MPI für empirische Ästhetik
Refine
Year of publication
Language
- English (44)
Has Fulltext
- yes (44)
Is part of the Bibliography
- no (44)
Keywords
- Acoustics (4)
- Speech (4)
- Language (3)
- Behavior (2)
- Bioacoustics (2)
- Cognitive linguistics (2)
- Cognitive science (2)
- Consolidation (2)
- Electroencephalography – EEG (2)
- Human behaviour (2)
Institute
- MPI für empirische Ästhetik (44)
- Psychologie (22)
- Ernst Strüngmann Institut (7)
- Medizin (5)
- Neuere Philologien (4)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Biowissenschaften (1)
- MPI für Hirnforschung (1)
- Mathematik (1)
- Sprachwissenschaften (1)
Cortical tracking of stimulus features (such as the envelope) is a crucial tractable neural mechanism, allowing us to investigate how we process continuous music. We here tested whether cortical and behavioural tracking of beat, typically related to rhythm processing, are modulated by pitch predictability. In two experiments (n=20, n=52), participants’ ability to tap along to the beat of musical sequences was measured for tonal (high pitch predictability) and atonal (low pitch predictability) music. In Experiment 1, we additionally measured participants’ EEG and analysed cortical tracking of the acoustic envelope and of pitch surprisal (using IDyOM). In both experiments, finger-tapping performance was better in the tonal than the atonal condition, indicating a positive effect of pitch predictability on behavioural rhythm processing. Neural data revealed that the acoustic envelope was tracked stronger while listening to atonal than tonal music, potentially reflecting listeners’ violated pitch expectations. Our findings show that cortical envelope tracking, beyond reflecting musical rhythm processing, is modulated by pitch predictability (as well as musical expertise and enjoyment). Stronger cortical surprisal tracking was linked to overall worse envelope tracking, and worse finger-tapping performance for atonal music. Specifically, the low pitch predictability in atonal music seems to draw attentional resources resulting in a reduced ability to follow the rhythm behaviourally. Overall, cortical envelope and surprisal tracking were differentially related to behaviour in tonal and atonal music, likely reflecting differential processing under conditions of high and low predictability. Taken together, our results show diverse effects of pitch predictability on musical rhythm processing.
The neural processing of speech and music is still a matter of debate. A long tradition that assumes shared processing capacities for the two domains contrasts with views that assume domain-specific processing. We here contribute to this topic by investigating, in a functional magnetic imaging (fMRI) study, ecologically valid stimuli that are identical in wording and differ only in that one group is typically spoken (or silently read), whereas the other is sung: poems and their respective musical settings. We focus on the melodic properties of spoken poems and their sung musical counterparts by looking at proportions of significant autocorrelations (PSA) based on pitch values extracted from their recordings. Following earlier studies, we assumed a bias of poem-processing towards the left and a bias for song-processing on the right hemisphere. Furthermore, PSA values of poems and songs were expected to explain variance in left- vs. right-temporal brain areas, while continuous liking ratings obtained in the scanner should modulate activity in the reward network. Overall, poem processing compared to song processing relied on left temporal regions, including the superior temporal gyrus, whereas song processing compared to poem processing recruited more right temporal areas, including Heschl's gyrus and the superior temporal gyrus. PSA values co-varied with activation in bilateral temporal regions for poems, and in right-dominant fronto-temporal regions for songs. Continuous liking ratings were correlated with activity in the default mode network for both poems and songs. The pattern of results suggests that the neural processing of poems and their musical settings is based on their melodic properties, supported by bilateral temporal auditory areas and an additional right fronto-temporal network known to be implicated in the processing of melodies in songs. These findings take a middle ground in providing evidence for specific processing circuits for speech and music in the left and right hemisphere, but simultaneously for shared processing of melodic aspects of both poems and their musical settings in the right temporal cortex. Thus, we demonstrate the neurobiological plausibility of assuming the importance of melodic properties in spoken and sung aesthetic language alike, along with the involvement of the default mode network in the aesthetic appreciation of these properties.
Free gaze and moving images are typically avoided in EEG experiments due to the expected generation of artifacts and noise. Yet for a growing number of research questions, loosening these rigorous restrictions would be beneficial. Among these is research on visual aesthetic experiences, which often involve open-ended exploration of highly variable stimuli. Here we systematically compare the effect of conservative vs. more liberal experimental settings on various measures of behavior, brain activity and physiology in an aesthetic rating task. Our primary aim was to assess EEG signal quality. 43 participants either maintained fixation or were allowed to gaze freely, and viewed either static images or dynamic (video) stimuli consisting of dance performances or nature scenes. A passive auditory background task (auditory steady-state response; ASSR) was added as a proxy measure for overall EEG recording quality. We recorded EEG, ECG and eye tracking data, and participants rated their aesthetic preference and state of boredom on each trial. Whereas both behavioral ratings and gaze behavior were affected by task and stimulus manipulations, EEG SNR was barely affected and generally robust across all conditions, despite only minimal preprocessing and no trial rejection. In particular, we show that using video stimuli does not necessarily result in lower EEG quality and can, on the contrary, significantly reduce eye movements while increasing both the participants’ aesthetic response and general task engagement. We see these as encouraging results indicating that — at least in the lab — more liberal experimental conditions can be adopted without significant loss of signal quality.
When experienced in-person, engagement with art has been associated with positive outcomes in well-being and mental health. However, especially in the last decade, art viewing, cultural engagement, and even ‘trips’ to museums have begun to take place online, via computers, smartphones, tablets, or in virtual reality. Similarly, to what has been reported for in-person visits, online art engagements—easily accessible from personal devices—have also been associated to well-being impacts. However, a broader understanding of for whom and how online-delivered art might have well-being impacts is still lacking. In the present study, we used a Monet interactive art exhibition from Google Arts and Culture to deepen our understanding of the role of pleasure, meaning, and individual differences in the responsiveness to art. Beyond replicating the previous group-level effects, we confirmed our pre-registered hypothesis that trait-level inter-individual differences in aesthetic responsiveness predict some of the benefits that online art viewing has on well-being and further that such inter-individual differences at the trait level were mediated by subjective experiences of pleasure and especially meaningfulness felt during the online-art intervention. The role that participants' experiences play as a possible mechanism during art interventions is discussed in light of recent theoretical models.
In this study, we investigated the impact of two constraints on the linear order of constituents in German preschool children’s and adults’ speech production: a rhythmic (*LAPSE, militating against sequences of unstressed syllables) and a semantic one (ANIM, requiring animate referents to be named before inanimate ones). Participants were asked to produce coordinated bare noun phrases in response to picture stimuli (e.g., Delfin und Planet, ‘dolphin and planet’) without any predefined word order. Overall, children and adults preferably produced animate items before inanimate ones, confirming findings of Prat-Sala, Shillcock, and Sorace (2000). In the group of preschoolers, the strength of the animacy effect correlated positively with age. Furthermore, the order of the conjuncts was affected by the rhythmic constraint, such that disrhythmic sequences, i.e., stress lapses, were avoided. In both groups, the latter result was significant when the two stimulus pictures did not vary with respect to animacy. In sum, our findings suggest a stronger influence of animacy compared to rhythmic well-formedness on conjunct ordering for German speaking children and adults, in line with findings by McDonald, Bock, and Kelly (1993) who investigated English speaking adults.
The ability to extract regularities from the environment is arguably an adaptive characteristic of intelligent systems. In the context of speech, statistical learning is thought to be an important mechanism for language acquisition. By considering individual differences in speech auditory-motor synchronization, an independent component analysis of fMRI data revealed that the neural substrates of statistical word form learning are not fully shared across individuals. While a network of auditory and superior pre/motor regions is universally activated in the process of learning, a fronto-parietal network is instead additionally and selectively engaged by some individuals, boosting their performance. Furthermore, interfering with the use of this network via articulatory suppression (producing irrelevant speech during learning) normalizes performance across the entire sample. Our work provides novel insights on language-related statistical learning and reconciles previous contrasting findings, while highlighting the need to factor in fundamental individual differences for a precise characterization of cognitive phenomena.
Across languages, the speech signal is characterized by a predominant modulation of the amplitude spectrum between about 4.3-5.5Hz, reflecting the production and processing of linguistic information chunks (syllables, words) every ∼200ms. Interestingly, ∼200ms is also the typical duration of eye fixations during reading. Prompted by this observation, we demonstrate that German readers sample written text at ∼5Hz. A subsequent meta-analysis with 142 studies from 14 languages replicates this result, but also shows that sampling frequencies vary across languages between 3.9Hz and 5.2Hz, and that this variation systematically depends on the complexity of the writing systems (character-based vs. alphabetic systems, orthographic transparency). Finally, we demonstrate empirically a positive correlation between speech spectrum and eye-movement sampling in low-skilled readers. Based on this convergent evidence, we propose that during reading, our brain’s linguistic processing systems imprint a preferred processing rate, i.e., the rate of spoken language production and perception, onto the oculomotor system.
Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous in our daily sensory experience. Here, we tested whether the relative position, relative duration and relative distance in time of two sequentially-organized events —standard S, with constant duration, and comparison C, varying trial-by-trial— are causal factors in generating temporal distortions. We found that temporal distortions emerge when the first event is shorter than the second event. Importantly, a significant interaction suggests that a longer ISI helps counteracting such serial distortion effect only the constant S is in first position, but not if the unpredictable C is in first position. These results suggest the existence of a perceptual bias in perceiving ordered event durations, mechanistically contributing to distortion in time perception. We simulated our behavioral results with a Bayesian model and replicated the finding that participants disproportionately expand first-position dynamic (unpredictable) short events. Our results clarify the mechanics generating time distortions by identifying a hitherto unknown duration-dependent encoding inefficiency in human serial temporal perception, akin to a strong prior that can be overridden for highly predictable sensory events but unfolds for unpredictable ones.
Research points to neurofunctional differences underlying fluent speech production in stutterers and non-stutterers. There has been considerably less work focusing on the processes that underlie stuttered speech, primarily due to the difficulty of reliably eliciting stuttering in the unnatural contexts associated with neuroimaging experiments. We used magnetoencephalography (MEG) to test the hypothesis that stuttering events result from global motor inhibition–a “freeze” response typically characterized by increased beta power in nodes of the action-stopping network. We leveraged a novel clinical interview to develop participant-specific stimuli in order to elicit a comparable amount of stuttered and fluent trials. Twenty-nine adult stutterers participated. The paradigm included a cue prior to a go signal, which allowed us to isolate processes associated with stuttered and fluent trials prior to speech initiation. During this pre-speech time window, stuttered trials were associated with greater beta power in the right pre-supplementary motor area, a key node in the action-stopping network, compared to fluent trials. Beta power in the right pre-supplementary area was related to a clinical measure of stuttering severity. We also found that anticipated words identified independently by participants were stuttered more often than those generated by the researchers, which were based on the participants’ reported anticipated sounds. This suggests that global motor inhibition results from stuttering anticipation. This study represents the largest comparison of stuttered and fluent speech to date. The findings provide a foundation for clinical trials that test the efficacy of neuromodulation on stuttering. Moreover, our study demonstrates the feasibility of using our approach for eliciting stuttering during MEG and functional magnetic resonance imaging experiments so that the neurobiological bases of stuttered speech can be further elucidated.
When speech is too fast, the tracking of the acoustic signal along the auditory pathway deteriorates, leading to suboptimal speech segmentation and decoding of speech information. Thus, speech comprehension is limited by the temporal constraints of the auditory system. Here we ask whether individual differences in auditory-motor coupling strength in part shape these temporal constraints. In two behavioural experiments, we characterize individual differences in the comprehension of naturalistic speech as function of the individual synchronization between the auditory and motor systems and the preferred frequencies of the systems. Obviously, speech comprehension declined at higher speech rates. Importantly, however, both higher auditory-motor synchronization and higher spontaneous speech motor production rates were predictive of better speech-comprehension performance. Furthermore, performance increased with higher working memory capacity (digit span) and higher linguistic, model-based sentence predictability—particularly so at higher speech rates and for individuals with high auditory-motor synchronization. The data provide evidence for a model of speech comprehension in which individual flexibility of not only the motor system but also auditory-motor synchronization may play a modulatory role.