neurons by tuning action potential threshold dynamics.
Several studies have probed perceptual performance at different times after a self-paced motor action and found frequency-specific modulations of perceptual performance phase-locked to the action. Such action-related modulation has been reported for various frequencies and modulation strengths. In an attempt to establish a basic effect at the population level, we had a relatively large number of participants (n=50) perform a self-paced button press followed by a detection task at threshold, and we applied both fixed- and random-effects tests. The combined data of all trials and participants surprisingly did not show any significant action-related modulation. However, based on previous studies, we explored the possibility that such modulation depends on the participant’s internal state. Indeed, when we split trials based on performance in neighboring trials, then trials in periods of low performance showed an action-related modulation at ≈17 Hz. When we split trials based on the performance in the preceding trial, we found that trials following a “miss” showed an action-related modulation at ≈17 Hz. Finally, when we split participants based on their false-alarm rate, we found that participants with no false alarms showed an action-related modulation at ≈17 Hz. All these effects were significant in random-effects tests, supporting an inference on the population. Together, these findings indicate that action-related modulations are not always detectable. However, the results suggest that specific internal states such as lower attentional engagement and/or higher decision criterion are characterized by a modulation in the beta-frequency range.
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the discrete Fourier transform (DFT) and the least square spectrum (LSS). DFT and LSS can be applied both on the average accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effects) or on the population (random-effects) of simulated participants. Multiple comparisons across frequencies were corrected using False Discovery Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated sensitivity, specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the average accuracy time course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effects approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.
Several recent studies investigated the rhythmic nature of cognitive processes that lead to perception and behavioral report. These studies used different methods, and there has not yet been an agreement on a general standard. Here, we present a way to test and quantitatively compare these methods. We simulated behavioral data from a typical experiment and analyzed these data with several methods. We applied the main methods found in the literature, namely sine-wave fitting, the Discrete Fourier Transform (DFT) and the Least Square Spectrum (LSS). DFT and LSS can be applied both on the averaged accuracy time course and on single trials. LSS is mathematically equivalent to DFT in the case of regular, but not irregular sampling - which is more common. LSS additionally offers the possibility to take into account a weighting factor which affects the strength of the rhythm, such as arousal. Statistical inferences were done either on the investigated sample (fixed-effect) or on the population (random-effect) of simulated participants. Multiple comparisons across frequencies were corrected using False-Discovery-Rate, Bonferroni, or the Max-Based approach. To perform a quantitative comparison, we calculated Sensitivity, Specificity and D-prime of the investigated analysis methods and statistical approaches. Within the investigated parameter range, single-trial methods had higher sensitivity and D-prime than the methods based on the averaged-accuracy-time-course. This effect was further increased for a simulated rhythm of higher frequency. If an additional (observable) factor influenced detection performance, adding this factor as weight in the LSS further improved Sensitivity and D-prime. For multiple comparison correction, the Max-Based approach provided the highest Specificity and D-prime, closely followed by the Bonferroni approach. Given a fixed total amount of trials, the random-effect approach had higher D-prime when trials were distributed over a larger number of participants, even though this gave less trials per participant. Finally, we present the idea of using a dampened sinusoidal oscillator instead of a simple sinusoidal function, to further improve the fit to behavioral rhythmicity observed after a reset event.
Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding
(2020)
Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal’s direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal’s next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.
Borders and edges are salient and behaviourally relevant features for navigating the environment. The brain forms dedicated neural representations of environmental boundaries, which are assumed to serve as a reference for spatial coding. Here we expand this border coding network to include the retrosplenial cortex (RSC) in which we identified neurons that increase their firing near all boundaries of an arena. RSC border cells specifically encode walls, but not objects, and maintain their tuning in the absence of direct sensory detection. Unlike border cells in the medial entorhinal cortex (MEC), RSC border cells are sensitive to the animal’s direction to nearby walls located contralateral to the recorded hemisphere. Pharmacogenetic inactivation of MEC led to a disruption of RSC border coding, but not vice versa, indicating network directionality. Together these data shed light on how information about distance and direction of boundaries is generated in the brain for guiding navigation behaviour.
Brookshire (2022) claims that previous analyses of periodicity in detection performance after a reset event suffer from extreme false-positive rates. Here we show that this conclusion is based on an incorrect implemention of a null-hypothesis of aperiodicity, and that a correct implementation confirms low false-positive rates. Furthermore, we clarify that the previously used method of shuffling-in-time, and thereby shuffling-in-phase, cleanly implements the null hypothesis of no temporal structure after the reset, and thereby of no phase locking to the reset. Moving from a corresponding phase-locking spectrum to an inference on the periodicity of the underlying process can be accomplished by parameterizing the spectrum. This can separate periodic from non-periodic components, and quantify the strength of periodicity.